Skip to content
1887
Volume 67, Issue 1
  • ISSN: 2056-5135

Abstract

Measurement and control of process temperature is key to maximising product quality, optimising efficiency, reducing waste, safety and minimising carbon dioxide and other harmful emissions. Drift of temperature sensor calibration due to environmental factors such as high temperature, vibration, contamination and ionising radiation results in a progressively worsening temperature measurement error, which in turn results in suboptimal processes. Here we outline some new developments to overcome sensor calibration drift and so provide assured temperature measurement in process, including self-validating thermocouples, embedded temperature reference standards, and practical primary Johnson noise thermometry where the temperature is measured directly without the need for any calibration. These new developments will give measurement assurance by either providing measurements which are inherently stable, or by providing an calibration facility to enable the detection and correction of calibration drift.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16601466421853
2022-08-11
2024-12-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/1/Pearce_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16601466421853&mimeType=html&fmt=ahah

References

  1. G. Machin, Meas. Sci. Technol., 2018, 29, (2), 022001 LINK https://doi.org/10.1088/1361-6501/aa9ddb [Google Scholar]
  2. G. Machin, Johnson Matthey Technol. Rev., 2023, 67, (1), 77 LINK https://technology.matthey.com/article/67/1/77-84/ [Google Scholar]
  3. H. Preston-Thomas, Metrologia, 1990, 27, (1), 3 LINK https://doi.org/10.1088/0026-1394/27/1/002 [Google Scholar]
  4. ‘General Requirements for the Competence of Testing and Calibration Laboratories’, ISO/IEC 17025:2017, International Organization for Standardization, Geneva, Switzerland, 2017 LINK https://www.iso.org/standard/66912.html [Google Scholar]
  5. J. Pearce, Nat. Phys., 2017, 13, (1), 104 LINK https://doi.org/10.1038/nphys4005 [Google Scholar]
  6. M. Baker, Nature, 2016, 533, (7604), 452 LINK https://doi.org/10.1038/533452a [Google Scholar]
  7. M. Sené, I. Gilmore, J.-T. Janssen, Nature, 2017, 547, (7664), 397 LINK https://doi.org/10.1038/547397a [Google Scholar]
  8. G. Machin, 2013, 1552, (1), 305 LINK https://doi.org/10.1063/1.4821383
  9. E. R. Woolliams, G. Machin, D. H. Lowe, R. Winkler, Metrologia, 2006, 43, (6), R11 LINK https://doi.org/10.1088/0026-1394/43/6/r01 [Google Scholar]
  10. D. H. Lowe, A. D. W. Todd, R. Van den Bossche, P. Bloembergen, K. Anhalt, M. Ballico, F. Bourson, S. Briaudeau, J. Campos, M. G. Cox, D. del Campo, M. R. Dury, V. Gavrilov, I. Grigoryeva, M. L. Hernanz, F. Jahan, B. Khlevnoy, V. Khromchenko, X. Lu, G. Machin, J. M. Mantilla, M. J. Martin, H. C. McEvoy, B. Rougié, M. Sadli, S. G. R. Salim, N. Sasajima, D. R. Taubert, E. van der Ham, T. Wang, D. Wei, A. Whittam, B. Wilthan, D. J. Woods, J. T. Woodward, E. R. Woolliams, Y. Yamada, Y. Yamaguchi, H. W. Yoon, Z. Yuan, Metrologia, 2017, 54, (3), 390 LINK https://doi.org/10.1088/1681-7575/aa6eeb [Google Scholar]
  11. F. Edler, A. C. Baratto, Metrologia, 2005, 42, (4), 201 LINK https://doi.org/10.1088/0026-1394/42/4/003 [Google Scholar]
  12. H. Ogura, M. Izuchi, M. Arai, Int. J. Thermophys., 2008, 29, (1), 210 LINK https://doi.org/10.1007/s10765-007-0320-x [Google Scholar]
  13. R. Morice, P. Ridoux, J. R. Filtz, NCSL Int. Meas., 2008, 3, (1), 44 LINK https://doi.org/10.1080/19315775.2008.11721411 [Google Scholar]
  14. Y.-G. Kim, I. Yang, S. Y. Kwon, K. S. Gam, Metrologia, 2006, 43, (1), 67 LINK https://doi.org/10.1088/0026-1394/43/1/010 [Google Scholar]
  15. M. Tischler, M. J. Koremblit, ‘Miniature thermometric fixed points for thermocouple calibrations’, Temperature: Its Measurement and Control in Science and Industry, 5th Temperature Symposium, 15th–18th March, 1982, Washington DC, USA,AIP Conference Proceedings, AIP Publishing LLC, New York, USA, 1982, pp. 383390 [Google Scholar]
  16. H. Ronsin, M. Elgourdo, G. Bonnier, M.V. Chattle, S.J. Read, G. Bongiovanni, R. Perissi, Ib. Wessel, M.J. de Groot, R. den Dekker, ‘Assessment of minicrucible fixed points for thermocouple calibration, through an international comparison’, Temperature: Its Measurement and Control in Science and Industry, 6th Temperature Symposium, 28th April–1st May, 1992, Toronto, Ontario, Canada, AIP Conference Proceedings, AIP Publishing LLC, New York, USA, 1992, pp. 10611068 [Google Scholar]
  17. S. Augustin, F. Bernhard, D. Boguhn, A. Donin, H. Mammen, ‘Industrially Applicable Miniature Fixed Point Thermocouples’, 8th International Symposium on Temperature and Thermal Measurements in Industry and Science, Berlin, Germany, 19th–21st June, 2001, TEMPMEKO 2001, ed. B. Fellmuth, 2, The Association of German Engineers (VDI), Dusseldorf, Germany and Association for Electrical, Electronic & Information Technologies eV (VDE), Frankfurt, Germany, 2002, pp. 38 LINK https://www.tib.eu/en/search/id/BLCP:CN044253136/industrially-applicable-miniature-fixed-point-thermocouples?cHash=d0cf42a538bc30a2afea878393c2c5b2 [Google Scholar]
  18. F. Bernhard, Proc. Estonian Acad. Sci. Eng., 2007, 13, (4), 320 LINK https://kirj.ee/public/Engineering/2007/issue_4/eng-2007-4-6.pdf [Google Scholar]
  19. K. H. Kang, Y.-G. Kim, K. S. Gam, I. Yang, Meas. Sci. Technol., 2007, 18, (9), 3005 LINK https://doi.org/10.1088/0957-0233/18/9/035 [Google Scholar]
  20. H. Lehmann, Int. J. Thermophys., 2010, 31, (8–9), 1599 LINK https://doi.org/10.1007/s10765-010-0796-7 [Google Scholar]
  21. J. V. Pearce, O. Ongrai, G. Machin, S. J. Sweeney, Metrologia, 2010, 47, (1), L 1 LINK https://doi.org/10.1088/0026-1394/47/1/l01 [Google Scholar]
  22. J. V. Pearce, C. J. Elliott, G. Machin, O. Ongrai, AIP Conf. Proc., 2013, 1552, (1), 595 LINK https://doi.org/10.1063/1.4821396 [Google Scholar]
  23. ‘iTHERM TrustSens’, Endress + Hauser AG, Reinach, Switzerland:https://www.ch.endress.com/en/field-instruments-overview/temperature-measurement-thermometers-transmitters/TrustSens-infopage-en (Accessed on 21st October 2022) [Google Scholar]
  24. D. Tucker, A. Andreu, C. Elliott, T. Ford, M. Neagu, G. Machin, J. Pearce, Meas. Sci. Technol., 2018, 29, (10), 105002 LINK https://doi.org/10.1088/1361-6501/aad8a8 [Google Scholar]
  25. C. J. Elliott, A. D. Greenen, D. Tucker, T. Ford, J. V Pearce, Int. J. Thermophys., 2017, 38, (9), 141 LINK https://doi.org/10.1007/s10765-017-2274-y [Google Scholar]
  26. C. Tyson, C. McAndrew, P. L. Tuma, I. Pegg, A. Sarkar, Cytom. Part A, 2015, 87, (5), 393 LINK https://doi.org/10.1002/cyto.a.22631 [Google Scholar]
  27. J. P. G. van Brakel, ‘Robust Peak Detection Algorithm Using Z-Scores’, Version 2020-11-08, Stack Overflow Ltd, London, UK, 2014 LINK https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data/22640362#22640362 [Google Scholar]
  28. J. V. Pearce, R. I. Veltcheva, D. M. Peters, D. Smith, T. Nightingale, Meas. Sci. Technol., 2019, 30, (12), 124003 LINK https://doi.org/10.1088/1361-6501/ab38e4 [Google Scholar]
  29. D. Smith, D. Peters, T. Nightingale, J. Pearce, R. Veltcheva, Remote Sens., 2020, 12, (11), 1832 LINK https://doi.org/10.3390/rs12111832 [Google Scholar]
  30. V. I. Sapritsky, A. A. Burdakin, B. B. Khlevnoy, S. P. Morozova, S. A. Ogarev, A. S. Panfilov, V. N. Krutikov, G. E. Bingham, T. W. Humpherys, J. Tansock, A. V. Thurgood, V. Privalsky, J. Appl. Remote Sens., 2009, 3, (1), 033506 LINK https://doi.org/10.1117/1.3086288 [Google Scholar]
  31. J. Sun, X. Hao, F. Zeng, L. Zhang, X. Fang, Int. J. Thermophys., 2017, 38, (4), 47 LINK https://doi.org/10.1007/s10765-017-2181-2 [Google Scholar]
  32. X. P. Hao, J. P. Sun, C. Y. Xu, P. Wen, J. Song, M. Xu, L. Y. Gong, L. Ding, Z. L. Liu, Int. J. Thermophys., 2017, 38, (6), 90 LINK https://doi.org/10.1007/s10765-017-2223-9 [Google Scholar]
  33. A. Burdakin, B. Khlevnoy, M. Samoylov, V. Sapritsky, S. Ogarev, A. Panfilov, G. Bingham, V. Privalsky, J. Tansock, T. Humpherys, Metrologia, 2008, 45, (1), 75 LINK https://doi.org/10.1088/0026-1394/45/1/011 [Google Scholar]
  34. A. Burdakin, B. Khlevnoy, M. Samoylov, V. Sapritsky, S. Ogarev, A. Panfilov, S. Prokhorenko, Int. J. Thermophys., 2009, 30, (1), 20 LINK https://doi.org/10.1007/s10765-008-0441-x [Google Scholar]
  35. P. J. Gero, J. A. Dykema, J. G. Anderson, J. Atmos. Ocean. Technol., 2008, 25, (11), 2046 LINK https://doi.org/10.1175/2008jtecha1100.1 [Google Scholar]
  36. T. S. Topham, H. Latvakoski, M. Watson, AIP Conf. Proc., 2013, 1552, (1), 993 LINK https://doi.org/10.1063/1.4819679 [Google Scholar]
  37. T. S. Topham, G. E. Bingham, H. Latvakoski, I. Podolski, V. S. Sychev, A. Burdakin, npj Microgravity, 2015, 1, 15009 LINK https://doi.org/10.1038/npjmgrav.2015.9 [Google Scholar]
  38. M. Fukasawa, H. Freeland, R. Perkin, T. Watanabe, H. Uchida, A. Nishina, Nature, 2004, 427, (6977), 825 LINK https://doi.org/10.1038/nature02337 [Google Scholar]
  39. B. Fellmuth, J. Fischer, G. Machin, S. Picard, P. P. M. Steur, O. Tamura, D. R. White, H. Yoon, Phil. Trans. R. Soc. A, 2016, 374, (2064), 20150037 LINK https://doi.org/10.1098/rsta.2015.0037 [Google Scholar]
  40. J. F. Qu, S. P. Benz, H. Rogalla, W. L. Tew, D. R. White, K. L. Zhou, Meas. Sci. Technol., 2019, 30, (11), 112001 LINK https://doi.org/10.1088/1361-6501/ab3526 [Google Scholar]
  41. P. Bramley, D. Cruickshank, J. Pearce, Int. J. Thermophys., 2017, 38, (2), LINK https://doi.org/10.1007/s10765-016-2156-8 [Google Scholar]
  42. J. F. Qu, S. P. Benz, H. Rogalla, W. L. Tew, D. R. White, K. L. Zhou, Meas. Sci. Technol., 2019, 30, (11), 112001 LINK https://doi.org/10.1088/1361-6501/ab3526 [Google Scholar]
  43. B. P. Kibble, G. H. Rayner, “Coaxial AC Bridges”, Adam Hilger Ltd, Bristol, UK, 1984 [Google Scholar]
  44. H. Brixy, R. Hecker, J. Jehmen, P. Barbonus, R. Hans, ‘Temperature Measurement’, Specialist Meeting on Gas-Cooled Reactor Core and High Temperature Instrumentation,Bowness-on-Windermere, UK,15th–17th June, 1982,IAEA-TC-389/6-7, International Atomic Energy Commission, Vienna, Austria, 1982 [Google Scholar]
  45. H. Von Brixy, T. Kakuta, ‘Noise Thermometer’, JAERI Review 96-003, Japan Atomic Energy Research Institute, Ibaraki Prefecture, Japan, March, 1996, 83 pp LINK https://jopss.jaea.go.jp/pdfdata/JAERI-Review-96-003.pdf [Google Scholar]
  46. R. J. Soulen, R. L. Rusby, D. Van Vechten, J. Low Temp. Phys., 1980, 40, (5–6), 553 LINK https://doi.org/10.1007/bf00119524 [Google Scholar]
  47. T. V. Blalock, M. J. Roberts, R. L. Shepard, In Situ Calibration of Nuclear Plant Resistance Thermometers Using Johnson Noise’, Industrial Temperature Measurement Symposium,Knoxville, USA,10th–12th September 1984, CONF-8409109—7, DE85 004434, Oak Ridge National Laboratory, Oak Ridge, USA, 1985, 11 pp LINK https://www.osti.gov/servlets/purl/6061815 [Google Scholar]
  48. M. J. De Groot, J. F. Dubbeldam, G. S. Dhupia, M. V. Chattle, H. Brixy, F. Edler, ‘Development of a High Temperature Resistance Thermometer using Noise Thermometry’, Proceedings of TEMPMEKO ’96, Torino, Italy, 10th–12th September, 1996, ed. P. Marcarino, Levrotto and Bella Libreria Editrice Universitaria, Torino, Italy, 1997, pp. 141146 [Google Scholar]
  49. C. J. Borkowski, T. V Blalock, Rev. Sci. Instrum., 1974, 45, (2), 151 LINK https://doi.org/10.1063/1.1686578 [Google Scholar]
  50. H. Brixy, R. Hecker, J. Oehmen, E. Zimmermann, High Temp.-High Press., 1991, 23, (6), 625 [Google Scholar]
  51. K. Korsah, R. A. Kisner, C. L. Britton, P. Ramuhalli, D. W. Wootan, N. C. Anheier, A. A. Diaz, E. H. Hirt, R. B. Vlim, H. T. Chien, S. Bakhtiari, S. Sheen, S. Gopalsami, A. Heifetz, S. W. Tam, Y. Park, B. R. Upadhyaya, A. Stanford, “Assessment of Sensor Technologies for Advanced Reactors”, ORNL/TM-2016/337 R1, Oak Ridge National Laboratory, Oak Ridge, USA, August, 2016, 168 pp LINK https://doi.org/10.2172/1345781 [Google Scholar]
  52. D. Drung, C. Krause, Rev. Sci. Instrum., 2021, 92, (3), 034901 LINK https://doi.org/10.1063/5.0035673 [Google Scholar]
  53. ‘Johnson Noise Thermometer’, Metrosol Ltd, Paulerspury, UK:http://www.johnson-noise-thermometer.com (Accessed on 27th October 2022) [Google Scholar]
  54. P. Bramley, D. Cruickshank, J. Aubrey, Meas. Sci. Technol., 2020, 31, (5), 054003 LINK https://doi.org/10.1088/1361-6501/ab58a6 [Google Scholar]
  55. ‘Electromagnetic Compatibility (EMC) – Part 4-3: Testing and Measurement Techniques – Radiated, Radio-Frequency, Electromagnetic Field Immunity Test’, IEC 61000-4-3:2020, International Electrotechnical Commission, Geneva, Switzerland, 2020 LINK https://webstore.iec.ch/publication/59849 [Google Scholar]
  56. S. O. Rice, Bell Syst. Tech. J., 1944, 23, (3), 282 LINK https://doi.org/10.1002/j.1538-7305.1944.tb00874.x [Google Scholar]
  57. S. O. Rice, Bell Syst. Tech. J., 1945, 24, (1), 46 LINK https://doi.org/10.1002/j.1538-7305.1945.tb00453.x [Google Scholar]
  58. L. Gianfrani, Philos. Trans. R. Soc. A, 2016, 374, (2064), 20150047 LINK https://doi.org/10.1098/rsta.2015.0047 [Google Scholar]
  59. M. R. Moldover, R. M. Gavioso, J. B. Mehl, L. Pitre, M. de Podesta, J. T. Zhang, Metrologia, 2014, 51, (1), R1 LINK https://doi.org/10.1088/0026-1394/51/1/r1 [Google Scholar]
  60. J. Fischer, B. Fellmuth, C. Gaiser, T. Zandt, L. Pitre, F. Sparasci, M. D. Plimmer, M. de Podesta, R. Underwood, G. Sutton, G. Machin, R. M. Gavioso, D. Madonna Ripa, P. P. M. Steur, J. Qu, X. J. Feng, J. Zhang, M. R. Moldover, S. P. Benz, D. R. White, L. Gianfrani, A. Castrillo, L. Moretti, B. Darquié, E. Moufarej, C. Daussy, S. Briaudeau, O. Kozlova, L. Risegari, J. J. Segovia, M. C. Martín, D. del Campo, Metrologia, 2018, 55, (2), R1 LINK https://doi.org/10.1088/1681-7575/aaa790 [Google Scholar]
/content/journals/10.1595/205651323X16601466421853
Loading
/content/journals/10.1595/205651323X16601466421853
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test