Skip to content
1887
Volume 63, Issue 4
  • ISSN: 2056-5135
  • oa Exploring Microemulsion-Prepared Lanthanum Catalysts for Natural Gas Valorisation

    Catalysts for small scale application in natural gas and biomass conversion

  • Authors: Cristina Estruch Bosch1, Stephen Poulston1, Paul Collier1, Joris W. Thybaut2 and Guy B. Marin2
  • Affiliations: 1 Johnson MattheyBlounts Court, Sonning Common, Reading, RG4 9NHUK 2 Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent UniversityTechnologiepark-Zwijnaarde 125, B-9052 GentBelgium
  • Source: Johnson Matthey Technology Review, Volume 63, Issue 4, Oct 2019, p. 265 - 276
  • DOI: https://doi.org/10.1595/205651319X15613828987406
    • Published online: 01 Jan 2019

Abstract

Microemulsions were used to develop a catalyst with high selectivity towards ethylene and ethane while maintaining considerable methane (CH) conversion. The use of this technique to produce lanthanum nanoparticles was studied under different conditions. Temperature was shown to have the most significant effect on the final material properties providing a minimum crystallite size at 25°C. The morphology observed for all the samples was flake or needle like materials containing nanocrystallites. To obtain the catalytically active materials a thermal treatment was needed and this was studied using X-ray diffraction (XRD). This analysis demonstrated that the materials exhibited significant changes in phase and crystallite size when submitted to thermal treatment and these were shown to be difficult to control, meaning that the microemulsion synthesis method is a challenging route to produce La nanoparticles in a reproducible manner. The materials were tested for oxidative coupling of methane (OCM) and no correlation could be observed between the ‘as synthesised’ crystallite size and activity. However, the presence of La carbonates in the materials produced was deemed to be crucial to ensure an adequate OCM activity.

Loading

Article metrics loading...

/content/journals/10.1595/205651319X15613828987406
2019-01-01
2025-01-03
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/63/4/Bosch_16a_Imp.html?itemId=/content/journals/10.1595/205651319X15613828987406&mimeType=html&fmt=ahah

References

  1. D. A. Wood, C. Nwaoha, B. F. Towler, J. Nat. Gas Sci. Eng., 2012, 9, 196 LINK https://doi.org/10.1016/j.jngse.2012.07.001 [Google Scholar]
  2. M. Nyarko, “Process Plant of Gas to Liquid (GTL): Theory and Simulation”, AV Akademikerverlag GmbH and Co KG, Saarbrücken, Germany, 2012, 232 pp [Google Scholar]
  3. M. E. Dry, Catal. Today, 2002, 71, (3–4), 227 LINK https://doi.org/10.1016/s0920-5861(01)00453-9 [Google Scholar]
  4. G. Venkatarathnam, ‘Natural Gas Liquefaction Processes’, in “Cryogenic Mixed Refrigerant Processes”, eds. K. D. Timmerhaus, C. Rizzuto, Springer Science and Business Media LLC, New York, USA, 2008, pp. 149–220 LINK https://doi.org/10.1007/978-0-387-78514-1_6 [Google Scholar]
  5. W. Lin, N. Zhang, A. Gu, Energy, 2010, 35, (11), 4383 LINK https://doi.org/10.1016/j.energy.2009.04.036 [Google Scholar]
  6. V. S. Arutyunov, V. I. Savchenko, I. V Sedov, I. G. Fokin, A. V Nikitin, L. N. Strekova, Chem. Eng. J., 2015, 282, 206 LINK https://doi.org/10.1016/j.cej.2015.02.082 [Google Scholar]
  7. C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon, M. Poliakoff, Science, 2012, 337, (6095), 695 LINK https://doi.org/10.1126/science.1218930 [Google Scholar]
  8. J. H. Lunsford, Catal. Today, 1990, 6, (3), 235 LINK https://doi.org/10.1016/0920-5861(90)85004-8 [Google Scholar]
  9. A. M. Maitra, Appl. Catal. A: Gen., 1993, 104, (1), 11 LINK https://doi.org/10.1016/0926-860x(93)80209-9 [Google Scholar]
  10. G. J. Hutchings, M. S. Scurrell, J. R. Woodhouse, Chem. Soc. Rev., 1989, 18, 251 LINK https://doi.org/10.1039/cs9891800251 [Google Scholar]
  11. M. Ghanta, D. Fahey, B. Subramaniam, Appl. Petrochem. Res., 2014, 4, (2), 167 LINK https://doi.org/10.1007/s13203-013-0029-7 [Google Scholar]
  12. G. E. Keller, M. M. Bhasin, J. Catal., 1982, 73, (1), 9 LINK https://doi.org/10.1016/0021-9517(82)90075-6 [Google Scholar]
  13. K. Machida, M. Enyo, J. Chem. Soc. Chem. Commun., 1987, (21), 1639 LINK https://doi.org/10.1039/c39870001639 [Google Scholar]
  14. A. Galadima, O. Muraza, J. Ind. Eng. Chem., 2016, 37, 1 LINK https://doi.org/10.1016/j.jiec.2016.03.027 [Google Scholar]
  15. J. S. J. Hargreaves, G. J. Hutchings, R. W. Joyner, C. J. Kiely, J. Catal., 1992, 135, (2), 576 LINK https://doi.org/10.1016/0021-9517(92)90055-m [Google Scholar]
  16. T. LeVan, M. Che, J.-M. Tatibouët, Catal. Lett., 1992, 14, (3–4), 321 LINK https://doi.org/10.1007/bf00769670 [Google Scholar]
  17. J. M. Montero, P. Gai, K. Wilson, A. F. Lee, Green Chem., 2009, 11, (2), 265 LINK https://doi.org/10.1039/b814357a [Google Scholar]
  18. O. J. Durá, M. A. López de la Torre, L. Vázquez, J. Chaboy, R. Boada, A. Rivera-Calzada, J. Santamaria, C. Leon, Phys. Rev. B, 2010, 81, (18), 184301 LINK https://doi.org/10.1103/physrevb.81.184301 [Google Scholar]
  19. Y. Gambo, A. A. Jalil, S. Triwahyono, A. A. Abdulrasheed, J. Ind. Eng. Chem., 2018, 59, 218 LINK https://doi.org/10.1016/j.jiec.2017.10.027 [Google Scholar]
  20. J. Coronas, M. Menéndez, J. Santamaria, Chem. Eng. Sci., 1994, 49, (12), 2015 LINK https://doi.org/10.1016/0009-2509(94)80084-7 [Google Scholar]
  21. Y. Lu, A. G. Dixon, W. R. Moser, Y. H. Ma, Chem. Eng. Sci., 2000, 55, (21), 4901 LINK https://doi.org/10.1016/s0009-2509(00)00121-4 [Google Scholar]
  22. A. Marafee, C. Liu, G. Xu, R. Mallinson, L. Lobban, Ind. Eng. Chem. Res., 1997, 36, (3), 632 LINK https://doi.org/10.1021/ie960139b [Google Scholar]
  23. S. L. Yao, F. Ouyang, A. Nakayama, E. Suzuki, M. Okumoto, A. Mizuno, Energy Fuels, 2000, 14, (4), 910 LINK https://doi.org/10.1021/ef000016a [Google Scholar]
  24. Y. Volokitin, J. Sinzig, L. J. de Jongh, G. Schmid, M. N. Vargaftik, I. I. Moiseevi, Nature, 1996, 384, (6610), 621 LINK https://doi.org/10.1038/384621a0 [Google Scholar]
  25. C. Estruch Bosch, M. P. Copley, T. Eralp, E. Bilbé, J. W. Thybaut, G. B. Marin, P. Collier, Appl. Catal. A: Gen., 2017, 536, 104 LINK https://doi.org/10.1016/j.apcata.2017.01.019 [Google Scholar]
  26. J. W. Thybaut, J. Sun, L. Olivier, A. C. Van Veen, C. Mirodatos, G. B. Marin, Catal. Today, 2011, 159, (1), 29 LINK https://doi.org/10.1016/j.cattod.2010.09.002 [Google Scholar]
  27. A. Farsi, A. Moradi, S. Ghader, V. Shadravan, Chinese J. Chem. Phys., 2011, 24, (1), 70 LINK https://doi.org/10.1088/1674-0068/24/01/70-76 [Google Scholar]
  28. D. Noon, B. Zohour, S. Senkan, J. Nat. Gas Sci. Eng., 2014, 18, 406 LINK https://doi.org/10.1016/j.jngse.2014.04.004 [Google Scholar]
  29. P. Huang, Y. Zhao, J. Zhang, Y. Zhu, Y. Sun, Nanoscale, 2013, 5, (22), 10844 LINK https://doi.org/10.1039/c3nr03617k [Google Scholar]
  30. V. I. Alexiadis, J. W. Thybaut, P. N. Kechagiopoulos, M. Chaar, A. C. Van Veen, M. Muhler, G. B. Marin, Appl. Catal. B: Environ., 2014, 150–151, 496 LINK https://doi.org/10.1016/j.apcatb.2013.12.043 [Google Scholar]
  31. V. R. Choudhary, B. S. Uphade, S. A. R. Mulla, Ind. Eng. Chem. Res., 1997, 36, (9), 3594 LINK https://doi.org/10.1021/ie960676w [Google Scholar]
  32. F. J. Arriagada, K. Osseo-Asare, J. Colloid Interface Sci., 1999, 211, (2), 210 LINK https://doi.org/10.1006/jcis.1998.5985 [Google Scholar]
  33. J. Eastoe, M. J. Hollamby, L. Hudson, Adv. Colloid Interface Sci., 2006, 128–130, 5 LINK https://doi.org/10.1016/j.cis.2006.11.009 [Google Scholar]
  34. M.-P. Pileni, Nature Mater., 2003, 2, (3), 145 LINK https://doi.org/10.1038/nmat817 [Google Scholar]
  35. H. Borchert, M. Baerns, J. Catal., 1997, 168, (2), 315 LINK https://doi.org/10.1006/jcat.1997.1662 [Google Scholar]
  36. V. R. Choudhary, V. H. Rane, J. Chem. Soc. Faraday Trans., 1994, 90, (21), 3357 LINK https://doi.org/10.1039/ft9949003357 [Google Scholar]
  37. R. Ghose, H. T. Hwang, A. Varma, Appl. Catal. A: Gen., 2013, 452, 147 LINK https://doi.org/10.1016/j.apcata.2012.11.029 [Google Scholar]
  38. D. J. Ilett, M. S. Islam, J. Chem. Soc. Faraday Trans., 1993, 89, (20), 3833 LINK https://doi.org/10.1039/ft9938903833 [Google Scholar]
  39. K. Otsuka, K. Jinno, A. Morikawa, J. Catal., 1986, 100, (2), 353 LINK https://doi.org/10.1016/0021-9517(86)90102-8 [Google Scholar]
  40. S. Lacombe, C. Geantet, C. Mirodatos, J. Catal., 1995, 151, (2), 439 LINK https://doi.org/10.1006/jcat.1995.1046 [Google Scholar]
  41. J. M. DeBoy, R. F. Hicks, J. Chem. Soc. Chem. Commun., 1988, (14), 982 LINK https://doi.org/10.1039/c39880000982 [Google Scholar]
  42. J. M. Deboy, R. F. Hicks, J. Catal., 1988, 113, (2), 517 LINK https://doi.org/10.1016/0021-9517(88)90277-1 [Google Scholar]
  43. R. P. Taylor, G. L. Schrader, Ind. Eng. Chem. Res., 1991, 30, (5), 1016 LINK https://doi.org/10.1021/ie00053a025 [Google Scholar]
  44. T. Levan, M. Che, J. M. Tatibouet, M. Kermarec, J. Catal., 1993, 142, (1), 18 LINK https://doi.org/10.1006/jcat.1993.1185 [Google Scholar]
  45. R. Strobel, A. Baiker, S. E. Pratsinis, Adv. Powder Technol., 2006, 17, (5), 457 LINK https://doi.org/10.1163/156855206778440525 [Google Scholar]
  46. B. Thiébaut, Platinum Metals Rev., 2011, 55, (2), 149 LINK https://www.technology.matthey.com/article/55/2/149-151/ [Google Scholar]
  47. A. Camenzind, W. R. Caseri, S. E. Pratsinis, Nano Today, 2010, 5, (1), 48 LINK https://doi.org/10.1016/j.nantod.2009.12.007 [Google Scholar]
  48. I. Capek, Adv. Colloid Interface Sci., 2004, 110, (1–2), 49 LINK https://doi.org/10.1016/j.cis.2004.02.003 [Google Scholar]
  49. D. H. Everett, “Basic Principles of Colloid Science”, The Royal Society of Chemistry, London, UK, 1988, 243 pp LINK https://doi.org/10.1039/9781847550200 [Google Scholar]
  50. J. Chandradass, K. H. Kim, J. Cryst. Growth, 2009, 311, (14), 3631 LINK https://doi.org/10.1016/j.jcrysgro.2009.06.012 [Google Scholar]
  51. A. A. Coelho, ‘TOPAS User Manual’, Version 3.1, Bruker AXS GmbH, Karlsruhe, Germany, 2003 [Google Scholar]
  52. S. Bisal, P. K. Bhattacharya, S. P. Moulik, J. Phys. Chem., 1990, 94, (1), 350 LINK https://doi.org/10.1021/j100364a060 [Google Scholar]
  53. D. M. Zhu, K. I. Feng, Z. A. Schelly, J. Phys. Chem., 1992, 96, (5), 2382 LINK https://doi.org/10.1021/j100184a068 [Google Scholar]
  54. S. Eriksson, U. Nylén, M. Boutonnet, Appl. Catal. A: Gen., 2004, 265, (2), 207 LINK https://doi.org/10.1016/j.apcata.2004.01.014 [Google Scholar]
  55. I. Lisiecki, M. P. Pileni, J. Phys. Chem., 1995, 99, (14), 5077 LINK https://doi.org/10.1021/j100014a030 [Google Scholar]
  56. K. Shinoda, B. Lindman, Langmuir, 1987, 3, (2), 135 LINK https://doi.org/10.1021/la00074a001 [Google Scholar]
  57. D. Langevin, Annu. Rev. Phys. Chem., 1992, 43, 341 LINK https://doi.org/10.1146/annurev.physchem.43.1.341 [Google Scholar]
/content/journals/10.1595/205651319X15613828987406
Loading
/content/journals/10.1595/205651319X15613828987406
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test