Skip to content
1887
Volume 66, Issue 4
  • ISSN: 2056-5135

Abstract

Ammonia is a strong candidate as a hydrogen vector and has the flexibility to be used directly as a fuel or decomposed to form pure hydrogen. The format of an ammonia decomposition plant is only starting to emerge, with two types becoming significant: centralised locations feeding into the national gas network and decentralised units to supply fuelling stations, the chemical industry or remote applications. In this paper, we review the aspects critical to decompose ammonia in both cases. While the centralised cracking flowsheet can use equipment standard to current hydrogen production methods, the localised cracking unit requires a more innovative design. Energy and safety considerations may favour low temperature operation for decentralised applications, requiring high activity catalysts, while centralised industrial sites may operate at higher temperatures and use a base metal catalyst. Purification to deliver hydrogen suitable for fuel cells is one of the biggest challenges in developing the flowsheet.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16554704236047
2022-06-17
2024-05-28
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/4/Ashcroft_16a_Imp.html?itemId=/content/journals/10.1595/205651322X16554704236047&mimeType=html&fmt=ahah

References

  1. ‘Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A Hydrogen Strategy for a Climate-Neutral Europe’, COM(2020) 301 final, The European Commission, Brussels, Belgium, 8th July, 2020 LINK https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0301 [Google Scholar]
  2. “Hydrogen Energy and Fuel Cells: A Vision of our Future”, Special Report No. EUR 20719 EN, European Commission, Brussels, Belgium, 14th October, 2003, 35 pp LINK https://op.europa.eu/en/publication-detail/-/publication/f2aaa5f2-5b39-4519-bbea-a014ab6f1811 [Google Scholar]
  3. “Hydrogen Strategy: Enabling a Low-Carbon Economy”, Office of Fossil Energy, US Department of Energy, Washington DC, USA, July, 2020, 24 pp LINK https://www.energy.gov/sites/prod/files/2020/07/f76/USDOE_FE_Hydrogen_Strategy_July2020.pdf [Google Scholar]
  4. Crow J. M. ‘Hydrogen Storage Gets Real’, Chemistry World, 12th August, 2019 LINK https://www.chemistryworld.com/features/hydrogen-storage-gets-real/3010794.article [Google Scholar]
  5. Sdanghi G., Maranzana G., Celzard A., and Fierro V. Energies, 2020, 13, (12), 3145 LINK https://doi.org/10.3390/en13123145 [Google Scholar]
  6. Hurskainen M., and Ihonen J. Int. J. Hydrogen Energy, 2020, 45, (56), 32098 LINK https://doi.org/10.1016/j.ijhydene.2020.08.186 [Google Scholar]
  7. Hobson C., and Márquez C. “Renewable Methanol Report”, Methanol Institute, Alexandria, USA, December, 2018, 26 pp LINK https://www.methanol.org/wp-content/uploads/2019/01/MethanolReport.pdf [Google Scholar]
  8. Aziz M., Wijayanta A. T., and Nandiyanto A. B. D. Energies, 2020, 13, (12), 3062 LINK https://doi.org/10.3390/en13123062 [Google Scholar]
  9. El Kadi J., Smith C., and Torrente-Murciano L. ‘H2 and NH3 – the Perfect Marriage in a Carbon-free Society’, The Chemical Engineer, Issue 948, June, 2020 LINK https://www.thechemicalengineer.com/features/h2-and-nh3-the-perfect-marriage-in-a-carbon-free-society/ [Google Scholar]
  10. ‘Ammonia: Zero Carbon Fertiliser, Fuel and Energy Store: Policy Briefing’, The Royal Society, London, UK, February, 2020, 40 pp LINK https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf [Google Scholar]
  11. Andersson J., and Grönkvist S. Int. J. Hydrogen Energy, 2019, 44, (23), 11901 LINK https://doi.org/10.1016/j.ijhydene.2019.03.063 [Google Scholar]
  12. Kobayashi H., Hayakawa A., Somarathne K. D. K. A., and Okafor E. C. Proc. Combust. Inst., 2019, 37, (1), 109 LINK https://doi.org/10.1016/j.proci.2018.09.029 [Google Scholar]
  13. Thomas G., and Parks G. “Potential Roles of Ammonia in a Hydrogen Economy: A Study of Issues Related to the Use Ammonia for On-Board Vehicular Hydrogen Storage”, US Department of Energy, Washington DC, USA, February, 2006, 23 pp LINK https://www.energy.gov/sites/prod/files/2015/01/f19/fcto_nh3_h2_storage_white_paper_2006.pdf [Google Scholar]
  14. Mei B., Zhang J., Shi X., Xi Z., and Li Y. Combust. Flame, 2021, 231, 111472 LINK https://doi.org/10.1016/j.combustflame.2021.111472 [Google Scholar]
  15. Haskell C. ‘Decarbonising Shipping: Could Ammonia be the Fuel of the Future?’, Lloyd’s Register Group Services Ltd, London, UK, 6th May, 2021 LINK https://www.lr.org/en/insights/articles/decarbonising-shipping-ammonia/ [Google Scholar]
  16. Ayvalı T., Tsang S. C. E., and Van Vrijaldenhoven T. Johnson Matthey Technol. Rev., 2021, 65, (2), 275 LINK https://technology.matthey.com/article/65/2/275-290/ [Google Scholar]
  17. “Gas Goes Green: Britain’s Hydrogen Network Plan: Report”, Energy Networks Association, London, UK, December, 2020, 122 pp LINK https://www.sgn.co.uk/sites/default/files/media-entities/documents/2021-02/GGG_Britains_Hydrogen_Network_Plan.pdf [Google Scholar]
  18. Ball M., and Wietschel M. Int. J. Hydrogen Energy, 2009, 34, (2), 615 LINK https://doi.org/10.1016/j.ijhydene.2008.11.014 [Google Scholar]
  19. McLellan B., Florin N., Giurco D., Kishita Y., Itaoka K., and Tezuka T. Proc. CIRP, 2015, 29, 138 LINK https://doi.org/10.1016/j.procir.2015.02.052 [Google Scholar]
  20. Ishimoto Y., Voldsund M., Nekså P., Roussanaly S., Berstad D., and Gardarsdottir S. O. Int. J. Hydrogen Energy, 2020, 45, (58), 32865 LINK https://doi.org/10.1016/j.ijhydene.2020.09.017 [Google Scholar]
  21. Makhloufi C., and Kezibri N. Int. J. Hydrogen Energy, 2021, 46, (70), 34777 LINK https://doi.org/10.1016/j.ijhydene.2021.07.188 [Google Scholar]
  22. Jackson C., Fothergill K., Gray P., Haroon F., Makhloufi C., Kezibri N., Davey A., LHote O., Zare M., Davenne T., Greenwood S., Huddart A., Makepeace J., Wood T., David B., and Wilkinson I. “Ammonia to Green Hydrogen Project: Feasibility Study”, Ecuity Consulting LLP, Solihull, UK, April, 2020 LINK https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf [Google Scholar]
  23. Nasharuddin R., Zhu M., Zhang Z., and Zhang D. Int. J. Hydrogen Energy, 2019, 44, (28), 14445 LINK https://doi.org/10.1016/j.ijhydene.2019.03.274 [Google Scholar]
  24. ‘HT.1: Ammonia Cracker: Code M7’, James Hogg Ammonia Systems, Washington, UK, 3 pp: http://james-hogg.com/ht1_cracker_datasheet.pdf (Accessed on 31st October 2021) [Google Scholar]
  25. Tamaru K., Tanaka K., Fukasaku S., and Ishida S. Trans. Faraday Soc., 1965, 61, 765 LINK https://doi.org/10.1039/tf9656100765 [Google Scholar]
  26. Shipley D. K., and Lloyd L. ICI Ltd, ‘Decomposition of Ammonia’, GB Patent, 1,000,772; 1965 [Google Scholar]
  27. ‘Ammonia Dissociators’, Thermal Dynamix, Westfield, USA:https://www.thermaldynamix.com/ammonia-dissociators (Accessed on 31st December 2021) [Google Scholar]
  28. Hall Salisbury E. ICI Ltd, ‘Improvements in the Production of Nitrogen’, GB Patent, 390,870; 1933 [Google Scholar]
  29. ‘Product Specification Sheet: Anhydrous Ammonia: Commercial Grade’, CF Industries Holdings Inc, Deerfield, USA, 14th January, 2013, 1 p LINK https://www.cfindustries.com/globalassets/cf-industries/media/documents/product-specification-sheets/ammonia---na/anhydrous-ammonia-c-grade-pss.pdf [Google Scholar]
  30. ‘Pressure Swing Adsorption (PSA) – Hydrogen Purification: Recovering and Purifying Hydrogen with PSA’, Air Liquide, Paris, France:https://www.engineering-airliquide.com/pressure-swing-adsorption-psa-hydrogen-purification (Accessed on 31st December 2021) [Google Scholar]
  31. “Hydrogen Purity – Final Report”, Project Hy4Heat (WP2) Hydrogen Purity & Colourant, Report No. 10123173-FINAL PURITY, Rev. 05, GL Industrial Services UK Ltd, Loughborough, UK, 31st October, 2019, 157 pp LINK https://www.hy4heat.info/s/WP2-Report-final.pdf [Google Scholar]
  32. Sircar S., and Golden T. C. Sep. Sci. Technol., 2000, 35, (5), 667 LINK https://doi.org/10.1081/ss-100100183 [Google Scholar]
  33. Du Z., Liu C., Zhai J., Guo X., Xiong Y., Su W., and He G. Catalysts, 2021, 11, (3), 393 LINK https://doi.org/10.3390/catal11030393 [Google Scholar]
  34. Mashruk S., Kovaleva M., Chong C. T., Hayakawa A., Okafor E. C., and Valera-Medina A. Chem. Eng. Trans., 2021, 89, 613 LINK https://doi.org/10.3303/CET2189103 [Google Scholar]
  35. Gregg R., Beach J., and Bernheim R. ‘Starfire Energy’s Rapid Ramp Modular Ammonia Plant Development Status and Trajectory’, Ammonia Energy Conference,Boston, USA,9th–11th November, 2021,Ammonia Energy Association, New York, USA, 2021 LINK https://www.ammoniaenergy.org/paper/starfire-energys-rapid-ramp-modular-ammonia-plant-development-status-and-trajectory/ [Google Scholar]
  36. ‘Hydrogen Fuel Quality – Product Specification’, ISO 14687:2019, International Organization for Standardization, Geneva, Switzerland, 2019 LINK https://www.iso.org/standard/69539.html [Google Scholar]
  37. Eberle U., Müller B., and von Helmolt R. Energy Environ. Sci., 2012, 5, (10), 8780 LINK https://doi.org/10.1039/c2ee22596d [Google Scholar]
  38. Barthelemy H., Weber M., and Barbier F. Int. J. Hydrogen Energy, 2017, 42, (11), 7254 LINK https://doi.org/10.1016/j.ijhydene.2016.03.178 [Google Scholar]
  39. Rhandi M., Trégaro M., Druart F., Deseure J., and Chatenet M. Chinese J. Catal., 2020, 41, (5), 756 LINK https://doi.org/10.1016/s1872-2067(19)63404-2 [Google Scholar]
  40. Adhikari S., and Fernando S. Ind. Eng. Chem. Res., 2006, 45, (3), 875 LINK https://doi.org/10.1021/ie050644l [Google Scholar]
  41. Dolan M. D., Viano D. M., Langley M. J., and Lamb K. E. J. Memb. Sci., 2018, 549, 306 LINK https://doi.org/10.1016/j.memsci.2017.12.031 [Google Scholar]
  42. Strugova D. V., Zadorozhnyy M. Y., Berdonosova E. A., Yablokova M. Y., Konik P. A., Zheleznyi M. V., Semenov D. V., Milovzorov G. S., Padaki M., Kaloshkin S. D., Zadorozhnyy V. Y., and Klyamkin S. N. Int. J. Hydrogen Energy, 2018, 43, (27), 12146 LINK https://doi.org/10.1016/j.ijhydene.2018.04.183 [Google Scholar]
  43. Grainger D., and Hägg M.-B. J. Memb. Sci., 2007, 306, (1–2), 307 LINK https://doi.org/10.1016/j.memsci.2007.09.005 [Google Scholar]
  44. Saufi S. M., and Ismail A. F. Carbon, 2004, 42, (2), 241 LINK https://doi.org/10.1016/j.carbon.2003.10.022 [Google Scholar]
  45. Tao Z., Yan L., Qiao J., Wang B., Zhang L., and Zhang J. Prog. Mater. Sci., 2015, 74, 1 LINK https://doi.org/10.1016/j.pmatsci.2015.04.002 [Google Scholar]
  46. Miyaoka H., Miyaoka H., Ichikawa T., Ichikawa T., and Kojima Y. Int. J. Hydrogen Energy, 2018, 43, (31), 14486 LINK https://doi.org/10.1016/j.ijhydene.2018.06.065 [Google Scholar]
  47. Venugopalan G., Bhattacharya D., Andrews E., Briceno-Mena L., Romagnoli J., Flake J., and Arges C. G. ACS Energy Lett., 2022, 7, (4), 1322 LINK https://doi.org/10.1021/acsenergylett.1c02853 [Google Scholar]
  48. ‘Dutch HyET Hydrogen B.V. Sets Another Hydrogen Compression World Record’, HyET Hydrogen, Arnhem, The Netherlands, 21st May, 2019 LINK https://hyethydrogen.com/ar/news/dutch-hyet-hydrogen-bv-sets-another-hydrogen-compression-world-record/ [Google Scholar]
  49. Lucentini I., Garcia X., Vendrell X., and Llorca J. Ind. Eng. Chem. Res., 2021, 60, (51), 18560 LINK https://doi.org/10.1021/acs.iecr.1c00843 [Google Scholar]
  50. Murkin C., and Brightling J. Johnson Matthey Technol. Rev., 2016, 60, (4), 263 LINK https://technology.matthey.com/article/60/4/263-269/ [Google Scholar]
  51. Lamb K. E., Dolan M. D., and Kennedy D. F. Int. J. Hydrogen Energy, 2019, 44, (7), 3580 LINK https://doi.org/10.1016/j.ijhydene.2018.12.024 [Google Scholar]
  52. ‘PGM Management’, Johnson Matthey Plc, London, UK:https://matthey.com/en/pmm (Accessed on 28th July 2022) [Google Scholar]
  53. Prakash R., and Bhaskaran M. ‘Rectification of Catalyst Separation Column at HWP’, SCOPEX-92: National Symposium on Commissioning and Operating Experiences in Heavy Water Plants and Associated Chemical Industries, Bombay, India, 27th–28th February, 1992, Paper No. 5.7.1, National Technical Information Services, Springfield, USA, 1992 LINK https://inis.iaea.org/search/search.aspx?orig_q=RN:24053998 [Google Scholar]
  54. Bell T. E., and Torrente-Murciano L. Top. Catal., 2016, 59, (15–16), 1438 LINK https://doi.org/10.1007/s11244-016-0653-4 [Google Scholar]
  55. Nielsen P. E. H., ‘Deactivation of Synthesis Catalyst’, in “Catalytic Ammonia Synthesis: Fundamentals and Practice”, ed. and Jennings J. Springer Science and Business Media, New York, USA, 1991, pp. 285301 LINK https://doi.org/10.1007/978-1-4757-9592-9_8 [Google Scholar]
  56. Lamouri S., Hamidouche M., Bouaouadja N., Belhouchet H., Garnier V., Fantozzi G., and Trelkat J. F. Bol. Soc. Esp. Cerám. Vidr., 2017, 56, (2), 47 LINK https://doi.org/10.1016/j.bsecv.2016.10.001 [Google Scholar]
  57. Muroyama H., Saburi C., Matsui T., and Eguchi K. Appl. Catal. A: Gen., 2012, 443444, 119 LINK https://doi.org/10.1016/j.apcata.2012.07.031 [Google Scholar]
  58. Nakamura I., and Fujitani T. Appl. Catal. A: Gen., 2016, 524, 45 LINK https://doi.org/10.1016/j.apcata.2016.05.020 [Google Scholar]
  59. Lamb K., Hla S. S., and Dolan M. Int. J. Hydrogen Energy, 2019, 44, (7), 3726 LINK https://doi.org/10.1016/j.ijhydene.2018.12.123 [Google Scholar]
  60. Tsutomu T., Minoru A., and Takao I. NKK Corporation, ‘Method of Decomposing Ammonia Using a Ruthenium Catalyst’, US Patent 5,055,282; 1991 [Google Scholar]
  61. Makepeace J. W., Wood T. J., Hunter H. M. A., Jones M. O., and David W. I. F. Chem. Sci., 2015, 6, (7), 3805 LINK https://doi.org/10.1039/c5sc00205b [Google Scholar]
  62. Wood T. J., and Makepeace J. W. ACS Appl. Energy Mater., 2018, 1, (6), 2657 LINK https://doi.org/10.1021/acsaem.8b00351 [Google Scholar]
  63. Cowley A. “PGM Market Report”, Johnson Matthey Plc, May 2021, 60 pp LINK https://matthey.com/en/news/2021/pgm-market-report-may-2021-out-now [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651322X16554704236047
Loading
/content/journals/10.1595/205651322X16554704236047
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error