Skip to content
1887
Volume 65, Issue 2
  • ISSN: 2056-5135

Abstract

C123 is a €6.4 million European Horizon 2020 (H2020) integrated project running from 2019 to 2023, bringing together 11 partners from seven different European countries. There are large reserves of stranded natural gas waiting for a viable solution and smaller scale biogas opportunities offering methane feedstocks rich in carbon dioxide, for which utilisation can become an innovation advantage. C123 will evaluate how to best valorise these unexploited methane resources by an efficient and selective transformation into easy-to-transport liquids such as propanol and propanal that can be transformed further into propylene and fed into the US$6 billion polypropylene market. In C123 the selective transformation of methane to C3 hydrocarbons will be realised a combination of oxidative conversion of methane (OCoM) and hydroformylation, including thorough smart process design and integration under industrially relevant conditions. All C123 technologies exist at TRL3 (TRL = technology readiness level), and the objectives of C123 will result in the further development of this technology to TRL5 with a great focus on the efficient overall integration of not only the reaction steps but also the required purification and separation steps, incorporating the relevant state-of-the-art engineering expertise.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16051060155762
2021-01-01
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/2/Amieiro_16a_Imp.html?itemId=/content/journals/10.1595/205651321X16051060155762&mimeType=html&fmt=ahah

References

  1. ‘Gas’,International Energy Agency, Paris, France:https://www.iea.org/fuels-and-technologies/gas (Accessed on 16th February 2021) [Google Scholar]
  2. Apostolov P., Dzene I., Ionescu D., Fistrek Ž., Ropoša B., Sioulas K., and Vobr K. “IEE Project ‘BiogasIN’: National Biogas Road Maps”,D.6.2/WP6, European Union, Brussels, Belgium, September, 2012, 53 pp [Google Scholar]
  3. Scarlat N., Dallemand J.-F., and Fahl F. Renew. Energy, 2018, 129, (A), 457 LINK https://doi.org/10.1016/j.renene.2018.03.006 [Google Scholar]
  4. Shah P., Durr C., ‘Monetizing Stranded Gas’, in “Petroleum Engineering Handbook: Emerging and Peripheral Technologies”, ed. and Warner H. R. 6, Society of Petroleum Engineers, Richardson, USA, 2007, pp. 355–390 [Google Scholar]
  5. ‘Field Listing: Natural Gas – Proved Reserves’,Central Intelligence Agency, Washington, USA:https://www.cia.gov/the-world-factbook/field/natural-gas-proved-reserves/ (Accessed on 16th February 2021) [Google Scholar]
  6. Dubois J.-L., Nieder-Heitmann M., Letoffet A., and Vleeming H. Johnson Matthey Technol. Rev., 2021, 65, (2), 301 LINK https://www.technology.matthey.com/article/65/2/301-310/ [Google Scholar]
  7. Bilich A., Colvin M., and O’Connor T. “Managing the Transition Proactive Solutions for Stranded Gas Asset Risk in California”,Environmental Defense Fund, New York, USA, 2019, 47 pp LINK https://www.ourenergypolicy.org/resources/managing-the-transition-proactive-solutions-for-stranded-gas-asset-risk-in-california/ [Google Scholar]
  8. Keller G. E., and Bhasin M. M. J. Catal., 1982, 73, (1), 9 LINK https://doi.org/10.1016/0021-9517(82)90075-6 [Google Scholar]
  9. Alexiadis V. I., Thybaut J. W., Kechagiopoulos P. N., Chaar M., Van Veen A. C., Muhler M., and Marin G. B. Appl. Catal. B: Environ., 2014, 150–151, 496 LINK https://doi.org/10.1016/j.apcatb.2013.12.043 [Google Scholar]
  10. Kondratenko E. V., Schluter M., Baerns M., Linke D., and Holena M. Catal. Sci. Technol., 2015, 5, (3), 1668 LINK https://doi.org/10.1039/C4CY01443J [Google Scholar]
  11. Schmack R., Friedrich A., Kondratenko E. V., Polte J., Werwatz A., and Kraehnert R. Nat. Commun., 2019, 10, 441 LINK https://doi.org/10.1038/s41467-019-08325-8 [Google Scholar]
  12. Thybaut J. W., Sun J., Olivier L., Van Veen A. C., Mirodatos C., and Marin G. B. Catal. Today, 2011, 159, (1), 29 LINK https://doi.org/10.1016/j.cattod.2010.09.002 [Google Scholar]
  13. Estruch Bosch C., Poulston S., Collier P., Thybaut J. W., and Marin G. B. Johnson Matthey Technol. Rev., 2019, 63, (4), 265 LINK https://www.technology.matthey.com/article/63/4/265-276/ [Google Scholar]
  14. Kechagiopoulos P. N., Thybaut J. W., and Marin G. B. Ind. Eng. Chem. Res., 2014, 53, (5), 1825 LINK https://doi.org/10.1021/ie403160s [Google Scholar]
  15. Estruch Bosch C., Copley M. P., Eralp T., Bilbé E., Thybaut J. W., Marin G. B., and Collier P. Appl. Catal. A: Gen., 2017, 536, 104 LINK https://doi.org/10.1016/j.apcata.2017.01.019 [Google Scholar]
  16. Franke R., Selent D., and Börner A. Chem. Rev., 2012, 112, (11), 5675 LINK https://doi.org/10.1021/cr3001803 [Google Scholar]
  17. Rodriguez B. A., and Tenn W. J. Appl. Catal. A: Gen., 2012, 421–422, 161 LINK https://doi.org/10.1016/j.apcata.2012.02.013 [Google Scholar]
  18. Kiss G., Mozeleski E. J., Nadler K. C., VanDriessche E., and DeRoover C. J. Mol. Catal. A: Chem., 1999, 138, (2–3), 155 LINK https://doi.org/10.1016/S1381-1169(98)00166-6 [Google Scholar]
  19. Navidi N., Thybaut J. W., and Marin G. B. Appl. Catal. A: Gen., 2014, 469, 357 LINK https://doi.org/10.1016/j.apcata.2013.10.019 [Google Scholar]
  20. Zeelie T. A., Root A., and Krause A. O. I. Appl. Catal. A: Gen., 2005, 285, (1–2), 96 LINK https://doi.org/10.1016/j.apcata.2005.02.010 [Google Scholar]
  21. Huang L., and Xu Y. Appl. Catal. A: Gen., 2001, 205, (1–2), 183 LINK https://doi.org/10.1016/S0926-860X(00)00573-1 [Google Scholar]
  22. “Applied Homogeneous Catalysis with Organometallic Compounds”, eds. Cornils B., Herrmann W. A., Beller M., and Paciello R. 1, Wiley-VCH Verlag GmbH and Co KGaA, Weinheim, Germany, 2018, pp. 1–22 [Google Scholar]
  23. Li P., and Kawi S. Catal. Today, 2008, 131, (1–4), 61 LINK https://doi.org/10.1016/j.cattod.2007.10.090 [Google Scholar]
  24. Li P., and Kawi S. J. Catal., 2008, 257, (1), 23 LINK https://doi.org/10.1016/j.jcat.2008.04.002 [Google Scholar]
  25. Sayah R., Framery E., and Dufaud V. Green Chem., 2009, 11, (10), 1694 LINK https://doi.org/10.1039/B915563P [Google Scholar]
  26. Starkie C. M., Amieiro-Fonseca A., Rigby S. P., Drage T. C., and Lester E. H. Energy Proc., 2014, 63, 2323 LINK https://doi.org/10.1016/j.egypro.2014.11.252 [Google Scholar]
  27. Sartipi S., Romero M. J. V., Rozhko E., Que Z., Stil H. A., de With J., Kapteijn F., and Gascon G. ChemCatChem, 2015, 7, (20), 3243 LINK https://doi.org/10.1002/cctc.201500330 [Google Scholar]
  28. Islamoglu T., Goswami S., Li Z., Howarth A. J., Farha O. K., and Hupp J. T. Acc. Chem. Res., 2017, 50, (4), 805 LINK https://doi.org/10.1021/acs.accounts.6b00577 [Google Scholar]
  29. Chen Z., Hanna S. L., Redfern L. R., Alezi D., Islamoglu T., and Farha O. K. Coord. Chem. Rev., 2019, 386, 32 LINK https://doi.org/10.1016/j.ccr.2019.01.017 [Google Scholar]
  30. Wisser F. M., Mohr Y., Quadrelli E. A., and Canivet J. ChemCatChem, 2020, 12, (5), 1270 LINK https://doi.org/10.1002/cctc.201902064 [Google Scholar]
  31. Sun Q., Jiang M., Shen Z., Jin Y., Pan S., Wang L., Meng X., Chen W., Ding Y., Li J., and Xiao F.-S. Chem. Commun., 2014, 50, (80), 11844 LINK https://doi.org/10.1039/C4CC03884C [Google Scholar]
  32. Li C., Yan Li, Lu L., Xiong K., Wang W., Jiang M., Liu J., Song X., Zhan Z., Jiang Z., and Ding Y. Green Chem., 2016, 18, (10), 2995 LINK https://doi.org/10.1039/C6GC00728G [Google Scholar]
  33. Wang Y., Yan L., Li C., Jiang M., Wang W., and Ding Y. Appl. Catalysis A: Gen, 2018, 551, 98 LINK https://doi.org/10.1016/j.apcata.2017.12.013 [Google Scholar]
  34. Kemper R. ‘Siluria’s OCM: Direct Conversion of Natural Gas to Ethylene’,2015 AIChE Spring Meeting and 11th Global Congress on Process Safety,26th–30th April, 2015, Austin, USA,American Institute of Chemical Engineers, New York, USA LINK https://www.aiche.org/conferences/aiche-spring-meeting-and-global-congress-on-process-safety/2015/proceeding/paper/207a-silurias-ocm-direct-conversion-natural-gas-ethylene-2 [Google Scholar]
  35. Hinsen W., and Baerns A. Chem. Ztg., 1983, 107, (7–8), 223 [Google Scholar]
  36. Moulijn J. A., Makee M., and van Diepen A. E. ‘Homogeneos Transition Metal Catalysis in the Production of Bulk Chemicals: Hydroformylation’, in “Chemical Process Technology”,2nd Edn, John Wiley and Sons Ltd, Chichester, UK, 2013, pp. 286–296 [Google Scholar]
/content/journals/10.1595/205651321X16051060155762
Loading
/content/journals/10.1595/205651321X16051060155762
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error