Skip to content
Volume 64, Issue 4
  • ISSN: 2056-5135


The main objective of this study was to evaluate the performance of a self-developed filler micro-embedded with () for toluene removal in a biofilter under various loading rates. The results show that the biofilter could reach 85% removal efficiency (RE) on the eighth day and remain above 90% RE when the empty bed residence time (EBRT) was 18 s and the inlet loading was not higher than 41.4 g m−3 h−1. Moreover, the biofilter could tolerate substantial transient shock loadings. After two shut-down experiments, the removal efficiency could be restored to above 80% after a recovery period of three days and six days, respectively. Sequence analysis of the 16S rRNA gene of fillers in four operating periods revealed that the highly efficient bacterial colonies in fillers mainly included and and that the abundance of increased significantly during the re-start period.


Article metrics loading...

Loading full text...

Full text loading...



  1. Delhoménie M.-C., and Heitz M. Crit. Rev. Biotechnol., 2005, 25, (1–2), 53 LINK [Google Scholar]
  2. Underhill R., Lewis R. J., Freakley S. J., Douthwaite M., Miedziak P. J., Akdim O., Edwards J. K., and Hutchings G. J. Johnson Matthey Technol. Rev., 2018, 62, (4), 417 LINK [Google Scholar]
  3. Tham Y. J., Latif P. A., Abdullah A. M., Shamala-Devi A., and Taufiq-Yap Y. H. Bioresour. Technol., 2011, 102, (2), 724 LINK [Google Scholar]
  4. Rene E. R., Mohammad B. T., Veiga M. C., and Kennes C. Bioresour. Technol., 2012, 116, 204 LINK [Google Scholar]
  5. Deng Y., Yang F., Deng C., Yang J., Jia J., and Yuan H. Appl. Biochem. Biotechnol., 2017, 183, (3), 893 LINK [Google Scholar]
  6. Chen Y., Wang X., He S., Zhu S., and Shen S. J. Environ. Manage., 2016, 165, 11 LINK [Google Scholar]
  7. Dumont E., and Andrès Y. J. Chem. Technol. Biotechnol., 2010, 85, (3), 429 LINK [Google Scholar]
  8. Zhu R., Li S., Bao X., and Dumont É. Sci. Rep., 2017, 7, 42241 LINK [Google Scholar]
  9. Zuo Z., Gong T., Che Y., Liu R., Xu P., Jian H., Qiao C., Song C., and Yang C. Biodegradation, 2015, 26, (3), 223 LINK [Google Scholar]
  10. Muñoz R., Hernández M., Segura A., Gouveia J., Rojas A., Ramos J. L., and Villaverde S. Appl. Microbiol. Biotechnol., 2009, 83, (1), 189 LINK [Google Scholar]
  11. Littlejohns J. V., McAuley K. B., and Daugulis A. J. J. Hazard. Mater., 2010, 175, (1–3), 872 LINK [Google Scholar]
  12. Ryu H. W., Cho K.-S., and Chung D. J. Bioresour. Technol., 2010, 101, (6), 1745 LINK [Google Scholar]
  13. Nie Y., Zhu R., Li S., Li S., Wang M., and Yan Y. Chinese J. Environ. Eng., 2019, 13, (3), 678 [Google Scholar]
  14. Chen X., Qian W., Kong L., Xiong Y., and Tian S. Biochem. Eng. J., 2015, 98, 56 LINK [Google Scholar]
  15. Yang W.-F., Hsing H.-J., Yang Y.-C., and Shyng J.-Y. J. Hazard. Mater., 2007, 148, (3), 653 LINK [Google Scholar]
  16. Zhu R., Li S., Wu Z., and Dumont É. Environ. Technol., 2017, 38, (8), 945 LINK [Google Scholar]
  17. Luo Y., Li S., Ma H., and Wang Y. Trans. Chinese Soc. Agric. Eng., 2017, 33, (12), 218 (in Chinese) LINK [Google Scholar]
  18. Liu Y., Quan X., Sun Y., Chen J., Xue D., and Chung J. S. J. Hazard. Mater., 2002, 95, (1–2), 199 LINK [Google Scholar]
  19. Logares R., Sunagawa S., Salazar G., Cornejo-Castillo F. M., Ferrera I., Sarmento H., Hingamp P., Ogata H., de Vargas C., Lima-Mendez G., Raes J., Poulain J., Jaillon O., Wincker P., Kandels-Lewis S., Karsenti E., Bork P., and Acinas S. G. Environ. Microbiol., 2014, 16, (9), 2659 LINK [Google Scholar]
  20. Zhang J., Li L., and Liu J. Biochem. Eng. J., 2017, 118, 105 LINK [Google Scholar]
  21. Hu Q., Wang C., and Huang K. Chem. Eng. J., 2015, 279, 689 LINK [Google Scholar]
  22. Singh K., Giri B. S., Sahi A., Geed S. R., Kureel M. K., Singh S., Dubey S. K., Rai B. N., Kumar S., Upadhyay S. N., and Singh R. S. Bioresour. Technol., 2017, 242, 351 LINK [Google Scholar]
  23. Wang M., Xu S., Li S., and Zhu R. J. Ind. Eng. Chem., 2019, 75, 224 LINK [Google Scholar]
  24. Ding Y., Wu W., Han Z., and Chen Y. Biochem. Eng. J., 2008, 38, (2), 248 LINK [Google Scholar]
  25. Abbasian F., Lockington R., Megharaj M., and Naidu R. Appl. Biochem. Biotechnol., 2016, 178, (2), 224 LINK [Google Scholar]
  26. Song J., and Kinney K. A. Biotechnol. Bioeng., 2000, 68, (5), 508 LINK<508::AID-BIT4>3.0.CO;2-P [Google Scholar]
  27. Hajizadeh Y., Amin M.-M., and Parseh I. J. Ind. Eng. Chem., 2018, 62, 418 LINK [Google Scholar]
  28. Li H., Huang S., Wei Z., Chen P., and Zhang Y. Sci. Total Environ., 2016, 562, 533 LINK [Google Scholar]
  29. Liu H., Wang S.-J., Zhang J.-J., Dai H., Tang H., and Zhou N.-Y. Appl. Environ. Microbiol., 2011, 77, (13), 4547 LINK [Google Scholar]
  30. Bergdoll L., Point E., Bayman F., and Picot D. Biochim. Biophys. Acta., 2012, 1817, S138 LINK [Google Scholar]
  31. Wolińska A., Kuźniar A., Zielenkiewicz U., Izak D., Szafranek-Nakonieczna A., Banach A., and Błaszczyk M. Appl. Soil Ecol., 2017, 119, 128 LINK [Google Scholar]
  32. Geed S. R., Kureel M. K., Shukla A. K., Singh R. S., and Rai B. N. Resour. Eff. Technol., 2016, 2, (1), S3 LINK [Google Scholar]
  33. Kumar M., Giri B. S., Kim K.-H., Singh R. P., Rene E. R., López M. E., Rai B. N., Singh H., Prasad D., and Singh R. S. Bioresour. Technol., 2019, 285, 121317 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error