Skip to content
Volume 67, Issue 3
  • ISSN: 2056-5135


Dependence of mechanical properties of binary platinum-rhodium alloys on valence electron ratio (VER), number of valence electrons (e) and average atomic number of the alloys (Z) are investigated. The alloys have a high number of valence electrons (9 ≤ e ≤ 10) and a wide range of average atomic numbers (Z = 45–78). Clear correlations between VER of the alloys and their mechanical properties are found. By increasing the VER of the alloy from 0.13 to 0.20 following the increase of rhodium content in the composition, the hardness, elastic modulus and ultimate tensile strength (UTS) of the alloy increases. Creep rates of the selected alloys clearly decrease with increasing VER at high temperatures (1500–1700°C), while stress rupture time at different temperatures consistently increases because of higher rhodium content in the alloy solid solution chemistry. Dependence of mechanical properties on valence electron parameters is discussed with reference to the atomic bonding.


Article metrics loading...

Loading full text...

Full text loading...



  1. Biggs B. T., Taylor S. S., and van der Lingen E. Platinum Metals Rev., 2005, 49, (1), 2 LINK [Google Scholar]
  2. Wright J. C. Platinum Metals Rev., 2002, 46, (2), 66 LINK [Google Scholar]
  3. Wu B., and Liu G. Platinum Metals Rev., 1997, 41, (2), 81 LINK [Google Scholar]
  4. Price R. Platinum Metals Rev., 1959, 3, (3), 78 LINK [Google Scholar]
  5. Sarkar S. Cogent Eng., 2018, 5, (1), 1558687 LINK [Google Scholar]
  6. Saternus M., Fornalczyk A., and Cebulski J. Arch. Metall. Mater., 2014, 59, (2), 557 LINK [Google Scholar]
  7. Preston E. Platinum Metals Rev., 1960, 4, (2), 48 LINK [Google Scholar]
  8. Lupton D. F., Merker J., Fischer B., and Völkl R. ‘Platinum Materials for the Glass Industry’, 24th International Precious Metals Conference, Williamsburg, USA, 11th–14th June, 2000, International Precious Metals Institute, Pensacola, USA, 18th July, 2000 [Google Scholar]
  9. Xiao F., Zhao F., Mei D., Mo Z., and Zeng B. Biosens. Bioelectron., 2009, 24, (12), 3481 LINK [Google Scholar]
  10. Trumić B., Gomidželović L., Marjanović S., Krstić V., Ivanović A., and Dimitrijević S. Arch. Metall. Mater., 2015, 60, (2), 643 LINK [Google Scholar]
  11. Trumić B., Gomidželović L., Marjanović S., Krstić V., Ivanović A., and Dimitrijević S. Mater. Test., 2013, 55, (1), 38 LINK [Google Scholar]
  12. Gavin H. Platinum Metals Rev., 2010, 54, (3), 166 LINK [Google Scholar]
  13. Hu C., Wei Y., Cai H., Chen L., Wang X., Zhang X., Zhang G., and Wang X. Johnson Matthey Technol. Rev., 2021, 65, (4), 535 LINK [Google Scholar]
  14. Yamabe Y., Koizumi Y., Murakami H., Ro Y., Maruko T., and Harada H. Scr. Mater., 1996, 35, (2), 211 LINK [Google Scholar]
  15. Yamabe-Mitarai Y., Ro Y., Maruko T., Yokokawa T., Harada H., and Yamaguchi M. ‘Platinum Group Metals: Base Refractory Superalloys for Ultra-High Temperature Use’, Structural Intermetallics, 2nd International Symposium on Structural Intermetallics, 21st–25th September, 1997, Champion, USA, eds. Nathal M. V., Darolia R., Liu C. T., Martin P. L., Miracle D. B., Wagner R., The Minerals Metals & Materials Society, Pittsburgh, USA, 1997, pp. 805814 [Google Scholar]
  16. Yamabe-Mitarai Y., Koizumi Y., Murakami H., Ro Y., Maruko T., and Harada H. Scr. Mater., 1997, 36, (4), 393 LINK [Google Scholar]
  17. Yamabe-Mitarai Y., Ro Y., Harada H., and Maruko T. Metall. Mater. Trans. A, 1998, 29, (2), 537 LINK [Google Scholar]
  18. Yamabe-Mitarai Y., Ro Y., Maruko T., and Harada H. Scr. Mater., 1998, 40, (1), 109 LINK [Google Scholar]
  19. Yamabe-Mitarai Y., Gu Y., Ro Y., Nakazawa S., Maruko T., and Harada H. Scr. Mater., 1999, 41, (3), 305 LINK [Google Scholar]
  20. Yu X., Yamabe-Mitarai Y., Ro Y., and Harada H. Intermetallics, 2000, 8, (5–6), 619 LINK [Google Scholar]
  21. Wolff I. M., and Hill P. J. Platinum Metals Rev., 2000, 44, (4), 158 LINK [Google Scholar]
  22. Luyten J., De Keyzer J., Wollants P., and Creemers C. Calphad, 2009, 33, (2), 370 LINK [Google Scholar]
  23. Jacob K. T., Priya S., and Waseda Y. Metall. Mater. Trans. A, 1998, 29, (6), 1545 LINK [Google Scholar]
  24. Okamoto H. J. Phase Equilib. Diffus., 2013, 34, (2), 176 LINK [Google Scholar]
  25. Cornish L. A., Hohls J., Hill P. J., Prins S., Süss R., and Compton D. N. J. Min. Metall. Sect. B-Metall., 2002, 38, (3–4), 197 LINK [Google Scholar]
  26. Cornish L. A., Süss R., Watson A., and Prins S. N. Platinum Metals Rev., 2007, 51, (3), 104 LINK [Google Scholar]
  27. Watson A., Süss R., and Cornish L. A. Platinum Metals Rev., 2007, 51, (4), 189 LINK [Google Scholar]
  28. Battaini P. Platinum Metals Rev., 2011, 55, (2), 74 LINK [Google Scholar]
  29. Fischer B., Behrends A., Freund D., Lupton D., and Merker J. Platinum Metals Rev., 1999, 43, (1), 18 LINK [Google Scholar]
  30. Merker J., Fischer B., Völkl R., and Lupton D. F. Mater. Sci. Forum, 2003, 426432, 1979 LINK [Google Scholar]
  31. Darling A. S. Platinum Metals Rev., 1961, 5, (2), 58 LINK [Google Scholar]
  32. Acken J. S. Bur. Stand. J. Res., 1934, 12, (2), 249 LINK [Google Scholar]
  33. Rdzawski Z. M., and Stobrawa J. P. J. Mater. Process. Technol., 2004, 153154, 681 LINK [Google Scholar]
  34. Garbacz H., Mizera J., Laskowski Z., and Gierej M. Powder Technol., 2011, 208, (2), 488 LINK [Google Scholar]
  35. Odusote J. K., Cornish L. A., and Papo J. M. J. Mater. Eng. Perform., 2013, 22, (11), 3466 LINK [Google Scholar]
  36. Zarinejad M. ‘Influence of Alloy Chemistry on the Transformation Temperatures and Local Atomic Structure of Shape Memory Alloys: With a Focus on NiTi-Based Intermetallics’, PhD Thesis, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, September, 2009, 176 pp LINK [Google Scholar]
  37. Zarinejad M., Liu Y., and White T. J. Intermetallics, 2008, 16, (7), 876 LINK [Google Scholar]
  38. Zarinejad M., and Liu Y. Adv. Funct. Mater., 2008, 18, (18), 2789 LINK [Google Scholar]
  39. Zarinejad M., Liu Y., and Tong Y. Intermetallics, 2009, 17, (11), 914 LINK [Google Scholar]
  40. Zarinejad M., Liu Y., Liu T., White T., Yang P., and Chen Q. Philos. Mag., 2011, 91, (3), 404 LINK [Google Scholar]
  41. Tong Y., Liu Y., Xie Z., and Zarinejad M. Acta Mater., 2008, 56, (8), 1721 LINK [Google Scholar]
  42. Zarinejad M., Wada K., Pahlevani F., Katal R., and Rimaz S. Shape Mem. Superelasticity, 2021, 7, (1), 179 LINK [Google Scholar]
  43. Zarinejad M., Wada K., Pahlevani F., Katal R., and Rimaz S. J. Alloys Compd., 2021, 870, 159399 LINK [Google Scholar]
  44. Zarinejad M., Liu Y., ‘Dependence of Transformation Temperatures of Shape Memory Alloys on the Number and Concentration of Valence Electrons’, in “Shape Memory Alloys: Manufacture, Properties and Applications”, ed. and Chen H. R. Nova Science Publishers Inc, Hauppauge, USA, 2010, pp. 339360 [Google Scholar]
  45. Kittel C. “Introduction to Solid State Physics”, 8th Edn., John Wiley & Sons Inc, Hoboken, USA, 2005 [Google Scholar]
  46. Gilman J. J. “Electronic Basis of the Strength of Materials”, Cambridge University Press, Cambridge, UK, 2003 LINK [Google Scholar]
  47. Hu B. X., Ning Y., Chen L., Shi Q., and Jia C. Platinum Metals Rev., 2012, 56, (1), 40 LINK [Google Scholar]
  48. Cardarelli F. “Materials Handbook”, 2nd Edn., Springer-Verlag London Ltd, London, UK, 2008 LINK [Google Scholar]
  49. “ASM Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials”, 10th Edn., Vol. 2, ASM International, Materials Park, USA, 1990 LINK [Google Scholar]
  50. Trumić B., Gomidželović L., Marjanović S., Ivanović A., and Krstić V. Mater. Res., 2017, 20, (1), 191 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error