-
oa Preparation and Evaluation of a Composite Filler Micro-Embedded with Pseudomonas putida for the Biodegradation of Toluene
Preparation of composite filler with high toluene removal efficiency
- Source: Johnson Matthey Technology Review, Volume 64, Issue 4, Oct 2020, p. 396 - 406
-
- 01 Jan 2020
Abstract
The main objective of this study was to evaluate the performance of a self-developed filler micro-embedded with Pseudomonas putida (P. putida) for toluene removal in a biofilter under various loading rates. The results show that the biofilter could reach 85% removal efficiency (RE) on the eighth day and remain above 90% RE when the empty bed residence time (EBRT) was 18 s and the inlet loading was not higher than 41.4 g m−3 h−1. Moreover, the biofilter could tolerate substantial transient shock loadings. After two shut-down experiments, the removal efficiency could be restored to above 80% after a recovery period of three days and six days, respectively. Sequence analysis of the 16S rRNA gene of fillers in four operating periods revealed that the highly efficient bacterial colonies in fillers mainly included Firmicutes, Actinobacteria and Proteobacteria and that the abundance of Bacteroidetes increased significantly during the re-start period.