Skip to content
1887
Volume 65, Issue 1
  • ISSN: 2056-5135
  • oa Platinum Group Metals Recovery Using Secondary Raw Materials (PLATIRUS): Project Overview with a Focus on Processing Spent Autocatalyst

    Novel pgm recycling technologies ready for demonstration at next scale

  • Authors: Giovanna Nicol1, Emma Goosey2, Deniz Şanlı Yıldız3, Elaine Loving4, Viet Tu Nguyen5, Sofía Riaño5, Iakovos Yakoumis6, Ana Maria Martinez7, Amal Siriwardana8, Ainhoa Unzurrunzaga8, Jeroen Spooren9, Thomas Abo Atia9, Bart Michielsen9, Xochitl Dominguez-Benetton9 and Olga Lanaridi10
  • Affiliations: 1 Centro Ricerche Fiat Scpa (CRF)Strada Torino, 50–10043 Orbassano (TO)Italy 2 Env-Aqua Solutions Ltd (Env Aqua)304 Myton Road, Warwick, CV34 6PUUK 3 Ford Otomotiv San AŞ (Ford), R&D Center Akpinar MahHasan Basri Caddesi No:2, 34885 Sancaktepe, İstanbulTurkey 4 Johnson Matthey, Blount’s Court RoadSonning Common, Reading, RG4 9NHUK 5 Katholieke Universiteit Leuven (KU Leuven), Department of ChemistryCelestijnenlaan 200F, PO box 2404, 3001 Leuven (Heverlee)Belgium 6 MONOLITHOS Catalysts & Recycling Ltd (MONOLITHOS)83, Vrilissou Str, 11476 Polygono, AthensGreece 7 SINTEF ASStrindveien 4, 7034 TrondheimNorway 8 TECNALIA, Parque Tecnológico de San Sebastián Mikeletegi Pasealekua2 E-20009 Donostia-San Sebastián–GipuzkoaSpain 9 Flemish Institute for Technological Research (VITO)Boeretang 200, 2400 MolBelgium 10 Vienna University of Technology (VUT)Getreidemarkt 9/163, 1060, ViennaAustria
  • Source: Johnson Matthey Technology Review, Volume 65, Issue 1, Jan 2021, p. 127 - 147
  • DOI: https://doi.org/10.1595/205651321X16057842276133
    • Published online: 01 Jan 2021

Abstract

PLATInum group metals Recovery Using Secondary raw materials (PLATIRUS), a European Union (EU) Horizon 2020 project, aims to address the platinum group metal (pgm) supply security within Europe by developing novel and greener pgm recycling processes for autocatalysts, mining and electronic wastes. The initial focus was on laboratory-scale research into ionometallurgical leaching, microwave assisted leaching, solvometallurgical leaching, liquid separation, solid phase separation, electrodeposition, electrochemical process: gas-diffusion electrocrystallisation and selective chlorination. These technologies were evaluated against key performance indicators (KPIs) including recovery, environmental impact and process compatibility; with the highest scoring technologies combining to give the selected PLATIRUS flowsheet comprising microwave assisted leaching, non-conventional liquid-liquid extraction and gas-diffusion electrocrystallisation. Operating in cascade, the PLATIRUS flowsheet processed ~1.3 kg of spent milled autocatalyst and produced 1.2 g palladium, 0.8 g platinum and 0.1 g rhodium in nitrate form with a 92–99% purity. The overall recoveries from feedstock to product were calculated as 46 ± 10%, 32 ± 8% and 27 ± 3% for palladium, platinum and rhodium respectively. The recycled pgm has been manufactured into autocatalysts for validation by end users. This paper aims to be a project overview, an in‐depth technical analysis into each technology is not included. It summarises the most promising technologies explored, the technology evaluation, operation of the selected technologies in cascade, the planned recycled pgm end user validation and the next steps required to ready the technologies for implementation and to further validate their potential.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16057842276133
2021-01-01
2024-12-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/1/PLATIRUS_16a_Imp.html?itemId=/content/journals/10.1595/205651321X16057842276133&mimeType=html&fmt=ahah

References

  1. British Geological Survey, Bureau de Recherches Géologiques et Minières, Deloitte Sustainability, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs (European Commission) and TNO,, “Study on the Review of the List of Critical Raw Materials: Critical Raw Materials Factsheets”,European Union, Luxembourg, June, 2017, 517 pp LINK https://op.europa.eu/en/publication-detail/-/publication/7345e3e8-98fc-11e7-b92d-01aa75ed71a1/language-en [Google Scholar]
  2. A. Cowley, “Pgm Market Report”,Johnson Matthey, London, UK, February, 2020, 40 pp LINK http://www.platinum.matthey.com/documents/new-item/pgm market reports/pgm_market_report_february_2020.pdf [Google Scholar]
  3. F. K. Crundwell, M. S. Moats, V. Ramachandran, T. G. Robinson, W. G. Davenport, “Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals”,Elsevier Ltd, Oxford, UK, 610 pp LINK https://www.sciencedirect.com/book/9780080968094/extractive-metallurgy-of-nickel-cobalt-and-platinum-group-metals#book-info [Google Scholar]
  4. ‘Pgm refining’,Johnson Matthey, London, UK:https://matthey.com/en/products-and-services/precious-metal-products/pgm-refining (Accessed on 19th November 2020) [Google Scholar]
  5. ‘Precious Metal Recycling’,Heraeus Precious Metals, Hanau, Germany:https://www.heraeus.com/en/hpm/hpm_services/recycling/recycling_overview/recycling.html (Accessed on 19th November 2020) [Google Scholar]
  6. N. Ritschel, J. Taylor, T. England, B. Peters, F. Stoffner, C. Röhlich, S. Voss, H. Winkler, Heraeus Deutschland GmbH and Co,, ‘Process for the Production of a PGM-Enriched Alloy’, US Patent 10,202,669; 2019 [Google Scholar]
  7. ‘Recycling of PGMs (Platinum Group Metals)’,BASF, Ludwigshafen, Germany:https://www.basf.com/gb/en/who-we-are/sustainability/we-drive-sustainable-solutions/sustainable-solution-steering/examples/recycling-of-pgms.html (Accessed on 19th November 2020) [Google Scholar]
  8. S. K. Padamata, A. S. Yasinskiy, P. V. Polyakov, E. A. Pavlov, D. Yu. Varyukhin, Metall. Mater. Trans. B., 2020, 51, (5), 2413 LINK https://doi.org/10.1007/s11663-020-01913-w [Google Scholar]
  9. H. B. Trinh, J. Lee, Y. Suh, J. Lee, Waste Manag., 2020, 114, 148 LINK https://doi.org/10.1016/j.wasman.2020.06.030 [Google Scholar]
  10. S. R. Izatt, N. E. Izatt, D. M. Mansur, T. Hughes, R. L. Bruening, J. B. Dale, ‘Sustainable Recovery of Precious and Minor Metals from Low-Grade Resources’,34th International Precious Metals Institute Annual Conference,Tucson, USA,12th–15th June, 2010, The International Precious Metals Institute, Pensacola, USA, pp. 573–592 [Google Scholar]
  11. D. Jimenez De Aberasturi, R. Pinedo, I. Ruiz De Larramendi, J. I. Ruiz De Larramendi, T. Rojo, Miner Eng., 2011, 24, (6), 505 LINK https://doi.org/10.1016/j.mineng.2010.12.009 [Google Scholar]
  12. S. Harjanto, Y. Cao, A. Shibayama, I. Naitoh, T. Nanami, K. Kasahara, Y. Okumura, K. Liu, T. Fujita, Mater. Trans., 2006, 47, (1), 129 LINK https://doi.org/10.2320/matertrans.47.129 [Google Scholar]
  13. R. J. Kuczynski, G. B. Atkinson, W. J. Dolinar, ‘Recovery of Platinum Group Metals from Automobile Catalysts – Pilot Plant Operation’,3rd International Symposium on Recycling of Metals and Engineered Materials,Point Clear, USA,12th–16th November, 1995 [Google Scholar]
  14. G. B. Atkinson, R. J. Kuczynski, D. P. Desmond, The United States of America as represented by the Secretary of the Interior,, ‘Cyanide Leaching Method for Recovering Platinum Group Metals from Catalytic Converter Catalyst’,US Patent 5,160,711; 1992 [Google Scholar]
  15. H. Dong, J. Zhao, J. Chen, Y. Wu, B. Li, Int. J. Miner. Process., 2015, 145, 108 LINK https://doi.org/10.1016/j.minpro.2015.06.009 [Google Scholar]
  16. N. Das, Hydrometallurgy, 2010, 103, (1–4), 180 LINK https://doi.org/10.1016/j.hydromet.2010.03.016 [Google Scholar]
  17. Y. Ding, S. Zhang, B. Liu, H. Zheng, C. Chang, C. Ekberg, Resour. Conserv. Recycl., 2019, 141, 284 LINK https://doi.org/10.1016/j.resconrec.2018.10.041 [Google Scholar]
  18. P. M. Cole, K. C. Sole, A. M. Feather, Tsinghua Sci. Technol., 2006, 11, (2), 153 LINK https://doi.org/10.1016/S1007-0214(06)70169-9 [Google Scholar]
  19. G. P. Demopoulos, JOM, 1986, 38, (6), 13 LINK https://doi.org/10.1007/BF03257809 [Google Scholar]
  20. C. Saguru, S. Ndlovu, D. Moropeng, Hydrometallurgy, 2018, 182, 44 LINK https://doi.org/10.1016/j.hydromet.2018.10.012 [Google Scholar]
  21. A. P. Paiva, Metals, 2017, 7, (11), 505 LINK https://doi.org/10.3390/met7110505 [Google Scholar]
  22. A. P. Paiva, G. I. Carvalho, A. L. Schneider, M. C. Costa, A. M. Costa, A. F. Assunção, C. A. Nogueira, ‘New Extractants for Separation of Platinium-Group Metals from Chloride Solutions and Their Application to Recycling Processes’,4th International Conference on Engineering for Waste and Biomass Valorisation,Porto, Portugal,10th–13th September, 2012, 6 pp LINK http://repositorio.lneg.pt/handle/10400.9/1575 [Google Scholar]
  23. K. Narita, T. Suzuki, R. Motokawa, J. Japan Inst. Met., 2017, 81, (4), 157 LINK https://doi.org/10.2320/jinstmet.JE201604 [Google Scholar]
  24. V. T. Nguyen, J. Lee, A. Chagnes, M. Kim, J. Jeong, G. Cote, RSC Adv., 2016, 6, (67), 62717 LINK https://doi.org/10.1039/C6RA09328K [Google Scholar]
  25. R. M. Izatt, S. R. Izatt, N. E. Izatt, K. E. Krakowiak, R. L. Bruening, L. Navarro, Green Chem. 2015, 17, (4), 2236 LINK https://doi.org/10.1039/C4GC02188F [Google Scholar]
  26. J. D. Lewins, Platinum Australia Ltd,, ‘Process for Extracting Platinum Group Metals’, Australian Patent Appl. 2003/213,877 [Google Scholar]
  27. K. N. Han, P. N. Kim, South Dakota School of Mines and Technology,, ‘Recovery of Platinum Group Metals’, US Patent 7,067,090; 2006 [Google Scholar]
  28. A. M. Yousif, J. Chem., 2019, 2318157 LINK https://doi.org/10.1155/2019/2318157 [Google Scholar]
  29. R. Panda, M. K. Jha, D. D. Pathak, ‘Commercial Processes for the Extraction of Platinum Group Metals (PGMs)’, in “Rare Metal Technology 2018: Part II: Rare Earth Elements II and Platinum Group Metals”, Eds. H. Kim, B. Wesstrom, S. Alam, T. Ouchi, G. Azimi, N. R. Neelameggham, S. Wang, Xiaofei Guan, The Minerals, Metals and Materials Series, Springer International Publishing AG, Cham, Switzerland, 2018, pp. 119–130 LINK https://doi.org/10.1007/978-3-319-72350-1_11 [Google Scholar]
  30. J. Spooren, T. Abo Atia, Miner. Eng., 2020, 146, 106153 LINK https://doi.org/10.1016/j.mineng.2019.106153 [Google Scholar]
  31. S. Dragulovic, M. Dimitrijevic, A. Kostov, S. Jakovljevic, ‘Recovery of Platinum Group Metals from Spent Automotive Catalyst’,12th International Research/Expert Conference: Trends in the Development of Machinery and Associated Technology, TMT 2008,Istanbul, Turkey,26th–30th August, 2008, pp. 1289–1292 LINK http://www.tmt.unze.ba/zbornik/TMT2008/323-TMT08-312.pdf [Google Scholar]
  32. R. Rumpold, J. Antrekowitsch, ‘Recycling of Platinum Group Metals from Automotive Catalysts by an Acidic Leaching Process’,Fifth International Platinum Conference: A Catalyst for Change,Sun City, South Africa,17th–21st September, 2012, The Southern African Institute of Mining and Metallurgy, Johannesburg, South Africa, 2012, pp. 695–714 LINK https://www.saimm.co.za/Conferences/Pt2012/695-714_Rumpold.pdf [Google Scholar]
  33. M. Kim, E. Kim, J. Jeong, J. Lee, W. Kim, Mater. Trans., 2010, 51, (10), 1927 LINK https://doi.org/10.2320/matertrans.M2010218 [Google Scholar]
  34. T. Suoranta, O. Zugazua, M. Niemelä, P. Perämäki, Hydrometallurgy, 2015, 154, 56 LINK https://doi.org/10.1016/j.hydromet.2015.03.014 [Google Scholar]
  35. K. Binnemans, P. T. Jones, J. Sustain. Metall., 2017, 3, (3), 570 LINK https://doi.org/10.1007/s40831-017-0128-2 [Google Scholar]
  36. F. Forte, S. Riaño, K. Binnemans, Chem. Commun., 2020, 56, (59), 8230 LINK https://doi.org/10.1039/d0cc02298e [Google Scholar]
  37. N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev., 2008, 37, (1), 123 LINK https://doi.org/10.1039/b006677j [Google Scholar]
  38. M. L. Dietz, Separ. Sci. Technol., 2006, 41, (10), 2047 LINK https://doi.org/10.1080/01496390600743144 [Google Scholar]
  39. A. Stojanovic, B. K. Keppler, Separ. Sci Technol., 2012, 47, (2), 189 LINK https://doi.org/10.1080/01496395.2011.620587 [Google Scholar]
  40. J. Lemus, J. Palomar, M. A. Gilarranz, J. J. Rodriguez, Adsorption, 2011, 17, (3), 561 LINK https://doi.org/10.1007/s10450-011-9327-5 [Google Scholar]
  41. V. T. Nguyen, S. Riaño, K. Binnemans, Green Chem., 2020, Advance article LINK https://doi.org/10.1039/d0gc02356f [Google Scholar]
  42. M. Regadío, T. Vander Hoogerstraete, D. Banerjee, K. Binnemans, RSC Adv., 2018, 8, (60), 34754 LINK https://doi.org/10.1039/c8ra06055j [Google Scholar]
  43. K. Larsson, K. Binnemans, Hydrometallurgy, 2015, 156, 206 LINK https://doi.org/10.1016/j.hydromet.2015.04.020 [Google Scholar]
  44. M. Rzelewska-Piekut, M. Regel-Rosocka, Separ. Purif. Technol., 2019, 212, 791 LINK https://doi.org/10.1016/j.seppur.2018.11.091 [Google Scholar]
  45. M. L. Firmansyah, F. Kubota, M. Goto, J. Chem. Technol. Biotechnol., 2018, 93, (6), 1714 LINK https://doi.org/10.1002/jctb.5544 [Google Scholar]
  46. Z. Hubicki, M. Wawrzkiewicz, A. Wolowicz, Chem. Anal. (Warsaw), 2008, 53, 759 LINK http://beta.chem.uw.edu.pl/chemanal/PDFs/2008/CHAN2008V53P00759.pdf [Google Scholar]
  47. A. N. Nikoloski, K. L. Ang, Miner. Process. Extr. Metall. Rev., 2014, 35, (6), 369 LINK https://doi.org/10.1080/08827508.2013.764875 [Google Scholar]
  48. S. Sharma, A. S. K. Kumar, N. Rajesh, RSC Adv., 2017, 7, (82), 52133 LINK https://doi.org/10.1039/c7ra10153h [Google Scholar]
  49. E. Aghaei, R. D. Alorro, A. N. Encila, K. Yoo, Metals, 2017, 7, (12), 529 LINK https://doi.org/10.3390/met7120529 [Google Scholar]
  50. D. Zhang, J. Xiao, Q. Guo, J. Yang, J. Mater. Sci., 2019, 54, (8), 6728 LINK https://doi.org/10.1007/s10853-019-03332-y [Google Scholar]
  51. Z. Peng, Z. Li, X. Lin, H. Tang, L. Ye, Y. Ma, M. Rao, Y. Zhang, G. Li, T. Jiang, JOM, 2017, 69, (9), 1553 LINK https://doi.org/10.1007/s11837-017-2450-3 [Google Scholar]
  52. ‘Electrorefining of Copper’,Federal University of Rio Grande do Sul, Porto Alegre, Brazil:http://www.ct.ufrgs.br/ntcm/graduacao/ENG06631/5-b_copper.pdf (Accessed on 23rd June 2020) [Google Scholar]
  53. A. Kisza, J. Kaźmierczak, Chem. Papers, 1991, 45, (2), 187 LINK https://www.chempap.org/?id=7&paper=3899 [Google Scholar]
  54. X. Dominguez Benetton, Y. Alvarez Gallego, C. Porto-Carrero, K. Gijbels, S. Rajamani, Vito NV,, ‘An Electrochemical Process for Preparing a Compound Comprising a Metal or Metalloid and a Peroxide, Ionic or Radical Species’,World Patent Appl. 2016/111,597 [Google Scholar]
  55. W. Halwachs, M. Beier, P. Patzelt, M. Zimmermann, ‘Electrowinning of Platinum at Heraeus in Hanau’,International Precious Metals Economics and Refining Technology Seminar, Las Vegas, USA, January, 1993 [Google Scholar]
  56. I. Yakoumis, A. Moschovi, M. Panou, D. Panias, J. Sustain. Metall., 2020, 6, (2), 259 LINK https://doi.org/10.1007/s40831-020-00272-9 [Google Scholar]
  57. ‘Palladium Nitrate Solution’,Johnson Matthey, London, UK:https://matthey.com/en/products-and-services/precious-metal-chemicals/palladium-chemicals/palladiumii-nitrate-solution (Accessed on 25th November 2020) [Google Scholar]
  58. ‘What is an Autocatalyst?’,International Platinum Group Metals Association eV, Munich, Germany:https://ipa-news.com/index/pgm-applications/automotive/catalytic-converters/what-is-an-autocatalyst.html (Accessed on 22nd June 2020) [Google Scholar]
  59. I. Yakoumis, Monolithos Catalysts and Recycling Ltd,, ‘Copper and Noble Metal Polymetallic Catalysts for Engine Exhaust Gas Treatment’,European Patent Appl. 2019/3,569,309 [Google Scholar]
  60. ‘Horizon 2020 – Work Programme 2018-2020: General Annexes: G. Technology readiness levels (TRL)’,European Commission, Brussels, Belgium:https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2018-2020/annexes/h2020-wp1820-annex-g-trl_en.pdf (Accessed on 10th June 2020) [Google Scholar]
/content/journals/10.1595/205651321X16057842276133
Loading
/content/journals/10.1595/205651321X16057842276133
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test