Skip to content
1887
Volume 64, Issue 1
  • ISSN: 2056-5135

Abstract

Circular economy (CE) thinking has emerged as a route to sustainable manufacture, with related cradle-to-cradle implications requiring implementation from the design stage. The challenge lies in moving manufacturing environments away from the traditional linear economy paradigm, where materials, energy and water have often been designed to move out of the system and into receivership of waste management bodies after use. Recent applications of industrial digital technologies (IDTs: for example internet of things, data-driven modelling, cyber-physical systems, cloud manufacturing, cognitive computing) to manufacturing may be instrumental in transforming manufacturing from linear to circular. However, although IDTs and CE have been the focus of intensive research, there is currently limited research exploring the relationship between IDTs and the CE and how the former may drive the implementation of CE. This article aims to close the knowledge gap by exploring how an IDT (data-driven modelling) may facilitate and advance CE principles within process manufacturing systems, specifically waste valorisation and process resilience. These applications are then demonstrated through two real-world manufacturing case studies: (a) minimising resource consumption of industrial cleaning processes and (b) transforming wastewater treatment plants (WWTPs) into manufacturing centres.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15735483214878
2020-01-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/1/Gomes_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15735483214878&mimeType=html&fmt=ahah

References

  1. ‘World Bank Open Data – Free and Open Access to Global Development Data’, The World Bank, Washington, DC, USA:https://data.worldbank.org/ (Accessed on 11th July, 2019) [Google Scholar]
  2. Brandl D. ‘Manufacturing Control’, in “Design Patterns for Flexible Manufacturing”, Ch. 1, Instrumentation Systems and Automation Society, Research Triangle Park, USA, 2007, pp. 1–6 LINK https://www.isa.org/store/design-patterns-for-flexible-manufacturing/116209 [Google Scholar]
  3. Fisher O., Watson N., Porcu L., Bacon D., Rigley M., and Gomes R. L. J. Manuf. Syst., 2018, 47, 53 LINK https://doi.org/10.1016/j.jmsy.2018.03.005 [Google Scholar]
  4. Brierley J. A., Cowton C. J., and Drury C. Int. J. Prod. Econ., 2006, 100, (2), 314 LINK https://doi.org/10.1016/j.ijpe.2004.12.020 [Google Scholar]
  5. Gardner L., and Colwill J. Procedia CIRP, 2016, 41, 282 LINK https://doi.org/10.1016/j.procir.2016.01.003 [Google Scholar]
  6. Yang M. G., Hong P., and Modi S. B. Int. J. Prod. Econ., 2011, 129, (2), 251 LINK https://doi.org/10.1016/j.ijpe.2010.10.017 [Google Scholar]
  7. Roschangar F., Zhou Y., Constable D. J. C., Colberg J., Dickson D. P., Dunn P. J., Eastgate M. D., Gallou F., Hayler J. D., Koenig S. G., Kopach M. E., Leahy D. K., Mergelsberg I., Scholz U., Smith A. G., Henry M., Mulder J., Brandenburg J., Dehli J. R., Fandrick D. R., Fandrick K. R., Gnad-Badouin F., Zerban G., Groll K., Anastas P. T., Sheldon R. A., and Senanayake C. H. Green Chem., 2018, 20, (10), 2206 LINK https://doi.org/10.1039/c8gc00616d [Google Scholar]
  8. ‘Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 List of Critical Raw Materials for the EU’, COM/2017/0490 final, European Commission, Brussels, Belgium, 13th September, 2017 LINK https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:52017DC0490 [Google Scholar]
  9. ‘WRAP and the Circular Economy – What is a Circular Economy?’, The Waste and Resources Action Programme (WRAP), Banbury, UK:http://www.wrap.org.uk/about-us/about/wrap-and-circular-economy (Accessed on 15th November 2018) [Google Scholar]
  10. Tseng M.-L., Tan R. R., Chiu A. S. F., Chien C.-F., and Kuo T. C. Resour. Conserv. Recycl., 2018, 131, 146 LINK https://doi.org/10.1016/j.resconrec.2017.12.028 [Google Scholar]
  11. Puyol D., Batstone D. J., Hülsen T., Astals S., Peces M., and Krömer J. O. Front. Microbiol., 2017, 7, 2106 LINK https://doi.org/10.3389/fmicb.2016.02106 [Google Scholar]
  12. Flores C. C., Bressers H., Gutierrez C., and de Boer C. Manag. Res. Rev., 2018, 41, (5), 554 LINK https://doi.org/10.1108/MRR-02-2018-0056 [Google Scholar]
  13. Lema J. M., and Suarez S. “Innovative Wastewater Treatment and Resource Recovery Technologies – Impacts on Energy, Economy and Environment”, IWA Publishing, London, UK, 2017 LINK https://doi.org/10.2166/9781780407876 [Google Scholar]
  14. Adikari A. M. C., and Amalan T. P. ‘Distribution Cost Optimization Using Big Data Analytics, Machine Learning and Computer Simulation for FMCG Sector’, International Research Conference on Smart Computing and Systems Engineering, Colombo, Sri Lanka, 28th March, 2019, IEEE, Piscataway, USA, pp. 63–69 LINK https://doi.org/10.23919/SCSE.2019.8842697 [Google Scholar]
  15. Odważny F., Szymańska O., and Cyplik P. LogForum, 2018, 14, (2), 257 LINK https://doi.org/10.17270/J.LOG.253 [Google Scholar]
  16. Millar N., McLaughlin E., and Börger T. Ecol. Econ., 2019, 158, 11 LINK https://doi.org/10.1016/j.ecolecon.2018.12.012 [Google Scholar]
  17. Korhonen J., Honkasalo A., and Seppälä J. Ecol. Econ., 2018, 143, 37 LINK https://doi.org/10.1016/J.ECOLECON.2017.06.041 [Google Scholar]
  18. McDonough W., and Braungart M. “Cradle to Cradle: Remaking the Way We Make Things”, North Point Press, a division of Farrar, Straus and Giroux, New York, USA, 2002 [Google Scholar]
  19. Charles R. G., Douglas P., Baker J. A., Carnie M. J., Douglas J. O., Penney D. J., and Watson T. M. J. Clean. Prod., 2018, 202, 1167 LINK https://doi.org/10.1016/j.jclepro.2018.08.125 [Google Scholar]
  20. Álvarez R., and Ruiz-Puente C. Waste Biomass Valor., 2017, 8, (5), 1521 LINK https://doi.org/10.1007/s12649-016-9748-1 [Google Scholar]
  21. Fraccascia L., Albino V., and Garavelli C. A. Int. J. Prod. Econ., 2017, 183, (A), 273 LINK https://doi.org/10.1016/j.ijpe.2016.11.003 [Google Scholar]
  22. ‘National Industrial Symbiosis Programme’, International Synergies Ltd, Birmingham, UK:https://www.international-synergies.com/projects/national-industrial-symbiosis-programme/ (Accessed on 27th November, 2019) [Google Scholar]
  23. Cleantech Östergötland, Linköping, Sweden:https://cleantechostergotland.se/ (Accessed on 27th November, 2019)
  24. ‘Kalundborg Symbiosis’SymbiosisCenter, Kalundborg, Denmark:http://www.symbiosis.dk/en/ (Accessed on 27th November, 2019) [Google Scholar]
  25. Taddeo R., Simboli A., Ioppolo G., and Morgante A. Sustainability, 2017, 9, (2), 169 LINK https://doi.org/10.3390/su9020169 [Google Scholar]
  26. ‘Project Overview’, Sharebox – Secure Sharing, Barcelona, Spain:http://sharebox-project.eu/#overview (Accessed on 10th July 2019) [Google Scholar]
  27. Angria L., Sari S. Y. D., and Zarlis M. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 300, 012013 LINK http://stacks.iop.org/1757-899X/300/i=1/a=012013 [Google Scholar]
  28. Mussatto S. I. J. Sci. Food Agric., 2014, 94, (7), 1264 LINK https://doi.org/10.1002/jsfa.6486 [Google Scholar]
  29. Robertson J. A., I’Anson K. J. A., Treimo J., Faulds C. B., Brocklehurst T. F., Eijsink V. G. H., and Waldron K. W. LWT – Food Sci. Technol., 2010, 43, (6), 890 LINK https://doi.org/10.1016/j.lwt.2010.01.019 [Google Scholar]
  30. Durose N., and Jeffcoat T. “Stoke Bardolph STW Centrate Scheme – First UK Installation to Utilise the Phospaq, UASB+ and Anammox Technologies in a Single Process Solution”, Water Projects Ltd, Manchester, UK, 2014, 4 pp LINK https://waterprojectsonline.com/wp-content/uploads/case_studies/2014/Stoke-Bardolph-STW-Centrate-Scheme-2014.pdf [Google Scholar]
  31. Senthilkumar K., Mollier A., Delmas M., Pellerin S., and Nesme T. Resour. Conserv. Recycl., 2014, 87, 97 LINK https://doi.org/10.1016/j.resconrec.2014.03.005 [Google Scholar]
  32. van der Hoek J. P., de Fooij H., and Struker A. Resour. Conserv. Recycl., 2016, 113, 53 LINK https://doi.org/10.1016/J.RESCONREC.2016.05.012 [Google Scholar]
  33. Straub J. Aerosp. Sci. Technol., 2015, 46, 312 LINK https://doi.org/10.1016/j.ast.2015.07.007 [Google Scholar]
  34. ‘Towards a Next Generation of Water Systems and Services for the Circular Economy’, NextGen, Project ID 776541, Community Research and Development Information Service (CORDIS), European Commission, Brussels, Belgium, 29th July, 2019 LINK https://cordis.europa.eu/project/rcn/216646/factsheet/en [Google Scholar]
  35. Howe A. “Water Management in the Food and Drink Industry”, IChemE, Rugby, UK, 2014, 6 pp LINK https://www.icheme.org/media/4808/an-icheme-green-paper-water-management-in-the-food-and-drink-industry.pdf [Google Scholar]
  36. Reay D., Ramshaw C., and Harvey A. “Process Intensification – Engineering for Efficiency, Sustainability and Flexibility”, Elsevier Ltd, Oxford, UK, 2008, 444 pp [Google Scholar]
  37. Gani R. Comput. Chem. Eng., 2004, 28, (12), 2441 LINK https://doi.org/10.1016/J.COMPCHEMENG.2004.08.010 [Google Scholar]
  38. Dogru M., and Erdem A. Energy Fuels, 2019, 33, (1), 340 LINK https://doi.org/10.1021/acs.energyfuels.8b03460 [Google Scholar]
  39. Kenney K. L., Smith W. A., Gresham G. L., and Westover T. L. Biofuels, 2013, 4, (1), 111 LINK https://doi.org/10.4155/bfs.12.83 [Google Scholar]
  40. Towler G., and Sinnott R. ‘Introduction to Design’, in “Chemical Engineering Design”, 2nd Edn., Ch. 1, Elsevier Ltd, Oxford, UK, 2013, pp. 3–32 LINK https://doi.org/10.1016/B978-0-08-096659-5.00001-8 [Google Scholar]
  41. Simeone A., Deng B., Watson N., and Woolley E. Sensors, 2018, 18, (11), 3742 LINK https://doi.org/10.3390/s18113742 [Google Scholar]
  42. Sadati N., Chinnam R. B., and Nezhad M. Z. Expert Syst. Appl., 2018, 93, 456 LINK https://doi.org/10.1016/j.eswa.2017.10.028 [Google Scholar]
  43. Qin S. J. AIChE J., 2014, 60, (9), 3092 LINK https://doi.org/10.1002/aic.14523 [Google Scholar]
  44. “Food Statistics Pocketbook 2016”, Department for Enviroment Food and Rural Affairs, The Stationery Office Limited, London, UK, 2017, 62 pp LINK https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/608426/foodpocketbook-2016report-rev-12apr17.pdf [Google Scholar]
  45. Escrig J., Woolley E., Rangappa S., Simeone A., and Watson N. J. Food Control, 2019, 104, 358 LINK https://doi.org/10.1016/J.FOODCONT.2019.05.013 [Google Scholar]
  46. Cosgrove W. J., and Loucks D. P. Water Resour. Res., 2015, 51, (6), 4823 LINK https://doi.org/10.1002/2014WR016869 [Google Scholar]
  47. Makridakis S., Spiliotis E., and Assimakopoulos V. PLoS ONE, 2018, 13, (3), e0194889 LINK https://doi.org/10.1371/journal.pone.0194889 [Google Scholar]
  48. Giret A., Trentesaux D., and Prabhu V. J. Manuf. Syst., 2015, 37, (1), 126 LINK https://doi.org/10.1016/J.JMSY.2015.08.002 [Google Scholar]
  49. Supanchaiyamat N., and Hunt A. J. ChemSusChem, 2019, 12, (2), 397 LINK https://doi.org/10.1002/cssc.201802556 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651320X15735483214878
Loading
/content/journals/10.1595/205651320X15735483214878
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error