Skip to content
Volume 64, Issue 3
  • ISSN: 2056-5135


To date, the world has been making a massive shift away from fossil fuels towards cleaner energy sources. For the past decade, polymer electrolyte membrane fuel cells (PEMFCs) powered by hydrogen have attracted much attention as a promising candidate for eco-friendly vehicles, i.e. fuel cell electric vehicles (FCEVs), owing to their high power density, high efficiency and zero emission features. Since the world’s first mass production of Tucson ix35 FCEV by Hyundai in 2013, global automotive original equipment manufacturers (OEMs) have focused on commercialising FCEVs. In 2018, Hyundai also unveiled the second generation of the mass-produced FCEV (i.e. Nexo) with improved performances and durability compared with its predecessor. Since then, the global market for PEMFCs for a variety of FCEV applications has been growing very rapidly in terms of both passenger vehicles and medium- and heavy-duty vehicles such as buses and trucks, which require much higher durability than passenger vehicles, i.e. 5000 h for passenger vehicles 25,000 h for heavy-duty vehicles. In addition, PEMFCs are also in demand for other applications including fuel cell electric trains, trams, forklifts, power generators and vessels. We herein present recent advances in how hydrogen and PEMFCs will power the future in a wide range of applications and address key challenges to be resolved in the future.


Article metrics loading...

Loading full text...

Full text loading...



  1. Cano Z. P., Banham D., Ye S., Hintennach A., Lu J., Fowler M., and Chen Z. Nature Energy, 2018, 3, (4), 279 LINK [Google Scholar]
  2. Hong B. K., and Kim S. H. ECS Trans., 2018, 86, (13), 3 LINK [Google Scholar]
  3. O’Hayre R., Cha S.-W., Colella W., and Prinz F. B. “Fuel Cell Fundamentals”, Ch. 9–11, John Wiley and Sons Inc, New York, USA, 2006, pp. 251356 [Google Scholar]
  4. Debe M. K. Nature, 2012, 486, (7401), 43 LINK [Google Scholar]
  5. Kongkanand A., and Mathias M. F. J. Phys. Chem. Lett., 2016, 7, (7), 1127 LINK [Google Scholar]
  6. Stephens I. E. L., Bondarenko A. S., Grønbjerg U., Rossmeisl J., and Chorkendorff I. Energy Environ. Sci., 2012, 5, (5), 6744LINK [Google Scholar]
  7. Jang K.-L., Kim S., Jeong B.-H., Oh J.-G., Hong B. K., and Kim T.-S. Int. J. Hydrogen Energy, 2017, 42, (16), 11644 LINK [Google Scholar]
  8. Kim S., Kim J.-H., Oh J.-G., Jang K.-L., Jeong B.-H., Hong B. K., and Kim T.-S. ACS Appl. Mater. Interfaces, 2016, 8, (24), 15391 LINK [Google Scholar]
  9. Han K., Hong B. K., Kim S. H., Ahn B. K., and Lim T. W. Int. J. Hydrogen Energy, 2011, 36, (19), 12452 LINK [Google Scholar]
  10. Koppel T. “Powering the Future”, John Wiley and Sons Canada Ltd, Etobicoke, Canada, 1999, 279 pp [Google Scholar]
  11. Yoshida T., and Kojima K. Electrochem. Soc. Interface, 2015, 24, (2), 45 LINK [Google Scholar]
  12. ‘2017 Mirai Product Information’, Toyota, Aichi, Japan: (Accessed on 21st November 2019) [Google Scholar]
  13. ‘Clarity Fuel Cell – FCVs are the Ultimate Clean Cars Emitting Only Water’, Honda, Tokyo, Japan: (Accessed on 21st November 2019) [Google Scholar]
  14. ‘Under the Microscope: Mercedes-Benz GLC F-CELL: The Fuel Cell gets a Plug’, Daimler AG, Stuttgart, Germany: (Accessed on 21st November 2019) [Google Scholar]
  15. ‘h-tron’, Audi, Ingolstadt, Germany: (Accessed on 1st October 2019) [Google Scholar]
  16. Parra D., Valverde L., Pino F. J., and Patel M. K. Renew. Sustain. Energy Rev., 2019, 101, 279 LINK [Google Scholar]
  17. Wijayanta A. T., Oda T., Purnomo C. W., Kashiwagi T., and Aziz M. Int. J. Hydrogen Energy, 2019, 44, (29), 15026 LINK [Google Scholar]
  18. Chapman A., Itaoka K., Hirose K., Davidson F. T., Nagasawa K., Lloyd A. C., Webber M. E., Kurban Z., Managi S., Tamaki T., Lewis M. C., Hebner R. E., and Fujii Y. Int. J. Hydrogen Energy, 2019, 44, (13), 6371 LINK [Google Scholar]
  19. Kojima Y. Int. J. Hydrogen Energy, 2019, 44, (33), 18179 LINK [Google Scholar]
  20. Carmo M., Fritz D. L., Mergel J., and Stolten D. Int. J. Hydrogen Energy, 2013, 38, (12), 4901 LINK [Google Scholar]
  21. ‘H2@Scale’, Office of Energy Efficiency and Renewable Energy, US Department of Energy, Washington, DC, USA: (Accessed on 25th September 2019) [Google Scholar]
  22. “The Future of Hydrogen”, International Energy Agency, Paris, France, June 2019, 199 pp LINK [Google Scholar]
  23. Ammermann H., Ruf Y, Lange S., Fundulea D., and Martin A. ‘Fuel Cell Electric Buses – Potential for Sustainable Public Transport in Europe: A Study for the Fuel Cells and Hydrogen Joint Undertaking’, Roland Berger GmbH, Munich, Germany, September, 2015, 74 pp LINK [Google Scholar]
  24. van Hulst N. ‘The Clean Hydrogen Future has Already Begun’, International Energy Agency, Paris, France, 23rd April, 2019 LINK [Google Scholar]
  25. ‘Hydrogen Production’, Office of Efficiency and Renewable Energy, US Department of Energy, Washington, DC, USA: (Accessed on 30th September 2019) [Google Scholar]
  26. ‘Hydrogen Production Processes’, Office of Energy Efficiency and Renewable Energy, US Department of Energy, Washington, DC, USA: (Accessed on 30th September 2019) [Google Scholar]
  27. ‘How Hydrogen Empowers the Energy Transition’, Hydrogen Council, Belgium, 15th January, 2017 LINK [Google Scholar]
  28. ‘Hydrogen, Scaling Up’, Hydrogen Council, Belgium, 13th November, 2017 LINK [Google Scholar]
  29. ‘Hydrogen Meets Digital’, Hydrogen Council, Belgium, 13th September, 2018 LINK [Google Scholar]
  30. Bruce S., Temminghoff M., Hayward J., Schmidt E., Munnings C., Palfreyman D., and Hartley P. “National Hydrogen Roadmap”, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia, 2018, 92 pp LINK [Google Scholar]
  31. ‘Energy Carriers’, Cross-Ministerial Strategic Innovation Promotion Program (SIP), National Research and Development, Japan Science and Technology Agency, Kawaguchi, Japan: (Accessed on 29th September 2019) [Google Scholar]
  32. Lamb K. E., Dolan M. D., and Kennedy D. F. Int. J. Hydrogen Energy, 2019, 44, (7), 3580 LINK [Google Scholar]
  33. Ozawa A., Kudoh Y., Kitagawa N., and Muramatsu R. Int. J. Hydrogen Energy, 2019, 44, (21), 11219 LINK [Google Scholar]
  34. Adler M. W., Peer S., and Sinozic T. Transp. Res. Interdiscip. Perspect., 2019, 2, 100038 LINK [Google Scholar]
  35. Iacobucci R., McLellan B., and Tezuka T. Transp. Res. Part C: Emerg. Technol., 2019, 100, 34 LINK [Google Scholar]
  36. Heineke K., Möller T., Padhi A., and Tschiesner A. “The Automotive Revolution is Speeding Up”, McKinsey and Co, New York, USA, October, 2017, 40 pp LINK [Google Scholar]
  37. Favarò F., Eurich S., and Nader N. Accid. Anal. Prev., 2018, 110, 136 LINK [Google Scholar]
  38. ‘Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles’, Ground Vehicle Standard J3016_201609, SAE International, Warrendale, USA, 30th September, 2016, 30 pp LINK [Google Scholar]
  39. Martínez-Díaz M., and Soriguera F. Transp. Res. Procedia, 2018, 33, 275 LINK [Google Scholar]
  40. ‘All-New Hyundai NEXO – The Future Utility Vehicle made by Hyundai’, Hyundai, Seoul, South Korea, 9th July, 2018 LINK [Google Scholar]
  41. Jang Y., and Lee J. ‘Development of Autonomous Driving System in 2022 – Hydrogen Fuel Cell Vehicle is Eligible Platform’, Maekyung, Maeil Business Newspaper, Seoul, South Korea, 25th September, 2019 LINK [Google Scholar]
  42. Hua T., Ahluwalia R., Eudy L., Singer G., Jermer B., Asselin-Miller N., Wessel S., Patterson T., and Marcinkoski J. J. Power Sources, 2014, 269, 975 LINK [Google Scholar]
  43. ‘Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan’, Office of Energy Efficiency and Renewable Energy, US Department of Energy, Washington, DC, USA: (Accessed on 1st October 2019) [Google Scholar]
  44. ‘Coradia iLint – The World’s 1st Hydrogen Powered Train: Towards Clean and Future-Oriented Mobility’, Alstom, Saint-Ouen, France: (Accessed on 1st October 2019) [Google Scholar]
  45. ‘World Premiere: Alstom’s Hydrogen Trains Enter Passenger Service in Lower Saxony’, Alstom, Saint-Ouen, France, 16th September, 2019 LINK [Google Scholar]
  46. Lee J., and Minu K. ‘Hyundai Rotem, Hyundai Motor Team up to Develop Hydrogen Train’, Pulse, Maeil Business Newspaper, Seoul, South Korea, 11th June, 2019 LINK [Google Scholar]
  47. Robledo C. B., Oldenbroek V., Abbruzzese F., and van Wijk A. J. M. Appl. Energy, 2018, 215, 615 LINK [Google Scholar]
  48. Mahmoud M., Garnett R., Ferguson M., and Kanaroglou P. Renew. Sustain. Energy Rev., 2016, 62, 673 LINK [Google Scholar]
  49. Gao D., Jin Z., Zhang J., Li J., and Ouyang M. Int. J. Hydrogen Energy, 2016, 41, (2), 1161 LINK [Google Scholar]
  50. Li J., Hu Z., Xu L., Ouyang M., Fang C., Hu J., Cheng S., Po H., Zhang W., and Jiang H. Int. J. Hydrogen Energy, 2016, 41, (34), 15295 LINK [Google Scholar]
  51. Ralph T. R., and Hogarth M. P. Platinum Metals Rev., 2002, 46, (3), 117 LINK [Google Scholar]
  52. Hong B. K., Mandal P., Oh J.-G., and Litster S. J. Power Sources, 2016, 328, 280 LINK [Google Scholar]
  53. Mandal P., Hong B. K., Oh J.-G., and Litster S. J. Power Sources, 2018, 397, 397 LINK [Google Scholar]
  54. Hu L., Hong B. K., Oh J.-G., and Litster S. ACS Appl. Energy Mater., 2019, 2, (10), 7152LINK [Google Scholar]
  55. Lim K. H., Lee W. H., Jeong Y., and Kim H. J. Electrochem. Soc., 2017, 164, (14), F1580 LINK [Google Scholar]
  56. You E., Min M., Jin S.-A., Kim T., and Pak C. J. Electrochem. Soc., 2018, 165, (6), F3094 LINK [Google Scholar]
  57. Roh C.-W., Kim H.-E., Choi J., Lim J., and Lee H. J. Power Sources, 2019, 443, 227270 LINK [Google Scholar]
  58. Lee S. W., Lee B. H., Kim T.-Y., Baik C., Kim M. S., Chai G. S., and Pak C. Catal. Commun., 2019, 130, 105758 LINK [Google Scholar]
  59. Pak C., Lee S. W., Baik C., Lee B. H., You D. J., and You E. Chinese Chem. Lett., 2019, 30, (6), 1186 LINK [Google Scholar]
  60. Halalay I. C., Swathirajan S., Merzougui B., Balogh M. P., Garabedian G. C., and Carpenter M. K. J. Electrochem. Soc., 2011, 158, (3), B313 LINK [Google Scholar]
  61. Barton R. H. Ballard Power Systems Inc,US Patent, 2004; 6,724,194
  62. Epting W. K., Gelb J., and Litster S. Adv. Func. Mater., 2012, 22, (3), 555 LINK [Google Scholar]
  63. Pokhrel A., El Hannach M., Orfino E. P., Dutta M., and Kjeang E. J. Power Sources, 2016, 329, 330 LINK [Google Scholar]
  64. Singh Y., White R. T., Najm M., Haddow T., Pan V., Orfino F. P., Dutta M., and Kjeang E. J. Power Sources, 2019, 412, 224 LINK [Google Scholar]
  65. Lopez-Haro M., Guétaz L., Printemps T., Morin A., Escribano S., Jouneau P.-H., Bayle-Guillemaud P., Chandezon F., and Gebel G. Nature Commun., 2014, 5, 5229 LINK [Google Scholar]
  66. Gan L., Heggen M., Rudi S., and Strasser P. Nano Lett., 2012, 12, (10), 5423 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error