Skip to content
1887
Volume 66, Issue 3
  • ISSN: 2056-5135

Abstract

Most of the global production of ammonia requires fossil fuels and is associated with considerable greenhouse gas emissions. Replacing fossil fuel ammonia with green or zero-carbon ammonia is a major focus for academia, industry and governments. Ammonia is a key component in fertiliser but is also attracting increasing interest as a carbon-free fuel for the maritime sector and as a hydrogen vector. This review describes the use of green (electrolysed) hydrogen in conventional Haber-Bosch plants and predicts adoption of the technology by 2030. Further into the future, direct green ammonia synthesis by electrocatalytic and photocatalytic means may present a cost-effective alternative to the Haber-Bosch process. Electrocatalytic and photocatalytic routes to ammonia are reviewed, the catalytic systems are compared and their potential for meeting the likely demand and cost for ammonia considered.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16334238659301
2021-10-05
2024-02-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/3/Smart_16a_Imp.html?itemId=/content/journals/10.1595/205651322X16334238659301&mimeType=html&fmt=ahah

References

  1. Jennings J. R., Ward S. A., ‘Ammonia Synthesis: Thermodynamics of Ammonia Synthesis: Process Consequences’, in “Catalyst Handbook”, 2nd Edn., ed. and Twigg M. V. CRC Press, Boca Raton, USA, 1996, p. 390 [Google Scholar]
  2. ‘The Future of Food and Agriculture: Trends and Challenges’, Issue 1, Food and Agriculture Organization of the United Nations, Rome, Italy, 2017, 163 pp LINK https://www.fao.org/3/i6583e/i6583e.pdf [Google Scholar]
  3. Erisman J. W., Sutton M. A., Galloway J., Klimont Z., and Winiwarter W. Nat. Geosci., 2008, 1, (10), 636 LINK https://doi.org/10.1038/ngeo325 [Google Scholar]
  4. Aziz M., Wijayanta A. T., and Nandiyanto A. B. D. Energies, 2020, 13, (12), 3062 LINK https://doi.org/10.3390/en13123062 [Google Scholar]
  5. Brown T. ‘US House Draft Bill Defines Ammonia as Low-Carbon Fuel’, Ammonia Energy Association, New York, USA, 13th February, 2020 LINK https://www.ammoniaenergy.org/articles/us-house-draft-law-includes-ammonia-as-low-carbon-fuel [Google Scholar]
  6. “Ammonia: Zero-Carbon Fertiliser, Fuel and Energy Store: Policy Briefing”, The Royal Society, London, UK, 19th February, 2020, 39 pp LINK https://royalsociety.org/topics-policy/projects/low-carbon-energy-programme/green-ammonia/ [Google Scholar]
  7. Ayvalý T., Tsang S. C. E., and Van Vrijaldenhoven T. Johnson Matthey Technol. Rev., 2021, 65, (2), 291 LINK https://www.technology.matthey.com/article/65/2/291-300/ [Google Scholar]
  8. Lee B., Park J., Lee H., Byun M., Yoon C. W., and Lim H. Renew. Sustain. Energy Rev., 2019, 113, 109262 LINK https://doi.org/10.1016/j.rser.2019.109262 [Google Scholar]
  9. Gilbert P., and Thornley P. ‘Energy and Carbon Balance of Ammonia Production from Biomass Gasification’, University of Manchester, UK, 2010, 9 pp, in host publication LINK https://www.research.manchester.ac.uk/portal/files/33615474/FULL_TEXT.PDF [Google Scholar]
  10. Thomas W. ‘Fertiliser Industry Takes Leap of Faith on Green Ammonia’, CRU International Limited, London, UK, 25th June, 2021 LINK https://www.crugroup.com/knowledge-and-insights/insights/2021/fertilizer-industry-takes-leap-of-faith-on-green-ammonia/ [Google Scholar]
  11. Hochman G., Goldman A. S., Felder F. A., Mayer J. M., Miller A. J. M., Holland P. L., Goldman L. A., Manocha P., Song Z., and Aleti S. ACS Sustain. Chem. Eng., 2020, 8, (24), 8938 LINK https://doi.org/10.1021/acssuschemeng.0c01206 [Google Scholar]
  12. MacFarlane D. R., Cherepanov P. V., Choi J., Suryanto B. H. R., Hodgetts R. Y., Bakker J. M., Ferrero Vallana F. M., and Simonov A. N. Joule, 2020, 4, (6), 1186 LINK https://doi.org/10.1016/j.joule.2020.04.004 [Google Scholar]
  13. Schwiderek C. ‘Green Ammonia Technology’, NH3 Event, 4th European Power to Ammonia Conference, Rotterdam, The Netherlands, 3rd–4th June, 2021 [Google Scholar]
  14. ‘‘Green’ Ammonia is the Key to Meeting the Twin Challenges of the 21st Century’, Siemens-Energy AG, Munich, Germany: https://www.siemens-energy.com/uk/en/offerings-uk/green-ammonia.html (Accessed on 1st February 2021) [Google Scholar]
  15. Buttler A., and Spliethoff H. Renew. Sustain. Energy Rev., 2018, 82, (3), 2440 LINK https://doi.org/10.1016/j.rser.2017.09.003 [Google Scholar]
  16. Nayak-Luke R. M., and Bañares-Alcántara R. Energy Environ. Sci., 2020, 13, (9), 2957 LINK https://doi.org/10.1039/D0EE01707H [Google Scholar]
  17. Smith C., Hill A. K., and Torrente-Murciano L. Energy Environ. Sci., 2020, 13, (2), 331 LINK https://doi.org/10.1039/C9EE02873K [Google Scholar]
  18. Hattori M., Iijima S., Nakao T., Hosono H., and Hara M. Nat. Commun., 2020, 11, 2001 LINK https://doi.org/10.1038/s41467-020-15868-8 [Google Scholar]
  19. Lin B., Heng L., Fang B., Yin H., Ni J., Wang X., Lin J., and Jiang L. ACS Catal., 2019, 9, (3), 1635 LINK https://doi.org/10.1021/acscatal.8b03554 [Google Scholar]
  20. Zheng J., Liao F., Wu S., Jones G., Chen T.-Y., Fellowes J., Sudmeier T., McPherson I. J., Wilkinson I., and Tsang S. C. E. Angew. Chem. Int. Ed., 2019, 58, (48), 17335 LINK https://doi.org/10.1002/anie.201907171 [Google Scholar]
  21. Chan J. R., Lambie S. G., Trodahl H. J., Lefebvre D., Le Ster M., Shaib A., Ullstad F., Brown S. A., Ruck B. J., Garden A. L., and Natali F. Phys. Rev. Mater., 2020, 4, (11), 115003 LINK https://doi.org/10.1103/PhysRevMaterials.4.115003 [Google Scholar]
  22. Daisley A., and Hargreaves J. S. J. J. Energy Chem., 2019, 39, (12), 170 LINK https://doi.org/10.1016/j.jechem.2019.01.026 [Google Scholar]
  23. Smith C., McCormick A. V., and Cussler E. L. ACS Sustain. Chem. Eng., 2019, 7, (4), 4019 LINK https://doi.org/10.1021/acssuschemeng.8b05395 [Google Scholar]
  24. Saha D., and Deng S. J. Chem. Eng. Data, 2010, 55, (12), 5587 LINK https://doi.org/10.1021/je100405k [Google Scholar]
  25. Luo X., Qiu R., Chen X., Pei B., Lin J., and Wang C. ACS Sustain. Chem. Eng. 2019, 7, (11), 9888 LINK https://doi.org/10.1021/acssuschemeng.9b00554 [Google Scholar]
  26. Nguyen T. N., Harreschou I. M., Lee J.-H., Stylianou K. C., and Stephan D. W. Chem Commun., 2020, 56, (67), 9600 LINK https://doi.org/10.1039/D0CC00741B [Google Scholar]
  27. Furtado A. M. B., Wang Y., Glover T. G., and LeVan M. D. Micro. Meso. Mater., 2011, 142, (2–3), 730 LINK https://doi.org/10.1016/j.micromeso.2011.01.027 [Google Scholar]
  28. Smith C., and Torrente-Murciano L. Adv. Energy Mater., 2021, 11, (13), 2003845 LINK https://doi.org/10.1002/aenm.202003845 [Google Scholar]
  29. Gomez J. R., Baca J., and Garzon F. Int. J. Hydro. Energy, 2020, 45, (1), 721 LINK https://doi.org/10.1016/j.ijhydene.2019.10.174 [Google Scholar]
  30. Xu H., Ithisuphalap K., Li Y., Mukherjee S., Lattimer J., Soloveichik G., and Wu G. Nano Energy, 2020, 69, 104469 LINK https://doi.org/10.1016/j.nanoen.2020.104469 [Google Scholar]
  31. Chen X., Li N., Kong Z., Ong W.-J., and Zhao X. Mater. Horiz., 2018, 5, (1), 9 LINK https://doi.org/10.1039/C7MH00557A [Google Scholar]
  32. Atkins P. W., and De Paula J. “Physical Chemistry”, 8th Edn., Oxford University Press, Oxford, UK, 2006, p. 221 [Google Scholar]
  33. Wang M., Liu S., Qian T., Liu J., Zhou J., Ji H., Xiong J., Zhong J., and Yan C. Nat. Commun., 2019, 10, 341 LINK https://doi.org/10.1038/s41467-018-08120-x [Google Scholar]
  34. Juangsa F. B., Irhamna A. R., and Aziz M. Int. J. Hydro. Energy, 2021, 46, (27), 14455 LINK https://doi.org/10.1016/j.ijhydene.2021.01.214 [Google Scholar]
  35. Giddey S., Badwal S. P. S., and Kulkarni A. Int. J. Hydro. Energy, 2013, 38, (34), 14576 LINK https://doi.org/10.1016/j.ijhydene.2013.09.054 [Google Scholar]
  36. Chen G.-F., Ren S., Zhang L., Cheng H., Luo Y., Zhu K., Ding L.-X., and Wang H. Small Meth., 2019, 3, (6), 1800337 LINK https://doi.org/10.1002/smtd.201800337 [Google Scholar]
  37. Li S.-J., Bao D., Shi M.-M., Wulan B.-R., Yan J.-M., and Jiang Q. Adv. Mater., 2017, 29, (33), 1700001 LINK https://doi.org/10.1002/adma.201700001 [Google Scholar]
  38. Wang X., Wang W., Qiao M., Wu G., Chen W., Yuan T., Xu Q., Chen M., Zhang Y., Wang X., Wang J., Ge J., Hong X., and Li Y. Sci. Bull., 2018, 63, (19), 1246 LINK https://doi.org/10.1016/j.scib.2018.07.005 [Google Scholar]
  39. Tao H., Choi C., Ding L.-X., Jiang Z., Han Z., Jia M., Fan Q., Gao Y., Wang H., Robertson A. W., Hong S., Jung Y., Liu S., and Sun Z. Chem, 2019, 5, (1), 204 LINK https://doi.org/10.1016/j.chempr.2018.10.007 [Google Scholar]
  40. Xu X., Tian X., Sun B., Liang Z., Cui H., Tian J., and Shao M. Appl. Catal. B: Environ., 2020, 272, 118984 LINK https://doi.org/10.1016/j.apcatb.2020.118984 [Google Scholar]
  41. Ren X., Zhao J., Wei Q., Ma Y., Guo H., Liu Q., Wang Y., Cui G., Asiri A. M., Li B., Tang B., and Sun X. ACS Cent. Sci., 2019, 5, (1), 116 LINK https://doi.org/10.1021/acscentsci.8b00734 [Google Scholar]
  42. Yang X., Sun S., Meng L., Li K., Mukherjee S., Chen X., Lv J., Liang S., Zang H.-Y., Yan L.-K., and Wu G. Appl. Catal. B: Environ., 2021, 285, 119794 LINK https://doi.org/10.1016/j.apcatb.2020.119794 [Google Scholar]
  43. Wang Z., Zheng K., Liu S., Dai Z., Xu Y., Li X., Wang H., and Wang L. ACS Sustain. Chem. Eng., 2019, 7, (13), 11754 LINK https://doi.org/10.1021/acssuschemeng.9b01991 [Google Scholar]
  44. Andersen S. Z., Statt M. J., Bukas V. J., Shapel S. G., Pedersen J. B., Krempl K., Saccoccio M., Chakraborty D., Kibsgaard J., Vesborg P. C. K., Nørskov J., and Chorkendorff I. Energy Environ. Sci., 2020, 13, (11), 4291 LINK https://doi.org/10.1039/D0EE02246B [Google Scholar]
  45. McPherson I. J., Sudmeier T., Fellowes J. P., Wilkinson I., Hughes T., and Tsang S. C. E. Angew. Chem. Int. Ed., 2019, 58, (48), 17433 LINK https://doi.org/10.1002/anie.201909831 [Google Scholar]
  46. Wang J., Chen S., Li Z., Li G., and Liu X, ChemElectroChem, 2020, 7, (5), 1067 LINK https://doi.org/10.1002/celc.201901967 [Google Scholar]
  47. Ling C. Y., Zhang Y., Li Q., Bai X., Shi L., and Wang J. J. Am. Chem. Soc., 2019, 141, (45), 18264 LINK https://doi.org/10.1021/jacs.9b09232 [Google Scholar]
  48. Hoffman B. M., Lukoyanov D., Yang Z.-Y., Dean D. R., and Seefeldt L. C Chem. Rev., 2014, 114, (8), 4041 LINK https://doi.org/10.1021/cr400641x [Google Scholar]
  49. Kyriakou V., Garagounis I., Vasileiou E., Vourros A., and Stoukides Catal. Today, 2017, 286, 2 LINK https://doi.org/10.1016/j.cattod.2016.06.014 [Google Scholar]
  50. Murakami T., Nishikiori T., Nohira T., and Ito Y. J. Am. Chem. Soc., 2003, 125, (2), 334 LINK https://doi.org/10.1021/ja028891t [Google Scholar]
  51. Tsang S. C. E., and Zheng J. Oxford University Innovation Ltd, ‘Photocatalyst’, World Patent Appl. 2020/193,951 [Google Scholar]
  52. Sanjay P. ‘With 2,245 MW of Commissioned Solar Projects, World’s Largest Solar Park is Now at Bhadla’, Mercom, India, 19th March, 2020 LINK https://mercomindia.com/world-largest-solar-park-bhadla/ [Google Scholar]
  53. Sieling K., Günther-Borstel O., and Hanus H. J. Agri. Sci., 1997, 128, (1), 79 LINK https://doi.org/10.1017/S0021859696004005 [Google Scholar]
  54. Ali M. B., Brooks N. L., and McElroy R. G. ‘Characteristics of US Wheat Farming: A Snapshot’, Statistical Bulletin No. SB 968, United States Department of Agriculture, Washington, DC, USA, June, 2000, 61 pp [Google Scholar]
  55. Brentrup F., Hoxha A., and Christensen B. ‘Carbon Footprint Analysis of Mineral Fertiliser Production in Europe and Other World Regions’, 10th International Conference on Life Cycle Assessment of Food, University College Dublin, Ireland, Dublin, 19th–21st October, 2016, 9 pp [Google Scholar]
  56. Han Q., Jiao H., Xiong L., and Tang J. Mater. Adv., 2021, 2, (2), 564 LINK https://doi.org/10.1039/D0MA00590H [Google Scholar]
  57. Xue X., Chen R., Yan C., Zhao P., Hu Y., Zhang W., Yang S., and Jin Z. Nano Res., 2019, 12, (6), 1229 LINK https://doi.org/10.1007/s12274-018-2268-5 [Google Scholar]
  58. Kisch H., and Bahnemann D. J. Phys. Chem. Lett., 2015, 6, (10), 1907 LINK https://doi.org/10.1021/acs.jpclett.5b00521 [Google Scholar]
  59. Li H., Shang J., Ai Z., and Zhang L. J. Am. Chem. Soc., 2015, 137, (19), 6393 LINK https://doi.org/10.1021/jacs.5b03105 [Google Scholar]
  60. Li Z., Gao Z., Li B., Zhang L., Fu R., Li Y., Mu X., and Li L. Appl. Catal. B: Environ., 2020, 262, 118276 LINK https://doi.org/10.1016/j.apcatb.2019.118276 [Google Scholar]
  61. Sun B., Liang Z., Qian Y., Xu X., Han Y., and Tian J. ACS Appl. Mater. Interfaces, 2020, 12, (6), 7257 LINK https://doi.org/10.1021/acsami.9b20767 [Google Scholar]
  62. Zhang S., Zhao Y., Shi R., Waterhouse G. I. N., and Zhang T. EnergyChem, 2019, 1, (2), 100013 LINK https://doi.org/10.1016/j.enchem.2019.100013 [Google Scholar]
  63. Li H., Shang J., Ai Z., and Zhang L. J. Am. Chem. Soc., 2015, 137, (19), 6393 LINK https://doi.org/10.1021/jacs.5b03105 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651322X16334238659301
Loading
/content/journals/10.1595/205651322X16334238659301
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error