Skip to content
Volume 65, Issue 1
  • ISSN: 2056-5135


PLATInum group metals Recovery Using Secondary raw materials (PLATIRUS), a European Union (EU) Horizon 2020 project, aims to address the platinum group metal (pgm) supply security within Europe by developing novel and greener pgm recycling processes for autocatalysts, mining and electronic wastes. The initial focus was on laboratory-scale research into ionometallurgical leaching, microwave assisted leaching, solvometallurgical leaching, liquid separation, solid phase separation, electrodeposition, electrochemical process: gas-diffusion electrocrystallisation and selective chlorination. These technologies were evaluated against key performance indicators (KPIs) including recovery, environmental impact and process compatibility; with the highest scoring technologies combining to give the selected PLATIRUS flowsheet comprising microwave assisted leaching, non-conventional liquid-liquid extraction and gas-diffusion electrocrystallisation. Operating in cascade, the PLATIRUS flowsheet processed ~1.3 kg of spent milled autocatalyst and produced 1.2 g palladium, 0.8 g platinum and 0.1 g rhodium in nitrate form with a 92–99% purity. The overall recoveries from feedstock to product were calculated as 46 ± 10%, 32 ± 8% and 27 ± 3% for palladium, platinum and rhodium respectively. The recycled pgm has been manufactured into autocatalysts for validation by end users. This paper aims to be a project overview, an in‐depth technical analysis into each technology is not included. It summarises the most promising technologies explored, the technology evaluation, operation of the selected technologies in cascade, the planned recycled pgm end user validation and the next steps required to ready the technologies for implementation and to further validate their potential.


Article metrics loading...

Loading full text...

Full text loading...



  1. British Geological Survey, Bureau de Recherches Géologiques et Minières, Deloitte Sustainability, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs (European Commission) and TNO, “Study on the Review of the List of Critical Raw Materials: Critical Raw Materials Factsheets”,European Union, Luxembourg, June, 2017, 517 pp LINK [Google Scholar]
  2. Cowley A. “Pgm Market Report”,Johnson Matthey, London, UK, February, 2020, 40 pp LINK market reports/pgm_market_report_february_2020.pdf [Google Scholar]
  3. Crundwell F. K., Moats M. S., Ramachandran V., Robinson T. G., and Davenport W. G. “Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals”,Elsevier Ltd, Oxford, UK, 610 pp LINK [Google Scholar]
  4. ‘Pgm refining’,Johnson Matthey, London, UK: (Accessed on 19th November 2020) [Google Scholar]
  5. ‘Precious Metal Recycling’,Heraeus Precious Metals, Hanau, Germany: (Accessed on 19th November 2020) [Google Scholar]
  6. Ritschel N., Taylor J., England T., Peters B., Stoffner F., Röhlich C., Voss S., and Winkler H. Heraeus Deutschland GmbH and Co, ‘Process for the Production of a PGM-Enriched Alloy’, US Patent 10,202,669; 2019 [Google Scholar]
  7. ‘Recycling of PGMs (Platinum Group Metals)’,BASF, Ludwigshafen, Germany: (Accessed on 19th November 2020) [Google Scholar]
  8. Padamata S. K., Yasinskiy A. S., Polyakov P. V., Pavlov E. A., and Varyukhin D. Yu. Metall. Mater. Trans. B., 2020, 51, (5), 2413 LINK [Google Scholar]
  9. Trinh H. B., Lee J., Suh Y., and Lee J. Waste Manag., 2020, 114, 148 LINK [Google Scholar]
  10. Izatt S. R., Izatt N. E., Mansur D. M., Hughes T., Bruening R. L., and Dale J. B. ‘Sustainable Recovery of Precious and Minor Metals from Low-Grade Resources’,34th International Precious Metals Institute Annual Conference,Tucson, USA,12th–15th June, 2010, The International Precious Metals Institute, Pensacola, USA, pp. 573–592 [Google Scholar]
  11. Jimenez De Aberasturi D., Pinedo R., Ruiz De Larramendi I., Ruiz De Larramendi J. I., and Rojo T. Miner Eng., 2011, 24, (6), 505 LINK [Google Scholar]
  12. Harjanto S., Cao Y., Shibayama A., Naitoh I., Nanami T., Kasahara K., Okumura Y., Liu K., and Fujita T. Mater. Trans., 2006, 47, (1), 129 LINK [Google Scholar]
  13. Kuczynski R. J., Atkinson G. B., and Dolinar W. J. ‘Recovery of Platinum Group Metals from Automobile Catalysts – Pilot Plant Operation’,3rd International Symposium on Recycling of Metals and Engineered Materials,Point Clear, USA,12th–16th November, 1995 [Google Scholar]
  14. Atkinson G. B., Kuczynski R. J., and Desmond D. P. The United States of America as represented by the Secretary of the Interior, ‘Cyanide Leaching Method for Recovering Platinum Group Metals from Catalytic Converter Catalyst’,US Patent 5,160,711; 1992 [Google Scholar]
  15. Dong H., Zhao J., Chen J., Wu Y., and Li B. Int. J. Miner. Process., 2015, 145, 108 LINK [Google Scholar]
  16. Das N. Hydrometallurgy, 2010, 103, (1–4), 180 LINK [Google Scholar]
  17. Ding Y., Zhang S., Liu B., Zheng H., Chang C., and Ekberg C. Resour. Conserv. Recycl., 2019, 141, 284 LINK [Google Scholar]
  18. Cole P. M., Sole K. C., and Feather A. M. Tsinghua Sci. Technol., 2006, 11, (2), 153 LINK [Google Scholar]
  19. Demopoulos G. P. JOM, 1986, 38, (6), 13 LINK [Google Scholar]
  20. Saguru C., Ndlovu S., and Moropeng D. Hydrometallurgy, 2018, 182, 44 LINK [Google Scholar]
  21. Paiva A. P. Metals, 2017, 7, (11), 505 LINK [Google Scholar]
  22. Paiva A. P., Carvalho G. I., Schneider A. L., Costa M. C., Costa A. M., Assunção A. F., and Nogueira C. A. ‘New Extractants for Separation of Platinium-Group Metals from Chloride Solutions and Their Application to Recycling Processes’,4th International Conference on Engineering for Waste and Biomass Valorisation,Porto, Portugal,10th–13th September, 2012, 6 pp LINK [Google Scholar]
  23. Narita K., Suzuki T., and Motokawa R. J. Japan Inst. Met., 2017, 81, (4), 157 LINK [Google Scholar]
  24. Nguyen V. T., Lee J., Chagnes A., Kim M., Jeong J., and Cote G. RSC Adv., 2016, 6, (67), 62717 LINK [Google Scholar]
  25. Izatt R. M., Izatt S. R., Izatt N. E., Krakowiak K. E., Bruening R. L., and Navarro L. Green Chem. 2015, 17, (4), 2236 LINK [Google Scholar]
  26. Lewins J. D. Platinum Australia Ltd, ‘Process for Extracting Platinum Group Metals’, Australian Patent Appl. 2003/213,877 [Google Scholar]
  27. Han K. N., and Kim P. N. South Dakota School of Mines and Technology, ‘Recovery of Platinum Group Metals’, US Patent 7,067,090; 2006 [Google Scholar]
  28. Yousif A. M. J. Chem., 2019, 2318157 LINK [Google Scholar]
  29. Panda R., Jha M. K., Pathak D. D., ‘Commercial Processes for the Extraction of Platinum Group Metals (PGMs)’, in “Rare Metal Technology 2018: Part II: Rare Earth Elements II and Platinum Group Metals”, Eds. Kim H., Wesstrom B., Alam S., Ouchi T., Azimi G., Neelameggham N. R., Wang S., and Guan Xiaofei The Minerals, Metals and Materials Series, Springer International Publishing AG, Cham, Switzerland, 2018, pp. 119–130 LINK [Google Scholar]
  30. Spooren J., and Abo Atia T. Miner. Eng., 2020, 146, 106153 LINK [Google Scholar]
  31. Dragulovic S., Dimitrijevic M., Kostov A., and Jakovljevic S. ‘Recovery of Platinum Group Metals from Spent Automotive Catalyst’,12th International Research/Expert Conference: Trends in the Development of Machinery and Associated Technology, TMT 2008,Istanbul, Turkey,26th–30th August, 2008, pp. 1289–1292 LINK [Google Scholar]
  32. Rumpold R., and Antrekowitsch J. ‘Recycling of Platinum Group Metals from Automotive Catalysts by an Acidic Leaching Process’,Fifth International Platinum Conference: A Catalyst for Change,Sun City, South Africa,17th–21st September, 2012, The Southern African Institute of Mining and Metallurgy, Johannesburg, South Africa, 2012, pp. 695–714 LINK [Google Scholar]
  33. Kim M., Kim E., Jeong J., Lee J., and Kim W. Mater. Trans., 2010, 51, (10), 1927 LINK [Google Scholar]
  34. Suoranta T., Zugazua O., Niemelä M., and Perämäki P. Hydrometallurgy, 2015, 154, 56 LINK [Google Scholar]
  35. Binnemans K., and Jones P. T. J. Sustain. Metall., 2017, 3, (3), 570 LINK [Google Scholar]
  36. Forte F., Riaño S., and Binnemans K. Chem. Commun., 2020, 56, (59), 8230 LINK [Google Scholar]
  37. Plechkova N. V., and Seddon K. R. Chem. Soc. Rev., 2008, 37, (1), 123 LINK [Google Scholar]
  38. Dietz M. L. Separ. Sci. Technol., 2006, 41, (10), 2047 LINK [Google Scholar]
  39. Stojanovic A., and Keppler B. K. Separ. Sci Technol., 2012, 47, (2), 189 LINK [Google Scholar]
  40. Lemus J., Palomar J., Gilarranz M. A., and Rodriguez J. J. Adsorption, 2011, 17, (3), 561 LINK [Google Scholar]
  41. Nguyen V. T., Riaño S., and Binnemans K. Green Chem., 2020, Advance article LINK [Google Scholar]
  42. Regadío M., Vander Hoogerstraete T., Banerjee D., and Binnemans K. RSC Adv., 2018, 8, (60), 34754 LINK [Google Scholar]
  43. Larsson K., and Binnemans K. Hydrometallurgy, 2015, 156, 206 LINK [Google Scholar]
  44. Rzelewska-Piekut M., and Regel-Rosocka M. Separ. Purif. Technol., 2019, 212, 791 LINK [Google Scholar]
  45. Firmansyah M. L., Kubota F., and Goto M. J. Chem. Technol. Biotechnol., 2018, 93, (6), 1714 LINK [Google Scholar]
  46. Hubicki Z., Wawrzkiewicz M., and Wolowicz A. Chem. Anal. (Warsaw), 2008, 53, 759 LINK [Google Scholar]
  47. Nikoloski A. N., and Ang K. L. Miner. Process. Extr. Metall. Rev., 2014, 35, (6), 369 LINK [Google Scholar]
  48. Sharma S., Kumar A. S. K., and Rajesh N. RSC Adv., 2017, 7, (82), 52133 LINK [Google Scholar]
  49. Aghaei E., Alorro R. D., Encila A. N., and Yoo K. Metals, 2017, 7, (12), 529 LINK [Google Scholar]
  50. Zhang D., Xiao J., Guo Q., and Yang J. J. Mater. Sci., 2019, 54, (8), 6728 LINK [Google Scholar]
  51. Peng Z., Li Z., Lin X., Tang H., Ye L., Ma Y., Rao M., Zhang Y., Li G., and Jiang T. JOM, 2017, 69, (9), 1553 LINK [Google Scholar]
  52. ‘Electrorefining of Copper’,Federal University of Rio Grande do Sul, Porto Alegre, Brazil: (Accessed on 23rd June 2020) [Google Scholar]
  53. Kisza A., and Kaźmierczak J. Chem. Papers, 1991, 45, (2), 187 LINK [Google Scholar]
  54. Dominguez Benetton X., Alvarez Gallego Y., Porto-Carrero C., Gijbels K., and Rajamani S. Vito NV, ‘An Electrochemical Process for Preparing a Compound Comprising a Metal or Metalloid and a Peroxide, Ionic or Radical Species’,World Patent Appl. 2016/111,597 [Google Scholar]
  55. Halwachs W., Beier M., Patzelt P., and Zimmermann M. ‘Electrowinning of Platinum at Heraeus in Hanau’,International Precious Metals Economics and Refining Technology Seminar, Las Vegas, USA, January, 1993 [Google Scholar]
  56. Yakoumis I., Moschovi A., Panou M., and Panias D. J. Sustain. Metall., 2020, 6, (2), 259 LINK [Google Scholar]
  57. ‘Palladium Nitrate Solution’,Johnson Matthey, London, UK: (Accessed on 25th November 2020) [Google Scholar]
  58. ‘What is an Autocatalyst?’,International Platinum Group Metals Association eV, Munich, Germany: (Accessed on 22nd June 2020) [Google Scholar]
  59. Yakoumis I. Monolithos Catalysts and Recycling Ltd, ‘Copper and Noble Metal Polymetallic Catalysts for Engine Exhaust Gas Treatment’,European Patent Appl. 2019/3,569,309 [Google Scholar]
  60. ‘Horizon 2020 – Work Programme 2018-2020: General Annexes: G. Technology readiness levels (TRL)’,European Commission, Brussels, Belgium: (Accessed on 10th June 2020) [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error