Skip to content
1887
Volume 64, Issue 4
  • ISSN: 2056-5135

Abstract

The main objective of this study was to evaluate the performance of a self-developed filler micro-embedded with () for toluene removal in a biofilter under various loading rates. The results show that the biofilter could reach 85% removal efficiency (RE) on the eighth day and remain above 90% RE when the empty bed residence time (EBRT) was 18 s and the inlet loading was not higher than 41.4 g m−3 h−1. Moreover, the biofilter could tolerate substantial transient shock loadings. After two shut-down experiments, the removal efficiency could be restored to above 80% after a recovery period of three days and six days, respectively. Sequence analysis of the 16S rRNA gene of fillers in four operating periods revealed that the highly efficient bacterial colonies in fillers mainly included and and that the abundance of increased significantly during the re-start period.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15831468405344
2020-01-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/4/Shunyi_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15831468405344&mimeType=html&fmt=ahah

References

  1. M.-C. Delhoménie, M. Heitz, Crit. Rev. Biotechnol., 2005, 25, (1–2), 53 LINK https://doi.org/10.1080/07388550590935814 [Google Scholar]
  2. R. Underhill, R. J. Lewis, S. J. Freakley, M. Douthwaite, P. J. Miedziak, O. Akdim, J. K. Edwards, G. J. Hutchings, Johnson Matthey Technol. Rev., 2018, 62, (4), 417 LINK https://www.technology.matthey.com/article/62/4/417-425/ [Google Scholar]
  3. Y. J. Tham, P. A. Latif, A. M. Abdullah, A. Shamala-Devi, Y. H. Taufiq-Yap, Bioresour. Technol., 2011, 102, (2), 724 LINK https://doi.org/10.1016/j.biortech.2010.08.068 [Google Scholar]
  4. E. R. Rene, B. T. Mohammad, M. C. Veiga, C. Kennes, Bioresour. Technol., 2012, 116, 204 LINK https://doi.org/10.1016/j.biortech.2011.12.006 [Google Scholar]
  5. Y. Deng, F. Yang, C. Deng, J. Yang, J. Jia, H. Yuan, Appl. Biochem. Biotechnol., 2017, 183, (3), 893 LINK https://doi.org/10.1007/s12010-017-2471-y [Google Scholar]
  6. Y. Chen, X. Wang, S. He, S. Zhu, S. Shen, J. Environ. Manage., 2016, 165, 11 LINK https://doi.org/10.1016/j.jenvman.2015.09.008 [Google Scholar]
  7. E. Dumont, Y. Andrès, J. Chem. Technol. Biotechnol., 2010, 85, (3), 429 LINK https://doi.org/10.1002/jctb.2334 [Google Scholar]
  8. R. Zhu, S. Li, X. Bao, É. Dumont, Sci. Rep., 2017, 7, 42241 LINK https://doi.org/10.1038/srep42241 [Google Scholar]
  9. Z. Zuo, T. Gong, Y. Che, R. Liu, P. Xu, H. Jian, C. Qiao, C. Song, C. Yang, Biodegradation, 2015, 26, (3), 223 LINK https://doi.org/10.1007/s10532-015-9729-2 [Google Scholar]
  10. R. Muñoz, M. Hernández, A. Segura, J. Gouveia, A. Rojas, J. L. Ramos, S. Villaverde, Appl. Microbiol. Biotechnol., 2009, 83, (1), 189 LINK https://doi.org/10.1007/s00253-009-1928-5 [Google Scholar]
  11. J. V. Littlejohns, K. B. McAuley, A. J. Daugulis, J. Hazard. Mater., 2010, 175, (1–3), 872 LINK https://doi.org/10.1016/j.jhazmat.2009.10.091 [Google Scholar]
  12. H. W. Ryu, K.-S. Cho, D. J. Chung, Bioresour. Technol., 2010, 101, (6), 1745 LINK https://doi.org/10.1016/j.biortech.2009.10.018 [Google Scholar]
  13. Y. Nie, R. Zhu, S. Li, S. Li, M. Wang, Y. Yan, Chinese J. Environ. Eng., 2019, 13, (3), 678 [Google Scholar]
  14. X. Chen, W. Qian, L. Kong, Y. Xiong, S. Tian, Biochem. Eng. J., 2015, 98, 56 LINK https://doi.org/10.1016/j.bej.2015.02.025 [Google Scholar]
  15. W.-F. Yang, H.-J. Hsing, Y.-C. Yang, J.-Y. Shyng, J. Hazard. Mater., 2007, 148, (3), 653 LINK https://doi.org/10.1016/j.jhazmat.2007.03.023 [Google Scholar]
  16. R. Zhu, S. Li, Z. Wu, É. Dumont, Environ. Technol., 2017, 38, (8), 945 LINK https://doi.org/10.1080/09593330.2016.1214624 [Google Scholar]
  17. Y. Luo, S. Li, H. Ma, Y. Wang, Trans. Chinese Soc. Agric. Eng., 2017, 33, (12), 218 (in Chinese) LINK https://www.ingentaconnect.com/content/tcsae/tcsae/2017/00000033/00000012/art00028 [Google Scholar]
  18. Y. Liu, X. Quan, Y. Sun, J. Chen, D. Xue, J. S. Chung, J. Hazard. Mater., 2002, 95, (1–2), 199 LINK https://doi.org/10.1016/S0304-3894(02)00139-5 [Google Scholar]
  19. R. Logares, S. Sunagawa, G. Salazar, F. M. Cornejo-Castillo, I. Ferrera, H. Sarmento, P. Hingamp, H. Ogata, C. de Vargas, G. Lima-Mendez, J. Raes, J. Poulain, O. Jaillon, P. Wincker, S. Kandels-Lewis, E. Karsenti, P. Bork, S. G. Acinas, Environ. Microbiol., 2014, 16, (9), 2659 LINK https://doi.org/10.1111/1462-2920.12250 [Google Scholar]
  20. J. Zhang, L. Li, J. Liu, Biochem. Eng. J., 2017, 118, 105 LINK https://doi.org/10.1016/j.bej.2016.11.015 [Google Scholar]
  21. Q. Hu, C. Wang, K. Huang, Chem. Eng. J., 2015, 279, 689 LINK https://doi.org/10.1016/j.cej.2015.05.019 [Google Scholar]
  22. K. Singh, B. S. Giri, A. Sahi, S. R. Geed, M. K. Kureel, S. Singh, S. K. Dubey, B. N. Rai, S. Kumar, S. N. Upadhyay, R. S. Singh, Bioresour. Technol., 2017, 242, 351 LINK https://doi.org/10.1016/j.biortech.2017.02.085 [Google Scholar]
  23. M. Wang, S. Xu, S. Li, R. Zhu, J. Ind. Eng. Chem., 2019, 75, 224 LINK https://doi.org/10.1016/j.jiec.2019.03.027 [Google Scholar]
  24. Y. Ding, W. Wu, Z. Han, Y. Chen, Biochem. Eng. J., 2008, 38, (2), 248 LINK https://doi.org/10.1016/j.bej.2007.07.011 [Google Scholar]
  25. F. Abbasian, R. Lockington, M. Megharaj, R. Naidu, Appl. Biochem. Biotechnol., 2016, 178, (2), 224 LINK https://doi.org/10.1007/s12010-015-1881-y [Google Scholar]
  26. J. Song, K. A. Kinney, Biotechnol. Bioeng., 2000, 68, (5), 508 LINK https://doi.org/10.1002/(SICI)1097-0290(20000605)68:5<508::AID-BIT4>3.0.CO;2-P [Google Scholar]
  27. Y. Hajizadeh, M.-M. Amin, I. Parseh, J. Ind. Eng. Chem., 2018, 62, 418 LINK https://doi.org/10.1016/j.jiec.2018.01.025 [Google Scholar]
  28. H. Li, S. Huang, Z. Wei, P. Chen, Y. Zhang, Sci. Total Environ., 2016, 562, 533 LINK https://doi.org/10.1016/j.scitotenv.2016.04.084 [Google Scholar]
  29. H. Liu, S.-J. Wang, J.-J. Zhang, H. Dai, H. Tang, N.-Y. Zhou, Appl. Environ. Microbiol., 2011, 77, (13), 4547 LINK https://doi.org/10.1128/AEM.02543-10 [Google Scholar]
  30. L. Bergdoll, E. Point, F. Bayman, D. Picot, Biochim. Biophys. Acta., 2012, 1817, S138 LINK https://doi.org/10.1016/j.bbabio.2012.06.364 [Google Scholar]
  31. A. Wolińska, A. Kuźniar, U. Zielenkiewicz, D. Izak, A. Szafranek-Nakonieczna, A. Banach, M. Błaszczyk, Appl. Soil Ecol., 2017, 119, 128 LINK https://doi.org/10.1016/j.apsoil.2017.06.009 [Google Scholar]
  32. S. R. Geed, M. K. Kureel, A. K. Shukla, R. S. Singh, B. N. Rai, Resour. Eff. Technol., 2016, 2, (1), S3 LINK https://doi.org/10.1016/j.reffit.2016.09.005 [Google Scholar]
  33. M. Kumar, B. S. Giri, K.-H. Kim, R. P. Singh, E. R. Rene, M. E. López, B. N. Rai, H. Singh, D. Prasad, R. S. Singh, Bioresour. Technol., 2019, 285, 121317 LINK https://doi.org/10.1016/j.biortech.2019.121317 [Google Scholar]
/content/journals/10.1595/205651320X15831468405344
Loading
/content/journals/10.1595/205651320X15831468405344
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test