Skip to content
Volume 67, Issue 1
  • ISSN: 2056-5135


Measurement and control of process temperature is key to maximising product quality, optimising efficiency, reducing waste, safety and minimising carbon dioxide and other harmful emissions. Drift of temperature sensor calibration due to environmental factors such as high temperature, vibration, contamination and ionising radiation results in a progressively worsening temperature measurement error, which in turn results in suboptimal processes. Here we outline some new developments to overcome sensor calibration drift and so provide assured temperature measurement in process, including self-validating thermocouples, embedded temperature reference standards, and practical primary Johnson noise thermometry where the temperature is measured directly without the need for any calibration. These new developments will give measurement assurance by either providing measurements which are inherently stable, or by providing an calibration facility to enable the detection and correction of calibration drift.


Article metrics loading...

Loading full text...

Full text loading...



  1. Machin G. Meas. Sci. Technol., 2018, 29, (2), 022001 LINK [Google Scholar]
  2. Machin G. Johnson Matthey Technol. Rev., 2023, 67, (1), 77 LINK [Google Scholar]
  3. Preston-Thomas H. Metrologia, 1990, 27, (1), 3 LINK [Google Scholar]
  4. ‘General Requirements for the Competence of Testing and Calibration Laboratories’, ISO/IEC 17025:2017, International Organization for Standardization, Geneva, Switzerland, 2017 LINK [Google Scholar]
  5. Pearce J. Nat. Phys., 2017, 13, (1), 104 LINK [Google Scholar]
  6. Baker M. Nature, 2016, 533, (7604), 452 LINK [Google Scholar]
  7. Sené M., Gilmore I., and Janssen J.-T. Nature, 2017, 547, (7664), 397 LINK [Google Scholar]
  8. Machin G. 2013, 1552, (1), 305 LINK
  9. Woolliams E. R., Machin G., Lowe D. H., and Winkler R. Metrologia, 2006, 43, (6), R11 LINK [Google Scholar]
  10. Lowe D. H., Todd A. D. W., Van den Bossche R., Bloembergen P., Anhalt K., Ballico M., Bourson F., Briaudeau S., Campos J., Cox M. G., del Campo D., Dury M. R., Gavrilov V., Grigoryeva I., Hernanz M. L., Jahan F., Khlevnoy B., Khromchenko V., Lu X., Machin G., Mantilla J. M., Martin M. J., McEvoy H. C., Rougié B., Sadli M., Salim S. G. R., Sasajima N., Taubert D. R., van der Ham E., Wang T., Wei D., Whittam A., Wilthan B., Woods D. J., Woodward J. T., Woolliams E. R., Yamada Y., Yamaguchi Y., Yoon H. W., and Yuan Z. Metrologia, 2017, 54, (3), 390 LINK [Google Scholar]
  11. Edler F., and Baratto A. C. Metrologia, 2005, 42, (4), 201 LINK [Google Scholar]
  12. Ogura H., Izuchi M., and Arai M. Int. J. Thermophys., 2008, 29, (1), 210 LINK [Google Scholar]
  13. Morice R., Ridoux P., and Filtz J. R. NCSL Int. Meas., 2008, 3, (1), 44 LINK [Google Scholar]
  14. Kim Y.-G., Yang I., Kwon S. Y., and Gam K. S. Metrologia, 2006, 43, (1), 67 LINK [Google Scholar]
  15. Tischler M., and Koremblit M. J. ‘Miniature thermometric fixed points for thermocouple calibrations’, Temperature: Its Measurement and Control in Science and Industry, 5th Temperature Symposium, 15th–18th March, 1982, Washington DC, USA,AIP Conference Proceedings, AIP Publishing LLC, New York, USA, 1982, pp. 383390 [Google Scholar]
  16. Ronsin H., Elgourdo M., Bonnier G., Chattle M.V., Read S.J., Bongiovanni G., Perissi R., Wessel Ib., de Groot M.J., and den Dekker R. ‘Assessment of minicrucible fixed points for thermocouple calibration, through an international comparison’, Temperature: Its Measurement and Control in Science and Industry, 6th Temperature Symposium, 28th April–1st May, 1992, Toronto, Ontario, Canada, AIP Conference Proceedings, AIP Publishing LLC, New York, USA, 1992, pp. 10611068 [Google Scholar]
  17. Augustin S., Bernhard F., Boguhn D., Donin A., Mammen H., ‘Industrially Applicable Miniature Fixed Point Thermocouples’, 8th International Symposium on Temperature and Thermal Measurements in Industry and Science, Berlin, Germany, 19th–21st June, 2001, TEMPMEKO 2001, ed. and Fellmuth B. 2, The Association of German Engineers (VDI), Dusseldorf, Germany and Association for Electrical, Electronic & Information Technologies eV (VDE), Frankfurt, Germany, 2002, pp. 38 LINK [Google Scholar]
  18. Bernhard F. Proc. Estonian Acad. Sci. Eng., 2007, 13, (4), 320 LINK [Google Scholar]
  19. Kang K. H., Kim Y.-G., Gam K. S., and Yang I. Meas. Sci. Technol., 2007, 18, (9), 3005 LINK [Google Scholar]
  20. Lehmann H. Int. J. Thermophys., 2010, 31, (8–9), 1599 LINK [Google Scholar]
  21. Pearce J. V., Ongrai O., Machin G., and Sweeney S. J. Metrologia, 2010, 47, (1), L 1 LINK [Google Scholar]
  22. Pearce J. V., Elliott C. J., Machin G., and Ongrai O. AIP Conf. Proc., 2013, 1552, (1), 595 LINK [Google Scholar]
  23. ‘iTHERM TrustSens’, Endress + Hauser AG, Reinach, Switzerland: (Accessed on 21st October 2022) [Google Scholar]
  24. Tucker D., Andreu A., Elliott C., Ford T., Neagu M., Machin G., and Pearce J. Meas. Sci. Technol., 2018, 29, (10), 105002 LINK [Google Scholar]
  25. Elliott C. J., Greenen A. D., Tucker D., Ford T., and Pearce J. V Int. J. Thermophys., 2017, 38, (9), 141 LINK [Google Scholar]
  26. Tyson C., McAndrew C., Tuma P. L., Pegg I., and Sarkar A. Cytom. Part A, 2015, 87, (5), 393 LINK [Google Scholar]
  27. van Brakel J. P. G. ‘Robust Peak Detection Algorithm Using Z-Scores’, Version 2020-11-08, Stack Overflow Ltd, London, UK, 2014 LINK [Google Scholar]
  28. Pearce J. V., Veltcheva R. I., Peters D. M., Smith D., and Nightingale T. Meas. Sci. Technol., 2019, 30, (12), 124003 LINK [Google Scholar]
  29. Smith D., Peters D., Nightingale T., Pearce J., and Veltcheva R. Remote Sens., 2020, 12, (11), 1832 LINK [Google Scholar]
  30. Sapritsky V. I., Burdakin A. A., Khlevnoy B. B., Morozova S. P., Ogarev S. A., Panfilov A. S., Krutikov V. N., Bingham G. E., Humpherys T. W., Tansock J., Thurgood A. V., and Privalsky V. J. Appl. Remote Sens., 2009, 3, (1), 033506 LINK [Google Scholar]
  31. Sun J., Hao X., Zeng F., Zhang L., and Fang X. Int. J. Thermophys., 2017, 38, (4), 47 LINK [Google Scholar]
  32. Hao X. P., Sun J. P., Xu C. Y., Wen P., Song J., Xu M., Gong L. Y., Ding L., and Liu Z. L. Int. J. Thermophys., 2017, 38, (6), 90 LINK [Google Scholar]
  33. Burdakin A., Khlevnoy B., Samoylov M., Sapritsky V., Ogarev S., Panfilov A., Bingham G., Privalsky V., Tansock J., and Humpherys T. Metrologia, 2008, 45, (1), 75 LINK [Google Scholar]
  34. Burdakin A., Khlevnoy B., Samoylov M., Sapritsky V., Ogarev S., Panfilov A., and Prokhorenko S. Int. J. Thermophys., 2009, 30, (1), 20 LINK [Google Scholar]
  35. Gero P. J., Dykema J. A., and Anderson J. G. J. Atmos. Ocean. Technol., 2008, 25, (11), 2046 LINK [Google Scholar]
  36. Topham T. S., Latvakoski H., and Watson M. AIP Conf. Proc., 2013, 1552, (1), 993 LINK [Google Scholar]
  37. Topham T. S., Bingham G. E., Latvakoski H., Podolski I., Sychev V. S., and Burdakin A. npj Microgravity, 2015, 1, 15009 LINK [Google Scholar]
  38. Fukasawa M., Freeland H., Perkin R., Watanabe T., Uchida H., and Nishina A. Nature, 2004, 427, (6977), 825 LINK [Google Scholar]
  39. Fellmuth B., Fischer J., Machin G., Picard S., Steur P. P. M., Tamura O., White D. R., and Yoon H. Phil. Trans. R. Soc. A, 2016, 374, (2064), 20150037 LINK [Google Scholar]
  40. Qu J. F., Benz S. P., Rogalla H., Tew W. L., White D. R., and Zhou K. L. Meas. Sci. Technol., 2019, 30, (11), 112001 LINK [Google Scholar]
  41. Bramley P., Cruickshank D., and Pearce J. Int. J. Thermophys., 2017, 38, (2), LINK [Google Scholar]
  42. Qu J. F., Benz S. P., Rogalla H., Tew W. L., White D. R., and Zhou K. L. Meas. Sci. Technol., 2019, 30, (11), 112001 LINK [Google Scholar]
  43. Kibble B. P., and Rayner G. H. “Coaxial AC Bridges”, Adam Hilger Ltd, Bristol, UK, 1984 [Google Scholar]
  44. Brixy H., Hecker R., Jehmen J., Barbonus P., and Hans R. ‘Temperature Measurement’, Specialist Meeting on Gas-Cooled Reactor Core and High Temperature Instrumentation,Bowness-on-Windermere, UK,15th–17th June, 1982,IAEA-TC-389/6-7, International Atomic Energy Commission, Vienna, Austria, 1982 [Google Scholar]
  45. Von Brixy H., and Kakuta T. ‘Noise Thermometer’, JAERI Review 96-003, Japan Atomic Energy Research Institute, Ibaraki Prefecture, Japan, March, 1996, 83 pp LINK [Google Scholar]
  46. Soulen R. J., Rusby R. L., and Van Vechten D. J. Low Temp. Phys., 1980, 40, (5–6), 553 LINK [Google Scholar]
  47. Blalock T. V., Roberts M. J., and Shepard R. L. In Situ Calibration of Nuclear Plant Resistance Thermometers Using Johnson Noise’, Industrial Temperature Measurement Symposium,Knoxville, USA,10th–12th September 1984, CONF-8409109—7, DE85 004434, Oak Ridge National Laboratory, Oak Ridge, USA, 1985, 11 pp LINK [Google Scholar]
  48. De Groot M. J., Dubbeldam J. F., Dhupia G. S., Chattle M. V., Brixy H., Edler F., ‘Development of a High Temperature Resistance Thermometer using Noise Thermometry’, Proceedings of TEMPMEKO ’96, Torino, Italy, 10th–12th September, 1996, ed. and Marcarino P. Levrotto and Bella Libreria Editrice Universitaria, Torino, Italy, 1997, pp. 141146 [Google Scholar]
  49. Borkowski C. J., and Blalock T. V Rev. Sci. Instrum., 1974, 45, (2), 151 LINK [Google Scholar]
  50. Brixy H., Hecker R., Oehmen J., and Zimmermann E. High Temp.-High Press., 1991, 23, (6), 625 [Google Scholar]
  51. Korsah K., Kisner R. A., Britton C. L., Ramuhalli P., Wootan D. W., Anheier N. C., Diaz A. A., Hirt E. H., Vlim R. B., Chien H. T., Bakhtiari S., Sheen S., Gopalsami S., Heifetz A., Tam S. W., Park Y., Upadhyaya B. R., and Stanford A. “Assessment of Sensor Technologies for Advanced Reactors”, ORNL/TM-2016/337 R1, Oak Ridge National Laboratory, Oak Ridge, USA, August, 2016, 168 pp LINK [Google Scholar]
  52. Drung D., and Krause C. Rev. Sci. Instrum., 2021, 92, (3), 034901 LINK [Google Scholar]
  53. ‘Johnson Noise Thermometer’, Metrosol Ltd, Paulerspury, UK: (Accessed on 27th October 2022) [Google Scholar]
  54. Bramley P., Cruickshank D., and Aubrey J. Meas. Sci. Technol., 2020, 31, (5), 054003 LINK [Google Scholar]
  55. ‘Electromagnetic Compatibility (EMC) – Part 4-3: Testing and Measurement Techniques – Radiated, Radio-Frequency, Electromagnetic Field Immunity Test’, IEC 61000-4-3:2020, International Electrotechnical Commission, Geneva, Switzerland, 2020 LINK [Google Scholar]
  56. Rice S. O. Bell Syst. Tech. J., 1944, 23, (3), 282 LINK [Google Scholar]
  57. Rice S. O. Bell Syst. Tech. J., 1945, 24, (1), 46 LINK [Google Scholar]
  58. Gianfrani L. Philos. Trans. R. Soc. A, 2016, 374, (2064), 20150047 LINK [Google Scholar]
  59. Moldover M. R., Gavioso R. M., Mehl J. B., Pitre L., de Podesta M., and Zhang J. T. Metrologia, 2014, 51, (1), R1 LINK [Google Scholar]
  60. Fischer J., Fellmuth B., Gaiser C., Zandt T., Pitre L., Sparasci F., Plimmer M. D., de Podesta M., Underwood R., Sutton G., Machin G., Gavioso R. M., Madonna Ripa D., Steur P. P. M., Qu J., Feng X. J., Zhang J., Moldover M. R., Benz S. P., White D. R., Gianfrani L., Castrillo A., Moretti L., Darquié B., Moufarej E., Daussy C., Briaudeau S., Kozlova O., Risegari L., Segovia J. J., Martín M. C., and del Campo D. Metrologia, 2018, 55, (2), R1 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error