Skip to content
1887
Volume 67, Issue 3
  • ISSN: 2056-5135
  • oa Dependence of Mechanical Properties of Platinum-Rhodium Binary Alloys on Valence Electron Parameters

    Increasing valence electron ratio improves alloy properties

  • Authors: Mehrdad Zarinejad1, Sajjad Rimaz2, Yunxiang Tong3, Kiyohide Wada4 and Farshid Pahlevani5
  • Affiliations: 1 Department of Materials Science and Technology, PB Research CentreOshawa, ON, L1H 7K4Canada 2 Department of Chemical and Biomolecular Engineering, National University of Singapore4 Engineering Drive 4, 117585Singapore 3 Institute of Materials Processing and Intelligent Manufacturing, College of Materials Science and Chemical Engineering, Harbin Engineering UniversityHarbin, 150001China 4 Faculty of Science and Engineering, Swansea UniversityBay Campus, Fabian Way, Crymlyn Burrows, Swansea, SA1 8ENUK 5 Centre for Sustainable Materials Research and Technology, SMaRT@UNSW, School of Materials Science and EngineeringUNSW Sydney, NSW 2052Australia
  • Source: Johnson Matthey Technology Review, Volume 67, Issue 3, Jul 2023, p. 290 - 299
  • DOI: https://doi.org/10.1595/205651323X16527144808494
    • Received: 21 Feb 2022
    • Accepted: 16 May 2022
    • Published online: 16 May 2022

Abstract

Dependence of mechanical properties of binary platinum-rhodium alloys on valence electron ratio (VER), number of valence electrons (e) and average atomic number of the alloys (Z) are investigated. The alloys have a high number of valence electrons (9 ≤ e ≤ 10) and a wide range of average atomic numbers (Z = 45–78). Clear correlations between VER of the alloys and their mechanical properties are found. By increasing the VER of the alloy from 0.13 to 0.20 following the increase of rhodium content in the composition, the hardness, elastic modulus and ultimate tensile strength (UTS) of the alloy increases. Creep rates of the selected alloys clearly decrease with increasing VER at high temperatures (1500–1700°C), while stress rupture time at different temperatures consistently increases because of higher rhodium content in the alloy solid solution chemistry. Dependence of mechanical properties on valence electron parameters is discussed with reference to the atomic bonding.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16527144808494
2022-05-16
2024-12-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/3/Zarinejad_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16527144808494&mimeType=html&fmt=ahah

References

  1. B. T. Biggs, S. S. Taylor, E. van der Lingen, Platinum Metals Rev., 2005, 49, (1), 2 LINK https://doi.org/10.1595/147106705x24409 [Google Scholar]
  2. J. C. Wright, Platinum Metals Rev., 2002, 46, (2), 66 LINK https://technology.matthey.com/article/46/2/66-72/ [Google Scholar]
  3. B. Wu, G. Liu, Platinum Metals Rev., 1997, 41, (2), 81 LINK https://technology.matthey.com/article/41/2/81-85/ [Google Scholar]
  4. R. Price, Platinum Metals Rev., 1959, 3, (3), 78 LINK https://technology.matthey.com/article/3/3/78-87/ [Google Scholar]
  5. S. Sarkar, Cogent Eng., 2018, 5, (1), 1558687 LINK https://doi.org/10.1080/23311916.2018.1558687 [Google Scholar]
  6. M. Saternus, A. Fornalczyk, J. Cebulski, Arch. Metall. Mater., 2014, 59, (2), 557 LINK https://doi.org/10.2478/amm-2014-0092 [Google Scholar]
  7. E. Preston, Platinum Metals Rev., 1960, 4, (2), 48 LINK https://technology.matthey.com/article/4/2/48-55/ [Google Scholar]
  8. D. F. Lupton, J. Merker, B. Fischer, R. Völkl, ‘Platinum Materials for the Glass Industry’, 24th International Precious Metals Conference, Williamsburg, USA, 11th–14th June, 2000, International Precious Metals Institute, Pensacola, USA, 18th July, 2000 [Google Scholar]
  9. F. Xiao, F. Zhao, D. Mei, Z. Mo, B. Zeng, Biosens. Bioelectron., 2009, 24, (12), 3481 LINK https://doi.org/10.1016/j.bios.2009.04.045 [Google Scholar]
  10. B. Trumić, L. Gomidželović, S. Marjanović, V. Krstić, A. Ivanović, S. Dimitrijević, Arch. Metall. Mater., 2015, 60, (2), 643 LINK https://doi.org/10.1515/amm-2015-0186 [Google Scholar]
  11. B. Trumić, L. Gomidželović, S. Marjanović, V. Krstić, A. Ivanović, S. Dimitrijević, Mater. Test., 2013, 55, (1), 38 LINK https://doi.org/10.3139/120.110406 [Google Scholar]
  12. H. Gavin, Platinum Metals Rev., 2010, 54, (3), 166 LINK https://doi.org/10.1595/147106710x500125 [Google Scholar]
  13. C. Hu, Y. Wei, H. Cai, L. Chen, X. Wang, X. Zhang, G. Zhang, X. Wang, Johnson Matthey Technol. Rev., 2021, 65, (4), 535 LINK https://doi.org/10.1595/205651321x16221908118376 [Google Scholar]
  14. Y. Yamabe, Y. Koizumi, H. Murakami, Y. Ro, T. Maruko, H. Harada, Scr. Mater., 1996, 35, (2), 211 LINK https://doi.org/10.1016/1359-6462(96)00109-1 [Google Scholar]
  15. Y. Yamabe-Mitarai, Y. Ro, T. Maruko, T. Yokokawa, H. Harada, M. Yamaguchi, ‘Platinum Group Metals: Base Refractory Superalloys for Ultra-High Temperature Use’, Structural Intermetallics, 2nd International Symposium on Structural Intermetallics, 21st–25th September, 1997, Champion, USA, eds. M. V. Nathal, R. Darolia, C. T. Liu, P. L. Martin, D. B. Miracle, R. Wagner, The Minerals Metals & Materials Society, Pittsburgh, USA, 1997, pp. 805814 [Google Scholar]
  16. Y. Yamabe-Mitarai, Y. Koizumi, H. Murakami, Y. Ro, T. Maruko, H. Harada, Scr. Mater., 1997, 36, (4), 393 LINK https://doi.org/10.1016/s1359-6462(96)00408-3 [Google Scholar]
  17. Y. Yamabe-Mitarai, Y. Ro, H. Harada, T. Maruko, Metall. Mater. Trans. A, 1998, 29, (2), 537 LINK https://doi.org/10.1007/s11661-998-0135-9 [Google Scholar]
  18. Y. Yamabe-Mitarai, Y. Ro, T. Maruko, H. Harada, Scr. Mater., 1998, 40, (1), 109 LINK https://doi.org/10.1016/s1359-6462(98)00407-2 [Google Scholar]
  19. Y. Yamabe-Mitarai, Y. Gu, Y. Ro, S. Nakazawa, T. Maruko, H. Harada, Scr. Mater., 1999, 41, (3), 305 LINK https://doi.org/10.1016/s1359-6462(99)00166-9 [Google Scholar]
  20. X. Yu, Y. Yamabe-Mitarai, Y. Ro, H. Harada, Intermetallics, 2000, 8, (5–6), 619 LINK https://doi.org/10.1016/s0966-9795(99)00142-9 [Google Scholar]
  21. I. M. Wolff, P. J. Hill, Platinum Metals Rev., 2000, 44, (4), 158 LINK https://technology.matthey.com/article/44/4/158-166/ [Google Scholar]
  22. J. Luyten, J. De Keyzer, P. Wollants, C. Creemers, Calphad, 2009, 33, (2), 370 LINK https://doi.org/10.1016/j.calphad.2008.10.007 [Google Scholar]
  23. K. T. Jacob, S. Priya, Y. Waseda, Metall. Mater. Trans. A, 1998, 29, (6), 1545 LINK https://doi.org/10.1007/s11661-998-0076-3 [Google Scholar]
  24. H. Okamoto, J. Phase Equilib. Diffus., 2013, 34, (2), 176 LINK https://doi.org/10.1007/s11669-012-0186-x [Google Scholar]
  25. L. A. Cornish, J. Hohls, P. J. Hill, S. Prins, R. Süss, D. N. Compton, J. Min. Metall. Sect. B-Metall., 2002, 38, (3–4), 197 LINK https://jmmab.com/l-a-cornishj-hohlsp-j-hills-prinsr-suss-and-d-n-compton/ [Google Scholar]
  26. L. A. Cornish, R. Süss, A. Watson, S. N. Prins, Platinum Metals Rev., 2007, 51, (3), 104 LINK https://doi.org/10.1595/147106707x212967 [Google Scholar]
  27. A. Watson, R. Süss, L. A. Cornish, Platinum Metals Rev., 2007, 51, (4), 189 LINK https://doi.org/10.1595/147106707x232893 [Google Scholar]
  28. P. Battaini, Platinum Metals Rev., 2011, 55, (2), 74 LINK https://doi.org/10.1595/147106711x554008 [Google Scholar]
  29. B. Fischer, A. Behrends, D. Freund, D. Lupton, J. Merker, Platinum Metals Rev., 1999, 43, (1), 18 LINK https://technology.matthey.com/article/43/1/18-28/ [Google Scholar]
  30. J. Merker, B. Fischer, R. Völkl, D. F. Lupton, Mater. Sci. Forum, 2003, 426432, 1979 LINK https://doi.org/10.1016/j.intermet.2009.03.022 [Google Scholar]
  31. A. S. Darling, Platinum Metals Rev., 1961, 5, (2), 58 LINK https://technology.matthey.com/article/5/2/58-65/ [Google Scholar]
  32. J. S. Acken, Bur. Stand. J. Res., 1934, 12, (2), 249 LINK https://doi.org/10.6028/jres.012.023 [Google Scholar]
  33. Z. M. Rdzawski, J. P. Stobrawa, J. Mater. Process. Technol., 2004, 153154, 681 LINK https://doi.org/10.1016/j.jmatprotec.2004.04.130 [Google Scholar]
  34. H. Garbacz, J. Mizera, Z. Laskowski, M. Gierej, Powder Technol., 2011, 208, (2), 488 LINK https://doi.org/10.1016/j.powtec.2010.08.047 [Google Scholar]
  35. J. K. Odusote, L. A. Cornish, J. M. Papo, J. Mater. Eng. Perform., 2013, 22, (11), 3466 LINK https://doi.org/10.1007/s11665-013-0611-2 [Google Scholar]
  36. M. Zarinejad, ‘Influence of Alloy Chemistry on the Transformation Temperatures and Local Atomic Structure of Shape Memory Alloys: With a Focus on NiTi-Based Intermetallics’, PhD Thesis, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, September, 2009, 176 pp LINK https://doi.org/10.32657/10356/19254 [Google Scholar]
  37. M. Zarinejad, Y. Liu, T. J. White, Intermetallics, 2008, 16, (7), 876 LINK https://doi.org/10.1016/j.interMetals2008.04.004 [Google Scholar]
  38. M. Zarinejad, Y. Liu, Adv. Funct. Mater., 2008, 18, (18), 2789 LINK https://doi.org/10.1002/adfm.200701423 [Google Scholar]
  39. M. Zarinejad, Y. Liu, Y. Tong, Intermetallics, 2009, 17, (11), 914 LINK https://doi.org/10.1016/j.interMetals2009.03.022 [Google Scholar]
  40. M. Zarinejad, Y. Liu, T. Liu, T. White, P. Yang, Q. Chen, Philos. Mag., 2011, 91, (3), 404 LINK https://doi.org/10.1080/14786435.2010.523719 [Google Scholar]
  41. Y. Tong, Y. Liu, Z. Xie, M. Zarinejad, Acta Mater., 2008, 56, (8), 1721 LINK https://doi.org/10.1016/j.actamat.2007.12.031 [Google Scholar]
  42. M. Zarinejad, K. Wada, F. Pahlevani, R. Katal, S. Rimaz, Shape Mem. Superelasticity, 2021, 7, (1), 179 LINK https://doi.org/10.1007/s40830-021-00319-0 [Google Scholar]
  43. M. Zarinejad, K. Wada, F. Pahlevani, R. Katal, S. Rimaz, J. Alloys Compd., 2021, 870, 159399 LINK https://doi.org/10.1016/j.jallcom.2021.159399 [Google Scholar]
  44. M. Zarinejad, Y. Liu, ‘Dependence of Transformation Temperatures of Shape Memory Alloys on the Number and Concentration of Valence Electrons’, in “Shape Memory Alloys: Manufacture, Properties and Applications”, ed. H. R. Chen, Nova Science Publishers Inc, Hauppauge, USA, 2010, pp. 339360 [Google Scholar]
  45. C. Kittel, “Introduction to Solid State Physics”, 8th Edn., John Wiley & Sons Inc, Hoboken, USA, 2005 [Google Scholar]
  46. J. J. Gilman, “Electronic Basis of the Strength of Materials”, Cambridge University Press, Cambridge, UK, 2003 LINK https://doi.org/10.1017/cbo9780511541247 [Google Scholar]
  47. B. X. Hu, Y. Ning, L. Chen, Q. Shi, C. Jia, Platinum Metals Rev., 2012, 56, (1), 40 LINK https://doi.org/10.1595/147106711x615749 [Google Scholar]
  48. F. Cardarelli, “Materials Handbook”, 2nd Edn., Springer-Verlag London Ltd, London, UK, 2008 LINK https://doi.org/10.1007/978-1-84628-669-8 [Google Scholar]
  49. “ASM Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials”, 10th Edn., Vol. 2, ASM International, Materials Park, USA, 1990 LINK https://doi.org/10.31399/asm.hb.v02.9781627081627 [Google Scholar]
  50. B. Trumić, L. Gomidželović, S. Marjanović, A. Ivanović, V. Krstić, Mater. Res., 2017, 20, (1), 191 LINK https://doi.org/10.1590/1980-5373-MR-2016-0240 [Google Scholar]
/content/journals/10.1595/205651323X16527144808494
Loading
/content/journals/10.1595/205651323X16527144808494
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test