Skip to content
1887
Volume 67 Number 4
  • ISSN: 2056-5135

Abstract

Bacterial cellulose (BC) has attracted much research interest, delivering a combination of exclusive properties, such as flexibility, hydrophilicity, crystallinity and a three-dimensional network. In this study, the effects of carbon source and cultivation conditions on BC production by the bacterium subsp. DSM 15973 were assessed. Fructose was the most suitable carbon source and high BC concentrations up to 31 g l–1 were achieved in substrates with 60 g l–1 fructose under static culture conditions. Notably, BC production was equally high under the same fermentation conditions in agitated cultures (~30 g l–1). Moreover, the effectiveness of sodium hydroxide and sodium hypochlorite solutions in BC purification and their potential impact on BC structure and properties were explored. The combination of weak NaOH and NaOCl proved an effective purification method, preserving the fibre structure and crystallinity of BC.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16794186402492
2023-03-21
2024-02-29
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/4/Chatzifragkou_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16794186402492&mimeType=html&fmt=ahah

References

  1. Nobles D. R., Romanovicz D. K., and Brown R. M. Plant Physiol., 2001, 127, (2), 529 LINK https://doi.org/10.1104/pp.010557 [Google Scholar]
  2. Jung J. Y., Park J. K., and Chang H. N. Enzyme Microb. Technol., 2005, 37, (3), 347 LINK https://doi.org/10.1016/j.enzmictec.2005.02.019 [Google Scholar]
  3. Islam M. U., Ullah M. W., Khan S., Shah N., and Park J. K. Int. Biol J.. Macromol., 2017, 102, 1166 LINK https://doi.org/10.1016/j.ijbiomac.2017.04.110 [Google Scholar]
  4. Ng H.-M., Sin L. T., Tee T.-T., Bee S.-T., Hui D., Low C.-Y., and Rahmat A. R. Compos. Part B: Eng., 2015, 75, 176 LINK https://doi.org/10.1016/j.compositesb.2015.01.008 [Google Scholar]
  5. Vandamme E. J., De Baets S., Vanbaelen A., Joris K., and De Wulf P. Polym. Degrad. Stab., 1998, 59, (1–3), 93 LINK https://doi.org/10.1016/s0141-3910(97)00185-7 [Google Scholar]
  6. Delmer D. P. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, 50, 245 LINK https://doi.org/10.1146/annurev.arplant.50.1.245 [Google Scholar]
  7. Mikkelsen D., Flanagan B. M., Dykes G. A., and Gidley M. J. J. Appl. Microbiol., 2009, 107, (2), 576 LINK https://doi.org/10.1111/j.1365-2672.2009.04226.x [Google Scholar]
  8. Huang Y., Zhu C., Yang J., Nie Y., Chen C., and Sun D. Cellulose, 2014, 21, 1 LINK https://doi.org/10.1007/s10570-013-0088-z [Google Scholar]
  9. Fu L., Zhang J., and Yang G. Carbohydr. Polym., 2013, 92, (2), 1432 LINK https://doi.org/10.1016/j.carbpol.2012.10.071 [Google Scholar]
  10. Fu L., Zhou P., Zhang S., and Yang G. Mater. Sci. Eng. C, 2013, 33, (5), 2995 LINK https://doi.org/10.1016/j.msec.2013.03.026 [Google Scholar]
  11. Klemm D., Schumann D., Udhardt U., and Marsch S. Prog. Polym. Sci., 2001, 26, (9), 1561 LINK https://doi.org/10.1016/s0079-6700(01)00021-1 [Google Scholar]
  12. Shi Z., Zhang Y., Phillips G. O., and Yang G. Food Hydrocoll., 2014, 35, 539 LINK https://doi.org/10.1016/j.foodhyd.2013.07.012 [Google Scholar]
  13. Shezad O., Khan S., Khan T., and Park J. K. Carbohydr. Polym., 2010, 82, (1), 173 LINK https://doi.org/10.1016/j.carbpol.2010.04.052 [Google Scholar]
  14. Kralisch D., Hessler N., Klemm D., Erdmann R., and Schmidt W. Biotechnol. Bioeng., 2010, 105, (4), 740 LINK https://doi.org/10.1002/bit.22579 [Google Scholar]
  15. Lin S.-P., Loira Calvar I., Catchmark J. M., Liu J.-R., Demirci A., and Cheng K.-C. Cellulose, 2013, 20, (5), 2191 LINK https://doi.org/10.1007/s10570-013-9994-3 [Google Scholar]
  16. Nishi Y., Uryu M., Yamanaka S., Watanabe K., Kitamura N., Iguchi M., and Mitsuhashi S. J. Mater. Sci., 1990, 25, (6), 2997 LINK https://doi.org/10.1007/bf00584917 [Google Scholar]
  17. McKenna B. A., Mikkelsen D., Wehr J. B., Gidley M. J., and Menzies N. W. Cellulose, 2009, 16, (6), 1047 LINK https://doi.org/10.1007/s10570-009-9340-y [Google Scholar]
  18. Gea S., Reynolds C. T., Roohpour N., Wirjosentono B., Soykeabkaew N., Bilotti E., and Peijs T. Bioresour. Technol., 2011, 102, (19), 9105 LINK https://doi.org/10.1016/j.biortech.2011.04.077 [Google Scholar]
  19. Lindsay H. Potato Res., 1973, 16, (3), 176 LINK https://doi.org/10.1007/bf02356048 [Google Scholar]
  20. Toda K., Asakura T., Fukaya M., Entani E., and Kawamura Y. J. Ferment. Bioeng., 1997, 84, (3), 228 LINK https://doi.org/10.1016/s0922-338x(97)82059-4 [Google Scholar]
  21. Tonouchi N., Tsuchida T., Yoshinaga F., Beppu T., and Horinouchi S. Biosci. Biotechnol. Biochem., 1996, 60, (8), 1377 LINK https://doi.org/10.1271/bbb.60.1377 [Google Scholar]
  22. Velásquez-Riaño M., and Bojacá V. Cellulose, 2017, 24, (7), 2677 LINK https://doi.org/10.1007/s10570-017-1309-7 [Google Scholar]
  23. Li T., Chen X., Chen J., Wu Q., and Chen G.-Q. Biotechnol. J., 2014, 9, (12), 1503 LINK https://doi.org/10.1002/biot.201400084 [Google Scholar]
  24. Ross P., Mayer R., and Benziman M. Microbiol. Rev., 1991, 55, (1), 35 LINK https://doi.org/10.1128/mr.55.1.35-58.1991 [Google Scholar]
  25. Lu T., Gao H., Liao B., Wu J., Zhang W., Huang J., Liu M., Huang J., Chang Z., Jin M., Yi Z., and Jiang D. Carbohydr. Polym., 2020, 232, 115788 LINK https://doi.org/10.1016/j.carbpol.2019.115788 [Google Scholar]
  26. Iguchi M., Yamanaka S., and Budhiono A. J. Mater. Sci., 2000, 35, (2), 261 LINK https://doi.org/10.1023/a:1004775229149 [Google Scholar]
  27. Rani M. U., and Appaiah K. A. A. J. Food Sci. Technol., 2013, 50, (4), 755 LINK https://doi.org/10.1007/s13197-011-0401-5 [Google Scholar]
  28. Singhsa P., Narain R., and Manuspiya H. Cellulose, 2018, 25, (3), 1571 LINK https://doi.org/10.1007/s10570-018-1699-1 [Google Scholar]
  29. Joris K., and Vandamme E. J. Microbiol. Eur., 1993, 1, 27 [Google Scholar]
  30. Yamamoto H., and Horn F. Cellulose, 1994, 1, (1), 57 LINK https://doi.org/10.1007/bf00818798 [Google Scholar]
  31. Tokoh C., Takabe K., Fujita M., and Saiki H. Cellulose, 1998, 5, (4), 249 LINK https://doi.org/10.1023/a:1009211927183 [Google Scholar]
  32. Vazquez A., Foresti M. L., Cerrutti P., and Galvagno M. J. Polym. Environ., 2013, 21, (2), 545 LINK https://doi.org/10.1007/s10924-012-0541-3 [Google Scholar]
  33. Dórame-Miranda R. F., Gámez-Meza N., Medina-Juárez L. Á., Ezquerra-Brauer J. M., Ovando-Martínez M., and Lizardi-Mendoza J. Carbohydr. Polym., 2019, 207, 91 LINK https://doi.org/10.1016/j.carbpol.2018.11.067 [Google Scholar]
  34. Zhijiang C., Chengwei H., and Guang Y. J. Appl. Polym. Sci., 2012, 126, (6), 2078 LINK https://doi.org/10.1002/app.38396 [Google Scholar]
  35. Castro C., Zuluaga R., Putaux J.-L., Caro G., Mondragon I., and Gañán P. Carbohydr. Polym., 2011, 84, (1), 96 LINK https://doi.org/10.1016/j.carbpol.2010.10.072 [Google Scholar]
  36. Lu H., and Jiang X. Appl. Biochem. Biotechnol., 2014, 172, (8), 3844 LINK https://doi.org/10.1007/s12010-014-0795-4 [Google Scholar]
  37. Zhong C., Zhang G.-C., Liu M., Zheng X.-T., Han P.-P., and Jia S.-R. Appl. Microbiol. Biotechnol., 2013, 97, (14), 6189 LINK https://doi.org/10.1007/s00253-013-4908-8 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651323X16794186402492
Loading
/content/journals/10.1595/205651323X16794186402492
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error