Skip to content
Volume 63, Issue 4
  • ISSN: 2056-5135


Solvent extraction is a key separation process in several industries. Mixer-settlers and agitated or pulsed columns are mainly used as liquid-liquid contactors. However, these units require large solvent inventories and long residence times, while flow fields are often not uniform and mixing is poor. These drawbacks can be overcome with process intensification approaches where small channel extractors are used instead. The reduced volumes of small units in association with the increased efficiencies facilitate the use of novel, often expensive, but more efficient and environmentally friendly solvents, such as ionic liquids. The small throughputs of intensified contactors, however, can limit their full usage in industrial applications, thus robust scale-up strategies need to be developed. This paper reviews promising intensified technologies for liquid-liquid extractions based on small channels. In particular, extractions in single channels and in confined impinging jets are considered. The increase in throughput scale-out approaches with appropriate manifolds is discussed, based on the use of many channels in parallel. The combination of small channels and centrifugal forces is exploited in counter-current chromatography (CCC) systems where many mixing and settling steps are combined within the contactors. Scale up is possible centrifugal partition chromatography (CPC) configurations.


Article metrics loading...

Loading full text...

Full text loading...



  1. Belkadi A., Tarlet D., Montillet A., Bellettre J., and Massoli P. Int. J. Multiph. Flow, 2015, 72, 11 LINK [Google Scholar]
  2. Siddiqui S. W. Colloids Surf. A: Physicochem. Eng. Asp., 2014, 443, 8 LINK [Google Scholar]
  3. Siddiqui S. W., and Norton I. T. J. Colloid Interface Sci., 2012, 377, (1), 213 LINK [Google Scholar]
  4. Wang K., Li L., Xie P., and Luo G. React. Chem. Eng., 2017, 2, (5), 611 LINK [Google Scholar]
  5. Ghasemi M., and Dehkordi A. M. Ind. Eng. Chem. Res., 2014, 53, (31), 12238 LINK [Google Scholar]
  6. Eccles H. Solvent Extr. Ion Exch., 2000, 18, (4), 633 LINK [Google Scholar]
  7. de Lemos L. R., Santos I. J. B., Rodrigues G. D., da Silva L. H. M., and da Silva M. C. H. J. Hazard. Mater., 2012, 237–238, 209 LINK [Google Scholar]
  8. Sindermann E. C., Holbach A., de Haan A., and Kockmann N. Chem. Eng. J., 2016, 283, 251 LINK [Google Scholar]
  9. Tetala K. K. R., Swarts J. W., Chen B., Janssen A. E. M., and van Beek T. A. Lab. Chip, 2009, 9, (14), 2085 LINK [Google Scholar]
  10. Vandermeersch T., Gevers L., and De Malsche W. Sep. Purif. Technol., 2016, 168, 32 LINK [Google Scholar]
  11. Yin C.-Y., Nikoloski A. N., and Wang M. Miner. Eng., 2013, 45, 18 LINK [Google Scholar]
  12. Kolar E., Catthoor R. P. R., Kriel F. H., Sedev R., Middlemas S., Klier E., Hatch G., and Priest C. Chem. Eng. Sci., 2016, 148, 212 LINK [Google Scholar]
  13. Li Q., and Angeli P. Chem. Eng. Sci., 2016, 143, 276 LINK [Google Scholar]
  14. Mariet C., Vansteene A., Losno M., Pellé J., Jasmin J.-P., Bruchet A., and Hellé G. Micro Nano Eng., 2019, 3, 7 LINK [Google Scholar]
  15. Tsaoulidis D., Ortega E. G., and Angeli P. Chem. Eng. J., 2018, 342, 251 LINK [Google Scholar]
  16. Saien J., and Moradi V. J. Ind. Eng. Chem., 2012, 18, (4), 1293 LINK [Google Scholar]
  17. Saien J., and Ojaghi S. A. J. Ind. Eng. Chem., 2010, 16, (6), 1001 LINK [Google Scholar]
  18. Saien J., Zonouzian S. A. E., and Dehkordi A. M. Chem. Eng. Sci., 2006, 61, (12), 3942 LINK [Google Scholar]
  19. Abiev R., Svetlov S., and Haase S. Chem. Eng. Technol., 2017, 40, (11), 1985 LINK [Google Scholar]
  20. Li Q., and Angeli P. Chem. Eng. J., 2017, 328, 717 LINK [Google Scholar]
  21. Kashid M. N., Harshe Y. M., and Agar D. W. Ind. Eng. Chem. Res., 2007, 46, (25), 8420 LINK [Google Scholar]
  22. Dore V., Tsaoulidis D., and Angeli P. Chem. Eng. Sci., 2012, 80, 334 LINK [Google Scholar]
  23. Yang L., Nieves-Remacha M. J., and Jensen K. F. Chem. Eng. Sci., 2017, 169, 106 LINK [Google Scholar]
  24. Tiwari A., Rajesh V. M., and Yadav S. Energy Sustain. Dev., 2018, 43, 143 LINK [Google Scholar]
  25. Tsaoulidis D., and Angeli P. Chem. Eng. J., 2015, 262, 785 LINK [Google Scholar]
  26. Pedersen K. S., Imbrogno J., Fonslet J., Lusardi M., Jensen K. F., and Zhuravlev F. React. Chem. Eng., 2018, 3, (6), 898 LINK [Google Scholar]
  27. Kriel F. H., Holzner G., Grant R. A., Woollam S., Ralston J., and Priest C. Chem. Eng. Sci., 2015, 138, 827 LINK [Google Scholar]
  28. Kriel F. H., Binder C., and Priest C. Chem. Eng. Technol., 2017, 40, (6), 1184 LINK [Google Scholar]
  29. Bascone D., Angeli P., and Fraga E. S. Chem. Eng. Sci., 2019, 203, 201 LINK [Google Scholar]
  30. Baird M. H. I., and Hanson C. “Handbook of Solvent Extraction”, eds. Lo T. C., John Wiley and Sons Inc, New York, USA, 1983 [Google Scholar]
  31. Jiang M., Li Y.-E. D., Tung H.-H., and Braatz R. D. Chem. Eng. Process. Process Intensif., 2015, 97, 242 LINK [Google Scholar]
  32. Kügler R. T., and Kind M. Chem. Eng. Process. Process Intensif., 2016, 101, 25 LINK [Google Scholar]
  33. Krupa K., Nunes M. I., Santos R. J., and Bourne J. R. Chem. Eng. Sci., 2014, 111, 48 LINK [Google Scholar]
  34. Dinarvand M., Sohrabi M., Royaee S. J., and Zeynali V. Asia-Pacific J. Chem. Eng., 2017, 12, (4), 631 LINK [Google Scholar]
  35. Tu G., Li W., Du K., and Wang F. Chem. Eng. Sci., 2014, 116, 734 LINK [Google Scholar]
  36. Tsaoulidis D., and Angeli P. Chem. Eng. Sci., 2017, 171, 149 LINK [Google Scholar]
  37. Zhou G., and Kresta S. M. Chem. Eng. Sci., 1998, 53, (11), 2063 LINK [Google Scholar]
  38. Kadam B. D., Joshi J. B., Koganti S. B., and Patil R. N. Chem. Eng. Res. Des., 2008, 86, (3), 233 LINK [Google Scholar]
  39. Lade V. G., Wankhede P. C., and Rathod V. K. Chem. Eng. Process. Process Intensif., 2015, 95, 72 LINK [Google Scholar]
  40. Torab-Mostaedi M., and Asadollahzadeh M. Chem. Eng. Res. Des., 2015, 94, 90 LINK [Google Scholar]
  41. Harmsen J. Chem. Eng. Process. Process Intensif., 2010, 49, (1), 70 LINK [Google Scholar]
  42. Amador C., Gavriilidis A., and Angeli P. Chem. Eng. J., 2004, 101, (1–3), 379 LINK [Google Scholar]
  43. Hoang D. A., Haringa C., Portela L. M., Kreutzer M. T., Kleijn C. R., and van Steijn V. Chem. Eng. J., 2014, 236, 545 LINK [Google Scholar]
  44. Al-Rawashdeh M., Yu F., Nijhuis T. A., Rebrov E. V, Hessel V., and Schouten J. C. Chem. Eng. J., 2012, 207–208, 645 LINK [Google Scholar]
  45. Garciadiego Ortega E., Tsaoulidis D., and Angeli P. Chem. Eng. J., 2018, 351, 589 LINK [Google Scholar]
  46. Ward D. P., Hewitson P., Cárdenas-Fernández M., Hamley-Bennett C., Díaz-Rodríguez A., Douillet N., Adams J. P., Leak D. J., Ignatova S., and Lye G. J. J. Chromatogr. A, 2017, 1497, 56 LINK [Google Scholar]
  47. Brown L., Earle M. J., Gîlea M. A., Plechkova N. V., and Seddon K. R. Top. Curr. Chem., 2017, 375, (5), 74 LINK [Google Scholar]
  48. Brown L., Earle M. J., Gîlea M. A., Plechkova N. V, and Seddon K. R. Aust. J. Chem., 2017, 70, (8), 923 LINK [Google Scholar]
  49. Müller M., Englert M., Earle M. J., and Vetter W. J. Chromatogr. A, 2017, 1488, 68 LINK [Google Scholar]
  50. Earle M., and Gilea M. K Hughes and Co Ltd, ‘Lentinan Extraction Process from Mushrooms Using Ionic Liquid’, World Patent Appl., 2013/140,185 [Google Scholar]
  51. Ruiz-Angel M. J., Pino V., Carda-Broch S., and Berthod A. J. Chromatogr. A, 2007, 1151, (1–2), 65 LINK [Google Scholar]
  52. Sun C., Duan W., Wang X., Geng Y., Li J., and Wang D. J. Liq. Chromatogr. Relat. Technol., 2015, 38, (10), 1031 LINK [Google Scholar]
  53. Örkényi R., Éles J., Faigl F., Vincze P., Prechl A., Szakács Z., Kóti J., and Greiner I. Angew. Chem. Int. Ed., 2017, 56, (30), 8742 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error