Skip to content
Volume 67 Number 4
  • ISSN: 2056-5135


Bacterial cellulose (BC) has attracted much research interest, delivering a combination of exclusive properties, such as flexibility, hydrophilicity, crystallinity and a three-dimensional network. In this study, the effects of carbon source and cultivation conditions on BC production by the bacterium subsp. DSM 15973 were assessed. Fructose was the most suitable carbon source and high BC concentrations up to 31 g l–1 were achieved in substrates with 60 g l–1 fructose under static culture conditions. Notably, BC production was equally high under the same fermentation conditions in agitated cultures (~30 g l–1). Moreover, the effectiveness of sodium hydroxide and sodium hypochlorite solutions in BC purification and their potential impact on BC structure and properties were explored. The combination of weak NaOH and NaOCl proved an effective purification method, preserving the fibre structure and crystallinity of BC.


Article metrics loading...

Loading full text...

Full text loading...



  1. Nobles D. R., Romanovicz D. K., and Brown R. M. Plant Physiol., 2001, 127, (2), 529 LINK [Google Scholar]
  2. Jung J. Y., Park J. K., and Chang H. N. Enzyme Microb. Technol., 2005, 37, (3), 347 LINK [Google Scholar]
  3. Islam M. U., Ullah M. W., Khan S., Shah N., and Park J. K. Int. Biol J.. Macromol., 2017, 102, 1166 LINK [Google Scholar]
  4. Ng H.-M., Sin L. T., Tee T.-T., Bee S.-T., Hui D., Low C.-Y., and Rahmat A. R. Compos. Part B: Eng., 2015, 75, 176 LINK [Google Scholar]
  5. Vandamme E. J., De Baets S., Vanbaelen A., Joris K., and De Wulf P. Polym. Degrad. Stab., 1998, 59, (1–3), 93 LINK [Google Scholar]
  6. Delmer D. P. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, 50, 245 LINK [Google Scholar]
  7. Mikkelsen D., Flanagan B. M., Dykes G. A., and Gidley M. J. J. Appl. Microbiol., 2009, 107, (2), 576 LINK [Google Scholar]
  8. Huang Y., Zhu C., Yang J., Nie Y., Chen C., and Sun D. Cellulose, 2014, 21, 1 LINK [Google Scholar]
  9. Fu L., Zhang J., and Yang G. Carbohydr. Polym., 2013, 92, (2), 1432 LINK [Google Scholar]
  10. Fu L., Zhou P., Zhang S., and Yang G. Mater. Sci. Eng. C, 2013, 33, (5), 2995 LINK [Google Scholar]
  11. Klemm D., Schumann D., Udhardt U., and Marsch S. Prog. Polym. Sci., 2001, 26, (9), 1561 LINK [Google Scholar]
  12. Shi Z., Zhang Y., Phillips G. O., and Yang G. Food Hydrocoll., 2014, 35, 539 LINK [Google Scholar]
  13. Shezad O., Khan S., Khan T., and Park J. K. Carbohydr. Polym., 2010, 82, (1), 173 LINK [Google Scholar]
  14. Kralisch D., Hessler N., Klemm D., Erdmann R., and Schmidt W. Biotechnol. Bioeng., 2010, 105, (4), 740 LINK [Google Scholar]
  15. Lin S.-P., Loira Calvar I., Catchmark J. M., Liu J.-R., Demirci A., and Cheng K.-C. Cellulose, 2013, 20, (5), 2191 LINK [Google Scholar]
  16. Nishi Y., Uryu M., Yamanaka S., Watanabe K., Kitamura N., Iguchi M., and Mitsuhashi S. J. Mater. Sci., 1990, 25, (6), 2997 LINK [Google Scholar]
  17. McKenna B. A., Mikkelsen D., Wehr J. B., Gidley M. J., and Menzies N. W. Cellulose, 2009, 16, (6), 1047 LINK [Google Scholar]
  18. Gea S., Reynolds C. T., Roohpour N., Wirjosentono B., Soykeabkaew N., Bilotti E., and Peijs T. Bioresour. Technol., 2011, 102, (19), 9105 LINK [Google Scholar]
  19. Lindsay H. Potato Res., 1973, 16, (3), 176 LINK [Google Scholar]
  20. Toda K., Asakura T., Fukaya M., Entani E., and Kawamura Y. J. Ferment. Bioeng., 1997, 84, (3), 228 LINK [Google Scholar]
  21. Tonouchi N., Tsuchida T., Yoshinaga F., Beppu T., and Horinouchi S. Biosci. Biotechnol. Biochem., 1996, 60, (8), 1377 LINK [Google Scholar]
  22. Velásquez-Riaño M., and Bojacá V. Cellulose, 2017, 24, (7), 2677 LINK [Google Scholar]
  23. Li T., Chen X., Chen J., Wu Q., and Chen G.-Q. Biotechnol. J., 2014, 9, (12), 1503 LINK [Google Scholar]
  24. Ross P., Mayer R., and Benziman M. Microbiol. Rev., 1991, 55, (1), 35 LINK [Google Scholar]
  25. Lu T., Gao H., Liao B., Wu J., Zhang W., Huang J., Liu M., Huang J., Chang Z., Jin M., Yi Z., and Jiang D. Carbohydr. Polym., 2020, 232, 115788 LINK [Google Scholar]
  26. Iguchi M., Yamanaka S., and Budhiono A. J. Mater. Sci., 2000, 35, (2), 261 LINK [Google Scholar]
  27. Rani M. U., and Appaiah K. A. A. J. Food Sci. Technol., 2013, 50, (4), 755 LINK [Google Scholar]
  28. Singhsa P., Narain R., and Manuspiya H. Cellulose, 2018, 25, (3), 1571 LINK [Google Scholar]
  29. Joris K., and Vandamme E. J. Microbiol. Eur., 1993, 1, 27 [Google Scholar]
  30. Yamamoto H., and Horn F. Cellulose, 1994, 1, (1), 57 LINK [Google Scholar]
  31. Tokoh C., Takabe K., Fujita M., and Saiki H. Cellulose, 1998, 5, (4), 249 LINK [Google Scholar]
  32. Vazquez A., Foresti M. L., Cerrutti P., and Galvagno M. J. Polym. Environ., 2013, 21, (2), 545 LINK [Google Scholar]
  33. Dórame-Miranda R. F., Gámez-Meza N., Medina-Juárez L. Á., Ezquerra-Brauer J. M., Ovando-Martínez M., and Lizardi-Mendoza J. Carbohydr. Polym., 2019, 207, 91 LINK [Google Scholar]
  34. Zhijiang C., Chengwei H., and Guang Y. J. Appl. Polym. Sci., 2012, 126, (6), 2078 LINK [Google Scholar]
  35. Castro C., Zuluaga R., Putaux J.-L., Caro G., Mondragon I., and Gañán P. Carbohydr. Polym., 2011, 84, (1), 96 LINK [Google Scholar]
  36. Lu H., and Jiang X. Appl. Biochem. Biotechnol., 2014, 172, (8), 3844 LINK [Google Scholar]
  37. Zhong C., Zhang G.-C., Liu M., Zheng X.-T., Han P.-P., and Jia S.-R. Appl. Microbiol. Biotechnol., 2013, 97, (14), 6189 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error