Skip to content
Volume 63, Issue 4
  • ISSN: 2056-5135


Microemulsions were used to develop a catalyst with high selectivity towards ethylene and ethane while maintaining considerable methane (CH) conversion. The use of this technique to produce lanthanum nanoparticles was studied under different conditions. Temperature was shown to have the most significant effect on the final material properties providing a minimum crystallite size at 25°C. The morphology observed for all the samples was flake or needle like materials containing nanocrystallites. To obtain the catalytically active materials a thermal treatment was needed and this was studied using X-ray diffraction (XRD). This analysis demonstrated that the materials exhibited significant changes in phase and crystallite size when submitted to thermal treatment and these were shown to be difficult to control, meaning that the microemulsion synthesis method is a challenging route to produce La nanoparticles in a reproducible manner. The materials were tested for oxidative coupling of methane (OCM) and no correlation could be observed between the ‘as synthesised’ crystallite size and activity. However, the presence of La carbonates in the materials produced was deemed to be crucial to ensure an adequate OCM activity.


Article metrics loading...

Loading full text...

Full text loading...



  1. Wood D. A., Nwaoha C., and Towler B. F. J. Nat. Gas Sci. Eng., 2012, 9, 196 LINK [Google Scholar]
  2. Nyarko M. “Process Plant of Gas to Liquid (GTL): Theory and Simulation”, AV Akademikerverlag GmbH and Co KG, Saarbrücken, Germany, 2012, 232 pp [Google Scholar]
  3. Dry M. E. Catal. Today, 2002, 71, (3–4), 227 LINK [Google Scholar]
  4. Venkatarathnam G., ‘Natural Gas Liquefaction Processes’, in “Cryogenic Mixed Refrigerant Processes”, eds. Timmerhaus K. D., and Rizzuto C. Springer Science and Business Media LLC, New York, USA, 2008, pp. 149–220 LINK [Google Scholar]
  5. Lin W., Zhang N., and Gu A. Energy, 2010, 35, (11), 4383 LINK [Google Scholar]
  6. Arutyunov V. S., Savchenko V. I., Sedov I. V, Fokin I. G., Nikitin A. V, and Strekova L. N. Chem. Eng. J., 2015, 282, 206 LINK [Google Scholar]
  7. Tuck C. O., Pérez E., Horváth I. T., Sheldon R. A., and Poliakoff M. Science, 2012, 337, (6095), 695 LINK [Google Scholar]
  8. Lunsford J. H. Catal. Today, 1990, 6, (3), 235 LINK [Google Scholar]
  9. Maitra A. M. Appl. Catal. A: Gen., 1993, 104, (1), 11 LINK [Google Scholar]
  10. Hutchings G. J., Scurrell M. S., and Woodhouse J. R. Chem. Soc. Rev., 1989, 18, 251 LINK [Google Scholar]
  11. Ghanta M., Fahey D., and Subramaniam B. Appl. Petrochem. Res., 2014, 4, (2), 167 LINK [Google Scholar]
  12. Keller G. E., and Bhasin M. M. J. Catal., 1982, 73, (1), 9 LINK [Google Scholar]
  13. Machida K., and Enyo M. J. Chem. Soc. Chem. Commun., 1987, (21), 1639 LINK [Google Scholar]
  14. Galadima A., and Muraza O. J. Ind. Eng. Chem., 2016, 37, 1 LINK [Google Scholar]
  15. Hargreaves J. S. J., Hutchings G. J., Joyner R. W., and Kiely C. J. J. Catal., 1992, 135, (2), 576 LINK [Google Scholar]
  16. LeVan T., Che M., and Tatibouët J.-M. Catal. Lett., 1992, 14, (3–4), 321 LINK [Google Scholar]
  17. Montero J. M., Gai P., Wilson K., and Lee A. F. Green Chem., 2009, 11, (2), 265 LINK [Google Scholar]
  18. Durá O. J., López de la Torre M. A., Vázquez L., Chaboy J., Boada R., Rivera-Calzada A., Santamaria J., and Leon C. Phys. Rev. B, 2010, 81, (18), 184301 LINK [Google Scholar]
  19. Gambo Y., Jalil A. A., Triwahyono S., and Abdulrasheed A. A. J. Ind. Eng. Chem., 2018, 59, 218 LINK [Google Scholar]
  20. Coronas J., Menéndez M., and Santamaria J. Chem. Eng. Sci., 1994, 49, (12), 2015 LINK [Google Scholar]
  21. Lu Y., Dixon A. G., Moser W. R., and Ma Y. H. Chem. Eng. Sci., 2000, 55, (21), 4901 LINK [Google Scholar]
  22. Marafee A., Liu C., Xu G., Mallinson R., and Lobban L. Ind. Eng. Chem. Res., 1997, 36, (3), 632 LINK [Google Scholar]
  23. Yao S. L., Ouyang F., Nakayama A., Suzuki E., Okumoto M., and Mizuno A. Energy Fuels, 2000, 14, (4), 910 LINK [Google Scholar]
  24. Volokitin Y., Sinzig J., de Jongh L. J., Schmid G., Vargaftik M. N., and Moiseevi I. I. Nature, 1996, 384, (6610), 621 LINK [Google Scholar]
  25. Estruch Bosch C., Copley M. P., Eralp T., Bilbé E., Thybaut J. W., Marin G. B., and Collier P. Appl. Catal. A: Gen., 2017, 536, 104 LINK [Google Scholar]
  26. Thybaut J. W., Sun J., Olivier L., Van Veen A. C., Mirodatos C., and Marin G. B. Catal. Today, 2011, 159, (1), 29 LINK [Google Scholar]
  27. Farsi A., Moradi A., Ghader S., and Shadravan V. Chinese J. Chem. Phys., 2011, 24, (1), 70 LINK [Google Scholar]
  28. Noon D., Zohour B., and Senkan S. J. Nat. Gas Sci. Eng., 2014, 18, 406 LINK [Google Scholar]
  29. Huang P., Zhao Y., Zhang J., Zhu Y., and Sun Y. Nanoscale, 2013, 5, (22), 10844 LINK [Google Scholar]
  30. Alexiadis V. I., Thybaut J. W., Kechagiopoulos P. N., Chaar M., Van Veen A. C., Muhler M., and Marin G. B. Appl. Catal. B: Environ., 2014, 150–151, 496 LINK [Google Scholar]
  31. Choudhary V. R., Uphade B. S., and Mulla S. A. R. Ind. Eng. Chem. Res., 1997, 36, (9), 3594 LINK [Google Scholar]
  32. Arriagada F. J., and Osseo-Asare K. J. Colloid Interface Sci., 1999, 211, (2), 210 LINK [Google Scholar]
  33. Eastoe J., Hollamby M. J., and Hudson L. Adv. Colloid Interface Sci., 2006, 128–130, 5 LINK [Google Scholar]
  34. Pileni M.-P. Nature Mater., 2003, 2, (3), 145 LINK [Google Scholar]
  35. Borchert H., and Baerns M. J. Catal., 1997, 168, (2), 315 LINK [Google Scholar]
  36. Choudhary V. R., and Rane V. H. J. Chem. Soc. Faraday Trans., 1994, 90, (21), 3357 LINK [Google Scholar]
  37. Ghose R., Hwang H. T., and Varma A. Appl. Catal. A: Gen., 2013, 452, 147 LINK [Google Scholar]
  38. Ilett D. J., and Islam M. S. J. Chem. Soc. Faraday Trans., 1993, 89, (20), 3833 LINK [Google Scholar]
  39. Otsuka K., Jinno K., and Morikawa A. J. Catal., 1986, 100, (2), 353 LINK [Google Scholar]
  40. Lacombe S., Geantet C., and Mirodatos C. J. Catal., 1995, 151, (2), 439 LINK [Google Scholar]
  41. DeBoy J. M., and Hicks R. F. J. Chem. Soc. Chem. Commun., 1988, (14), 982 LINK [Google Scholar]
  42. Deboy J. M., and Hicks R. F. J. Catal., 1988, 113, (2), 517 LINK [Google Scholar]
  43. Taylor R. P., and Schrader G. L. Ind. Eng. Chem. Res., 1991, 30, (5), 1016 LINK [Google Scholar]
  44. Levan T., Che M., Tatibouet J. M., and Kermarec M. J. Catal., 1993, 142, (1), 18 LINK [Google Scholar]
  45. Strobel R., Baiker A., and Pratsinis S. E. Adv. Powder Technol., 2006, 17, (5), 457 LINK [Google Scholar]
  46. Thiébaut B. Platinum Metals Rev., 2011, 55, (2), 149 LINK [Google Scholar]
  47. Camenzind A., Caseri W. R., and Pratsinis S. E. Nano Today, 2010, 5, (1), 48 LINK [Google Scholar]
  48. Capek I. Adv. Colloid Interface Sci., 2004, 110, (1–2), 49 LINK [Google Scholar]
  49. Everett D. H. “Basic Principles of Colloid Science”, The Royal Society of Chemistry, London, UK, 1988, 243 pp LINK [Google Scholar]
  50. Chandradass J., and Kim K. H. J. Cryst. Growth, 2009, 311, (14), 3631 LINK [Google Scholar]
  51. Coelho A. A. ‘TOPAS User Manual’, Version 3.1, Bruker AXS GmbH, Karlsruhe, Germany, 2003 [Google Scholar]
  52. Bisal S., Bhattacharya P. K., and Moulik S. P. J. Phys. Chem., 1990, 94, (1), 350 LINK [Google Scholar]
  53. Zhu D. M., Feng K. I., and Schelly Z. A. J. Phys. Chem., 1992, 96, (5), 2382 LINK [Google Scholar]
  54. Eriksson S., Nylén U., and Boutonnet M. Appl. Catal. A: Gen., 2004, 265, (2), 207 LINK [Google Scholar]
  55. Lisiecki I., and Pileni M. P. J. Phys. Chem., 1995, 99, (14), 5077 LINK [Google Scholar]
  56. Shinoda K., and Lindman B. Langmuir, 1987, 3, (2), 135 LINK [Google Scholar]
  57. Langevin D. Annu. Rev. Phys. Chem., 1992, 43, 341 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error