Skip to content
Volume 66, Issue 2
  • ISSN: 2056-5135


This study intends to identify the characteristics of heat regulation in heat storage microencapsulated fabrics and to examine the effect of the microcapsules application method. For this purpose, phase-changing material (PCM) microcapsules were applied by impregnation and coating methods on cotton fabrics. The presence and distribution of microcapsules on the fabric surface were investigated by scanning electron microscopy (SEM). The temperature regulation of the fabrics was examined using a temperature measurement sensor and data recorder system (thermal camera). According to the differential scanning calorimetry (DSC) analysis, melting in fabrics coated with microcapsules occurred between 25.83°C–31.04°C and the amount of heat energy stored by the cotton fabric during the melting period was measured as 2.70 J g−1. Changes in fabric surface temperature due to the presence of microcapsules in the fabric structure were determined. When comparing the PCM capsules transfer methods, the contact angle of impregnated and coated fabric was obtained as 42° and 73°, respectively. Analysis of the microcapsules transferred to the fabric by impregnation and coating methods shows that the PCM transferred fabric prepared by the impregnation method performs more efficient temperature regulation. However, the analysis shows that PCM transferred fabrics prepared by coating also perform heat absorption, although not as much as the impregnation method. Performance evaluation according to the target properties of the textile will give the most accurate results for fabrics treated by coating and impregnation methods.


Article metrics loading...

Loading full text...

Full text loading...



  1. Horrocks A. R. J. Textile Inst., 1985, 76, (3), 196 LINK [Google Scholar]
  2. Mamta, Saini H. K., and Kaur M. Asian J. Home Sci., 2017, 12, (1), 289 LINK [Google Scholar]
  3. Akarslan F., and Altýnay Ö. Anka E-Dergi, 2017, 2, (2), 35 LINK [Google Scholar]
  4. Eyüpođlu S., and Kut D. Istanbul Comm. Uni. J. Sci., 2016, 15, (29), 9 [Google Scholar]
  5. Rodrigues S. N., Martins I. M., Fernandes I. P., Gomes P. B., Mata V. G., Barreiro M. F., and Rodrigues A. E. Chem. Eng. J., 2009, 149, (1–3), 463 LINK [Google Scholar]
  6. Urbas R., Milošević R., Kašiković N., Pavlović Ž., and Elesini U. S. Iran. Polym. J., 2017, 26, (7), 541 LINK [Google Scholar]
  7. Alay S., Göde F., and Alkan C. Fibers Polym., 2010, 11, (8), 1089 LINK [Google Scholar]
  8. Huang X., Alva G., Liu L., and Fang G. Appl. Energy, 2017, 200, 19 LINK [Google Scholar]
  9. Yataganbaba A., Ozkahraman B., and Kurtbas I. Appl. Energy, 2017, 185, (1), 720 LINK [Google Scholar]
  10. Gadhave P., Pathan F., Kore S., and Prabhune C. Int. J. Ambient Energy, 2021, Accepted author version LINK [Google Scholar]
  11. Carreira A. S., Teixeira R. F. A., Beirão A., Vieira R. V., Figueiredo M. M., and Gil M. H. Eur. Polym. J., 2017, 93, 33 LINK [Google Scholar]
  12. Mondal S. Appl. Therm. Eng., 2008, 28, (11–12), 1536 LINK [Google Scholar]
  13. Shaid A., Wang L., Islam S., Cai J. Y., and Padhye R. Appl. Therm. Eng., 2016, 107, 602 LINK [Google Scholar]
  14. Erkan G. Res. J. Text. Appar., 2004, 8, (2), 57 LINK [Google Scholar]
  15. Li L., Song L., Hua T., Au W. M., and Wong K. S. Textile Res. J., 2012, 83, (2), 113 LINK [Google Scholar]
  16. Mayya K., Bhattacharyya A., and Argillier J.-F. Polym. Int., 2003, 52, (4), 644 LINK [Google Scholar]
  17. Mengjin J., Xiaoqýng S., Jianjun X., and Guangdou Y. Sol. Energy Mater. Solar Cells, 2008, 92, (12), 1657 LINK [Google Scholar]
  18. Akgünođlu B., Özkayalar S., Kaplan S., and Aksoy S. A. J. Textile Eng., 2018, 25, (111), 225 LINK [Google Scholar]
  19. Alay S., Göde F., and Alkan C. J. Appl. Polym. Sci., 2011, 120, (5), 2821 LINK [Google Scholar]
  20. Boan Y. ‘Physical Mechanism and Characterization of Smart Thermal Clothing’, PhD Thesis, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, 2005, 267 pp [Google Scholar]
  21. Chen C., Wang L., and Huang Y. Mater. Lett., 2008, 62, (20), 3515 LINK [Google Scholar]
  22. Mattila H. R. “Intelligent Textiles and Clothing”, ed. Series in Textiles, Woodhead Publishing Ltd, Cambridge, UK, 2006, 506 pp [Google Scholar]
  23. Jiang M., Song X., Xu J., and Ye G. Solar Energy Mater. Solar Cells, 2008, 92, (12), 1657 LINK [Google Scholar]
  24. Wang S. X., Li Y., Hu J. Y., and Song Q. W. Polym. Test., 2006, 25, (5), 580 LINK [Google Scholar]
  25. Zhang K., Wang J., Xie H., Guo Z., Gao R., and Cai L. J. Therm. Anal. Calorim., 2021, Published LINK [Google Scholar]
  26. Nejman A., Gromadzińska E., Kamińska I., and Cieślak M. Molecules, 2020, 25, (1), 122 LINK [Google Scholar]
  27. Skurkyte-Papieviene V., Abraitiene A., Sankauskaite A., Rubeziene V., and Baltusnikaite-Guzaitiene J. Polymers, 2021, 13, (7), 1120 LINK [Google Scholar]
  28. Parvate S., Singh J., Dixit P., Vennapusa J. R., Maiti T. K., and Chattopadhyay S. ACS Appl. Polym. Mater., 2021, 3, (4), 1866 LINK [Google Scholar]
  29. Huang X., Zhu C., Lin Y., and Fang G. Appl. Therm. Eng., 2019, 147, 841 LINK [Google Scholar]
  30. Prajapati D. G., and Kandasubramanian B. Polym. Rev., 2020, 60, (3), 389 LINK [Google Scholar]
  31. Sun D., and Iqbal K. Cellulose, 2017, 24, (8), 3525 LINK [Google Scholar]
  32. Peng G., Dou G., Hu Y., Sun Y., and Chen Z. Adv. Polym. Technol., 2020, 9490873 LINK [Google Scholar]
  33. Karaipekli A., Erdoğan T., and Barlak S. Thermochim. Acta, 2019, 682, 178406 LINK [Google Scholar]
  34. Zhang G., Cai C., Wang Y., Liu G., Zhou L., Yao J., Militky J., Marek J., and Zhu G. Textile Res. J., 2018, 89, (16), 3387 LINK [Google Scholar]
  35. Kumar N., Gupta S. K., and Sharma V. K. Mater. Today: Proc., 2020, 44, (1), 368 LINK [Google Scholar]
  36. Cheng P., Chen X., Gao H., Zhang X., Tang Z., Li A., and Wang G. Nano Energy, 2021, 85, 105948 LINK [Google Scholar]
  37. Sarier N., and Onder E. Thermochim. Acta, 2007, 452, (2), 149 LINK [Google Scholar]
  38. Sarier N., Onder E., and Ukuser G. Thermochim. Acta, 2015, 613, 17 LINK [Google Scholar]
  39. Onder E., Sarier N., and Cimen E. Thermochim. Acta, 2008, 467, (1–2), 63 LINK [Google Scholar]
  40. and Sun G. “Functional Textiles for Improved Performance, Protection and Health”, eds. Pan N., Woodhead Publishing Ltd, Cambridge, UK, 2011, 528 pp LINK [Google Scholar]
  41. “Functional Finishes for Textiles: Improving Comfort, Performance and Protection”, ed. Paul R. Woodhead Publishing, Cambridge, UK, 2015, 656 pp LINK [Google Scholar]
  42. Wang X., Guo Y., Su J., Zhang X., Han N., and Wang X. Nanomaterials, 2018, 8, (6), 364 LINK [Google Scholar]
  43. ‘Textiles — Standard Atmospheres for Conditioning and Testing’, ISO 139:2005, Geneva, Switzerland [Google Scholar]
  44. ‘Testing Coated Fabrics – Method 37: Method for Determination of Water Vapour Permeability Index (WVPI)’, BS 3424-34:1992, BSI, London, UK [Google Scholar]
  45. Tözüm M., and Alay Aksoy S. Süleyman Demirel Uni. J. Natur. Appl. Sci., 2014, 18, (2), 37 LINK [Google Scholar]
  46. Snoeck D., Priem B., Dubruel P., and De Belie N. Mater. Struct., 2014, 49, (1–2), 225 LINK [Google Scholar]
  47. Çetiner S., and Belten M. R. Kahra. Sutcu Imam Uni. J. Eng. Sci., 2017, 20, (4), 116 LINK [Google Scholar]
  48. Dhaidan N. S., and Khodadadi J. M. Renew. Sustain. Energy Rev., 2015, 43, 449 LINK [Google Scholar]
  49. Dhaidan N. S. Appl. Therm. Eng., 2017, 111, 193 LINK [Google Scholar]
  50. Salaün F., Devaux E., Bourbigot S., and Rumeau P. Textile Res. J., 2009, 80, (3), 195 LINK [Google Scholar]
  51. “Improving Comfort in Clothing”, ed. Song G. Woodhead Publishing Limited, Cambridge, UK, 2011, 459 pp LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error