Skip to content
Volume 67, Issue 2
  • ISSN: 2056-5135


Gasoline vehicles have generally relied upon a combination of palladium and rhodium for more than 25 years to facilitate the required oxidative and reductive reactions of carbon monoxide (CO), hydrocarbons (HCs), and nitrogen oxides (NOx). Recently, steady increases in the price of palladium relative to platinum have fuelled demand to reincorporate platinum into three-way catalysts (TWCs). However, the fundamental properties of platinum, including susceptibility toward sintering and inhibition under typical gasoline operating conditions, present significant challenges. This article presents an overview of the origins for these challenges, as well as select strategies for maximising platinum’s contribution to modern-day TWCs. Optimisation of ceria-zirconia supports is one route by which platinum’s performance can be significantly improved through tuning of the ceria-to-zirconia ratio. Additionally, alloying platinum with a secondary platinum group metal (pgm), such as rhodium, leverages complimentary properties of both metals, imparting stability and overall activity enhancements. Such routes not only enable pgm flexibility, but also provide opportunities to further improve TWC performance.


Article metrics loading...

Loading full text...

Full text loading...



  1. Morgan C. Johnson Matthey Technol. Rev., 2014, 58, (4), 217 LINK [Google Scholar]
  2. Acres G. J. K., and Harrison B. Top. Catal., 2004, 28, (1–4), 3 LINK [Google Scholar]
  3. Twigg M. V. Platinum Metals Rev., 1999, 43,(4), 168 LINK [Google Scholar]
  4. Gandhi H. S., Graham G. W., and McCabe R. W. J. Catal., 2003, 216, (1–2), 433 LINK [Google Scholar]
  5. Truex T. J. ‘Interaction of Sulfur with Automotive Catalysts and the Impact on Vehicle Emissions – A Review’, SAE Technical Paper 1999-01-1543, SAE International, Warrendale, USA, 1999 LINK [Google Scholar]
  6. Cowley A. “PGM Market Report”, Johnson Matthey Plc, London, UK, May, 2022 LINK [Google Scholar]
  7. Hansen T. W., DeLaRiva A. T., Challa S. R., and Datye A. K. Acc. Chem. Res., 2013, 46, (8), 1720 LINK [Google Scholar]
  8. Cao Y., Ran R., Wu X., Si Z., Kang F., and Weng D. J. Environ. Sci., 2023, 125, 401 LINK [Google Scholar]
  9. Jacob K. T., Uda T., Okabe T. H., and Waseda Y. High Temp. Mater. Process., 2000, 19, (1), 11 LINK [Google Scholar]
  10. Mallika C., Sreedharan O. M., and Gnanamoorthy J. B. J. Less Common Met., 1983, 95, (2), 213 LINK [Google Scholar]
  11. Seriani N., Pompe W., and Ciacchi L. C. J. Phys. Chem. B, 2006, 110, (30), 14860 LINK [Google Scholar]
  12. Leistner K., Gonzalez Braga C., Kumar A., Kamasamudram K., and Olsson L. Appl. Catal. B: Environ., 2019, 241, 338 LINK [Google Scholar]
  13. Chaston J. C. Platinum Metals Rev., 1965, 9, (4), 126 LINK [Google Scholar]
  14. Fiedorow R. M. J., and Wanke S. J. Catal., 1976, 43, (1–3), 34 LINK [Google Scholar]
  15. Straguzzi G. J. Catal., 1980, 66, (1), 171 LINK [Google Scholar]
  16. Johnson M. F. L., and Keith C. D. J. Phys. Chem., 1963, 67, (1), 200 LINK [Google Scholar]
  17. Chen X., Cheng Y., Seo C. Y., Schwank J. W., and McCabe R. W. Appl. Catal. B: Environ., 2015, 163, 499 LINK [Google Scholar]
  18. Wang Q., Zhao B., Li G., and Zhou R. Environ. Sci. Technol., 2010, 44, (10), 3870 LINK [Google Scholar]
  19. Datye A., and Wang Y. Natl. Sci. Rev., 2018, 5, (5), 630 LINK [Google Scholar]
  20. Jones J., Xiong H., DeLaRiva A. T., Peterson E. J., Pham H., Challa S. R., Qi G., Oh S., Wiebenga M. H., Hernández X. I. P., Wang Y., and Datye A. K. Science, 2016, 353, (6295), 150 LINK [Google Scholar]
  21. Nagai Y., Hirabayashi T., Dohmae K., Takagi N., Minami T., Shinjoh H., and Matsumoto S. J. Catal., 2006, 242, (1), 103 LINK [Google Scholar]
  22. Pham H. N., DeLaRiva A., Peterson E. J., Alcala R., Khivantsev K., Szanyi J., Li X. S., Jiang D., Huang W., Sun Y., Tran P., Do Q., DiMaggio C. L., Wang Y., and Datye A. K. ACS Sustain. Chem. Eng., 2022, 10, (23), 7603 LINK [Google Scholar]
  23. Kunwar D., Carrillo C., Xiong H., Peterson E., DeLaRiva A., Ghosh A., Qi G., Yang M., Wiebenga M., Oh S., Li W., and Datye A. K. Appl. Catal. B: Environ., 2020, 266, 118598 LINK [Google Scholar]
  24. Xie S., Tan W., Wang C., Arandiyan H., Garbrecht M., Ma L., Ehrlich S. N., Xu P., Li Y., Zhang Y., Collier S., Deng J., and Liu F. J. Catal., 2022, 405, 236 LINK [Google Scholar]
  25. Zhang Z., Zhu Y., Asakura H., Zhang B., Zhang J., Zhou M., Han Y., Tanaka T., Wang A., Zhang T., and Yan N. Nat. Commun., 2017, 8, (1), 16100 LINK [Google Scholar]
  26. and Fornasiero P. “Catalysis by Ceria and Related Materials”, 2nd Edn., eds. Trovarelli A., 12, Imperial College Press, London, UK, 2013, 908 pp LINK [Google Scholar]
  27. Aneggi E., Boaro M., de Leitenburg C., Dolcetti G., and Trovarelli A. Catal. Today, 2006, 112, (1–4), 94 LINK [Google Scholar]
  28. Millington P., and Vlachou M. C. ‘TWC Catalysts for Gasoline Engine Exhaust Gas Treatments’, US Patent Appl. 2021/451,352 [Google Scholar]
  29. Meunier F. C., Cardenas L., Kaper H., Šmíd B., Vorokhta M., Grosjean R., Aubert D., Dembélé K., and Lunkenbein T. Angew. Chem. Int. Ed., 2020, 60, (7), 3799 LINK [Google Scholar]
  30. Di M., Simmance K., Schaefer A., Feng Y., Hemmingsson F., Skoglundh M., Bell T., Thompsett D., Jensen L. I. A., Blomberg S., and Carlsson P.-A. J. Catal., 2022, 409, 1 LINK [Google Scholar]
  31. Rood S., Eslava S., Manigrasso A., and Bannister C. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng., 2019, 234, (4), 936 LINK [Google Scholar]
  32. Alikin E. A., and Vedyagin A. A. Top. Catal., 2016, 59, (10–12), 1033 LINK [Google Scholar]
  33. Rakhtsaum G. Platinum Metals Rev., 2013, 57, (3), 202 LINK [Google Scholar]
  34. Afrin S., and Bollini P. J. Phys. Chem. C, 2023, 127, (1), 234 LINK [Google Scholar]
  35. Binet C., Badri A., and Lavalley J.-C. J. Phys. Chem., 1994, 98, (25), 6392 LINK [Google Scholar]
  36. Binet C., Daturi M., and Lavalley J.-C. Catal. Today, 1999, 50, (2), 207 LINK [Google Scholar]
  37. Bozon-Verduraz F., and Bensalem A. J. Chem. Soc. Faraday Trans., 1994, 90, (4), 653 LINK [Google Scholar]
  38. Yin X., Li S., Deng J., Wang Y., Li M., Zhao Y., Wang W., Wang J., and Chen Y. Ind. Eng. Chem. Res., 2022, 61, (35), 13011 LINK [Google Scholar]
  39. Ivanova E., and Hadjiivanov K. Phys. Chem. Chem. Phys., 2002, 5, (3), 655 LINK [Google Scholar]
  40. Chaston J. C. Platinum Metals Rev., 1964, 8, (2), 50 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error