Skip to content
1887
Volume 67 Number 4
  • ISSN: 2056-5135

Abstract

Bacterial cellulose (BC) has attracted much research interest, delivering a combination of exclusive properties, such as flexibility, hydrophilicity, crystallinity and a three-dimensional network. In this study, the effects of carbon source and cultivation conditions on BC production by the bacterium subsp. DSM 15973 were assessed. Fructose was the most suitable carbon source and high BC concentrations up to 31 g l–1 were achieved in substrates with 60 g l–1 fructose under static culture conditions. Notably, BC production was equally high under the same fermentation conditions in agitated cultures (~30 g l–1). Moreover, the effectiveness of sodium hydroxide and sodium hypochlorite solutions in BC purification and their potential impact on BC structure and properties were explored. The combination of weak NaOH and NaOCl proved an effective purification method, preserving the fibre structure and crystallinity of BC.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16794186402492
2023-03-21
2024-08-31
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/4/Chatzifragkou_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16794186402492&mimeType=html&fmt=ahah

References

  1. D. R. Nobles, D. K. Romanovicz, R. M. Brown, Plant Physiol., 2001, 127, (2), 529 LINK https://doi.org/10.1104/pp.010557 [Google Scholar]
  2. J. Y. Jung, J. K. Park, H. N. Chang, Enzyme Microb. Technol., 2005, 37, (3), 347 LINK https://doi.org/10.1016/j.enzmictec.2005.02.019 [Google Scholar]
  3. M. U. Islam, M. W. Ullah, S. Khan, N. Shah, J. K. Park, Int. Biol J.. Macromol., 2017, 102, 1166 LINK https://doi.org/10.1016/j.ijbiomac.2017.04.110 [Google Scholar]
  4. H.-M. Ng, L. T. Sin, T.-T. Tee, S.-T. Bee, D. Hui, C.-Y. Low, A. R. Rahmat, Compos. Part B: Eng., 2015, 75, 176 LINK https://doi.org/10.1016/j.compositesb.2015.01.008 [Google Scholar]
  5. E. J. Vandamme, S. De Baets, A. Vanbaelen, K. Joris, P. De Wulf, Polym. Degrad. Stab., 1998, 59, (1–3), 93 LINK https://doi.org/10.1016/s0141-3910(97)00185-7 [Google Scholar]
  6. D. P. Delmer, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, 50, 245 LINK https://doi.org/10.1146/annurev.arplant.50.1.245 [Google Scholar]
  7. D. Mikkelsen, B. M. Flanagan, G. A. Dykes, M. J. Gidley, J. Appl. Microbiol., 2009, 107, (2), 576 LINK https://doi.org/10.1111/j.1365-2672.2009.04226.x [Google Scholar]
  8. Y. Huang, C. Zhu, J. Yang, Y. Nie, C. Chen, D. Sun, Cellulose, 2014, 21, 1 LINK https://doi.org/10.1007/s10570-013-0088-z [Google Scholar]
  9. L. Fu, J. Zhang, G. Yang, Carbohydr. Polym., 2013, 92, (2), 1432 LINK https://doi.org/10.1016/j.carbpol.2012.10.071 [Google Scholar]
  10. L. Fu, P. Zhou, S. Zhang, G. Yang, Mater. Sci. Eng. C, 2013, 33, (5), 2995 LINK https://doi.org/10.1016/j.msec.2013.03.026 [Google Scholar]
  11. D. Klemm, D. Schumann, U. Udhardt, S. Marsch, Prog. Polym. Sci., 2001, 26, (9), 1561 LINK https://doi.org/10.1016/s0079-6700(01)00021-1 [Google Scholar]
  12. Z. Shi, Y. Zhang, G. O. Phillips, G. Yang, Food Hydrocoll., 2014, 35, 539 LINK https://doi.org/10.1016/j.foodhyd.2013.07.012 [Google Scholar]
  13. O. Shezad, S. Khan, T. Khan, J. K. Park, Carbohydr. Polym., 2010, 82, (1), 173 LINK https://doi.org/10.1016/j.carbpol.2010.04.052 [Google Scholar]
  14. D. Kralisch, N. Hessler, D. Klemm, R. Erdmann, W. Schmidt, Biotechnol. Bioeng., 2010, 105, (4), 740 LINK https://doi.org/10.1002/bit.22579 [Google Scholar]
  15. S.-P. Lin, I. Loira Calvar, J. M. Catchmark, J.-R. Liu, A. Demirci, K.-C. Cheng, Cellulose, 2013, 20, (5), 2191 LINK https://doi.org/10.1007/s10570-013-9994-3 [Google Scholar]
  16. Y. Nishi, M. Uryu, S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, J. Mater. Sci., 1990, 25, (6), 2997 LINK https://doi.org/10.1007/bf00584917 [Google Scholar]
  17. B. A. McKenna, D. Mikkelsen, J. B. Wehr, M. J. Gidley, N. W. Menzies, Cellulose, 2009, 16, (6), 1047 LINK https://doi.org/10.1007/s10570-009-9340-y [Google Scholar]
  18. S. Gea, C. T. Reynolds, N. Roohpour, B. Wirjosentono, N. Soykeabkaew, E. Bilotti, T. Peijs, Bioresour. Technol., 2011, 102, (19), 9105 LINK https://doi.org/10.1016/j.biortech.2011.04.077 [Google Scholar]
  19. H. Lindsay, Potato Res., 1973, 16, (3), 176 LINK https://doi.org/10.1007/bf02356048 [Google Scholar]
  20. K. Toda, T. Asakura, M. Fukaya, E. Entani, Y. Kawamura, J. Ferment. Bioeng., 1997, 84, (3), 228 LINK https://doi.org/10.1016/s0922-338x(97)82059-4 [Google Scholar]
  21. N. Tonouchi, T. Tsuchida, F. Yoshinaga, T. Beppu, S. Horinouchi, Biosci. Biotechnol. Biochem., 1996, 60, (8), 1377 LINK https://doi.org/10.1271/bbb.60.1377 [Google Scholar]
  22. M. Velásquez-Riaño, V. Bojacá, Cellulose, 2017, 24, (7), 2677 LINK https://doi.org/10.1007/s10570-017-1309-7 [Google Scholar]
  23. T. Li, X. Chen, J. Chen, Q. Wu, G.-Q. Chen, Biotechnol. J., 2014, 9, (12), 1503 LINK https://doi.org/10.1002/biot.201400084 [Google Scholar]
  24. P. Ross, R. Mayer, M. Benziman, Microbiol. Rev., 1991, 55, (1), 35 LINK https://doi.org/10.1128/mr.55.1.35-58.1991 [Google Scholar]
  25. T. Lu, H. Gao, B. Liao, J. Wu, W. Zhang, J. Huang, M. Liu, J. Huang, Z. Chang, M. Jin, Z. Yi, D. Jiang, Carbohydr. Polym., 2020, 232, 115788 LINK https://doi.org/10.1016/j.carbpol.2019.115788 [Google Scholar]
  26. M. Iguchi, S. Yamanaka, A. Budhiono, J. Mater. Sci., 2000, 35, (2), 261 LINK https://doi.org/10.1023/a:1004775229149 [Google Scholar]
  27. M. U. Rani, K. A. A. Appaiah, J. Food Sci. Technol., 2013, 50, (4), 755 LINK https://doi.org/10.1007/s13197-011-0401-5 [Google Scholar]
  28. P. Singhsa, R. Narain, H. Manuspiya, Cellulose, 2018, 25, (3), 1571 LINK https://doi.org/10.1007/s10570-018-1699-1 [Google Scholar]
  29. K. Joris, E. J. Vandamme, Microbiol. Eur., 1993, 1, 27 [Google Scholar]
  30. H. Yamamoto, F. Horn, Cellulose, 1994, 1, (1), 57 LINK https://doi.org/10.1007/bf00818798 [Google Scholar]
  31. C. Tokoh, K. Takabe, M. Fujita, H. Saiki, Cellulose, 1998, 5, (4), 249 LINK https://doi.org/10.1023/a:1009211927183 [Google Scholar]
  32. A. Vazquez, M. L. Foresti, P. Cerrutti, M. Galvagno, J. Polym. Environ., 2013, 21, (2), 545 LINK https://doi.org/10.1007/s10924-012-0541-3 [Google Scholar]
  33. R. F. Dórame-Miranda, N. Gámez-Meza, L. Á. Medina-Juárez, J. M. Ezquerra-Brauer, M. Ovando-Martínez, J. Lizardi-Mendoza, Carbohydr. Polym., 2019, 207, 91 LINK https://doi.org/10.1016/j.carbpol.2018.11.067 [Google Scholar]
  34. C. Zhijiang, H. Chengwei, Y. Guang, J. Appl. Polym. Sci., 2012, 126, (6), 2078 LINK https://doi.org/10.1002/app.38396 [Google Scholar]
  35. C. Castro, R. Zuluaga, J.-L. Putaux, G. Caro, I. Mondragon, P. Gañán, Carbohydr. Polym., 2011, 84, (1), 96 LINK https://doi.org/10.1016/j.carbpol.2010.10.072 [Google Scholar]
  36. H. Lu, X. Jiang, Appl. Biochem. Biotechnol., 2014, 172, (8), 3844 LINK https://doi.org/10.1007/s12010-014-0795-4 [Google Scholar]
  37. C. Zhong, G.-C. Zhang, M. Liu, X.-T. Zheng, P.-P. Han, S.-R. Jia, Appl. Microbiol. Biotechnol., 2013, 97, (14), 6189 LINK https://doi.org/10.1007/s00253-013-4908-8 [Google Scholar]
/content/journals/10.1595/205651323X16794186402492
Loading
/content/journals/10.1595/205651323X16794186402492
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test