Skip to content
1887
Volume 67 Number 4
  • ISSN: 2056-5135
  • oa Microbial Production of Hydrogen

    New opportunities for a low-energy source of hydrogen, not reliant on fossil fuels, using bacteria confined in coatings

  • Authors: Kathleen L. Dunbar1, Suzanne Hingley-Wilson2 and Joseph L. Keddie1
  • Affiliations: 1 School of Mathematics and Physics, University of SurreyGuildford, Surrey, GU2 7XHUK 2 Department of Microbial Sciences, School of Biosciences, University of SurreyGuildford, Surrey, GU2 7XHUK
  • Source: Johnson Matthey Technology Review, Volume 67, Issue 4, Oct 2023, p. 402 - 413
  • DOI: https://doi.org/10.1595/205651323X16806845172690
    • Received: 12 Dec 2022
    • Accepted: 04 Apr 2023
    • Published online: 05 Apr 2023

Abstract

Hydrogen offers a source of energy that does not produce any greenhouse gas (GHG) when combusted. However, some hydrogen manufacturing methods consume large amounts of energy and produce carbon dioxide as a byproduct. The production of hydrogen by bacteria is an attractive alternative because it is not energy intensive and, under the right conditions, does not release GHG. In this review, we introduce the five known ways by which bacteria can evolve hydrogen. We then describe methods to encapsulate living bacteria in synthetic layers, called biocoatings, for applications in bioreactors. We review the few examples in which biocoatings have been used to produce hydrogen the photofermentation method. Although not used in biocoatings so far, the dark fermentation method of hydrogen production avoids the need for illumination while offering a high yield with low oxygen evolution. We identify the potential for using genetically-modified bacteria in future research on biocoatings.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16806845172690
2023-04-05
2025-01-06
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/4/Keddie_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16806845172690&mimeType=html&fmt=ahah

References

  1. C. B. B. Farias, R. C. S. Barreiros, M. F. da Silva, A. A. Casazza, A. Converti, L. A. Sarubbo, Energies, 2022, 15, (1), 311 LINK https://doi.org/10.3390/en15010311 [Google Scholar]
  2. Z. Abdin, A. Zafaranloo, A. Rafiee, W. Mérida, W. Lipiński, K. R. Khalilpour, Renew. Sustain. Energy Rev., 2020, 120, 109620 LINK https://doi.org/10.1016/j.rser.2019.109620 [Google Scholar]
  3. F. Dawood, M. Anda, G. M. Shafiullah, Int. J. Hydrogen Energy, 2020, 45, (7), 3847 LINK https://doi.org/10.1016/j.ijhydene.2019.12.059 [Google Scholar]
  4. ‘Hydrogen Strategy Update to the Market: July 2022’, Policy Paper, Department for Energy Security and Net Zero, Department for Business, Energy & Industrial Strategy, The Stationery Office, London, UK, 2022 LINK https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1092555/hydrogen-strategy-update-to-the-market-july-2022.pdf [Google Scholar]
  5. I. Dincer, Int. J. Hydrogen Energy, 2012, 37, (2), 1954 LINK https://doi.org/10.1016/j.ijhydene.2011.03.173 [Google Scholar]
  6. D.-H. Kim, M.-S. Kim, Bioresour. Technol., 2011, 102, (18), 8423 LINK https://doi.org/10.1016/j.biortech.2011.02.113 [Google Scholar]
  7. C. Greening, A. Biswas, C. R. Carere, C. J. Jackson, M. C. Taylor, M. B. Stott, G. M. Cook, S. E. Morales, ISME J., 2016, 10, (3), 761 LINK https://doi.org/10.1038/ismej.2015.153 [Google Scholar]
  8. G. Huang, T. Wagner, M. D. Wodrich, K. Ataka, E. Bill, U. Ermler, X. Hu, S. Shima, Nat. Catal., 2019, 2, (6), 537 LINK https://doi.org/10.1038/s41929-019-0289-4 [Google Scholar]
  9. C. Z. Lazaro, P. C. Hallenbeck, S. V. Mohan, J.-S. Chang, P. C. Hallenbeck, C. Larroche, ‘Fundamentals of Biohydrogen Production’, in “Biohydrogen”, eds. A. Pandey, Elsevier BV, Amstersdam, The Netherlands, 2019, pp. 2548 LINK https://doi.org/10.1016/b978-0-444-64203-5.00002-2 [Google Scholar]
  10. S. Rittmann, C. Herwig, Microb. Cell Fact., 2012, 11, 115 LINK https://doi.org/10.1186/1475-2859-11-115 [Google Scholar]
  11. N. Akhlaghi, G. Najafpour-Darzi, Int. J. Hydrogen Energy, 2020, 45, (43), 22492 LINK https://doi.org/10.1016/j.ijhydene.2020.06.182 [Google Scholar]
  12. V. Sanchez-Torres, T. Maeda, T. K. Wood, Appl. Environ. Microbiol., 2009, 75, (17), 5639 LINK https://doi.org/10.1128/aem.00638-09 [Google Scholar]
  13. N. Singh, S. Sarma, ‘Biological Routes of Hydrogen Production: A Critical Assessment’, in “Handbook of Biofuels”, ed. S. Sahay, Elsevier Inc, San Diego, USA, 2022, pp. 419434 LINK https://doi.org/10.1016/b978-0-12-822810-4.00021-x [Google Scholar]
  14. M. Piskorska, T. Soule, J. L. Gosse, C. Milliken, M. C. Flickinger, G. W. Smith, C. M. Yeager, Microb. Biotechnol., 2013, 6, (5), 515 LINK https://doi.org/10.1111/1751-7915.12032 [Google Scholar]
  15. Y. Cao, H. Liu, W. Liu, J. Guo, M. Xian, Microb. Cell Fact., 2022, 21, 166 LINK https://doi.org/10.1186/s12934-022-01893-3 [Google Scholar]
  16. P. Sinha, S. Roy, D. Das, Int. J. Hydrogen Energy, 2015, 40, (29), 8806 LINK https://doi.org/10.1016/j.ijhydene.2015.05.076 [Google Scholar]
  17. Z. Fan, L. Yuan, R. Chatterjee, PLoS One, 2009, 4, (2), e4432 LINK https://doi.org/10.1371/journal.pone.0004432 [Google Scholar]
  18. T. Maeda, V. Sanchez-Torres, T. K. Wood, Microb. Biotechnol., 2011, 5, (2), 214 LINK https://doi.org/10.1111/j.1751-7915.2011.00282.x [Google Scholar]
  19. A. Bahadar, M. Bilal Khan, Renew. Sustain. Energy Rev., 2013, 27, 128 LINK https://doi.org/10.1016/j.rser.2013.06.029 [Google Scholar]
  20. K. Srirangan, M. E. Pyne, C. Perry Chou, Bioresour. Technol., 2011, 102, (18), 8589 LINK https://doi.org/10.1016/j.biortech.2011.03.087 [Google Scholar]
  21. M. Abo-Hashesh, R. Wang, P. C. Hallenbeck, Bioresour. Technol., 2011, 102, (18), 8414 LINK https://doi.org/10.1016/j.biortech.2011.03.016 [Google Scholar]
  22. K. McNeely, Y. Xu, N. Bennette, D. A. Bryant, G. C. Dismukes, Appl. Environ. Microbiol., 2010, 76, (15), 5032 LINK https://doi.org/10.1128/aem.00862-10 [Google Scholar]
  23. T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K. A. Datsenko, M. Tomita, B. L. Wanner, H. Mori, Mol. Syst. Biol., 2006, 2, 2006.0008 LINK https://doi.org/10.1038/msb4100050 [Google Scholar]
  24. A. Valle, D. Cantero, J. Bolívar, Biotechnol. Adv., 2019, 37, (5), 616 LINK https://doi.org/10.1016/j.biotechadv.2019.03.006 [Google Scholar]
  25. A. Yoshida, T. Nishimura, H. Kawaguchi, M. Inui, H. Yukawa, Appl. Environ. Microbiol., 2005, 71, (11), 6762 LINK https://doi.org/10.1128/aem.71.11.6762-6768.2005 [Google Scholar]
  26. T. Maeda, V. Sanchez-Torres, T. K. Wood, Microb. Biotechnol., 2007, 1, (1), 30 LINK https://doi.org/10.1111/j.1751-7915.2007.00003.x [Google Scholar]
  27. K. T. Tran, T. Maeda, T. K. Wood, Appl. Microbiol. Biotechnol., 2014, 98, (10), 4757 LINK https://doi.org/10.1007/s00253-014-5600-3 [Google Scholar]
  28. S. Cortez, A. Nicolau, M. C. Flickinger, M. Mota, Biochem. Eng. J., 2017, 121, 25 LINK https://doi.org/10.1016/j.bej.2017.01.004 [Google Scholar]
  29. D. Lopez, H. Vlamakis, R. Kolter, Cold Spring Harb. Perspect. Biol., 2010, 2, (7), a000398 LINK https://doi.org/10.1101/cshperspect.a000398 [Google Scholar]
  30. G. S. Caldwell, P. In-na, R. Hart, E. Sharp, A. Stefanova, M. Pickersgill, M. Walker, M. Unthank, J. Perry, J. G. M. Lee, Energies, 2021, 14, (9), 2566 LINK https://doi.org/10.3390/en14092566 [Google Scholar]
  31. M. C. Flickinger, O. I. Bernal, M. J. Schulte, J. J. Broglie, C. J. Duran, A. Wallace, C. B. Mooney, O. D. Velev, J. Coatings Technol. Res., 2017, 14, (4), 791 LINK https://doi.org/10.1007/s11998-017-9933-6 [Google Scholar]
  32. Y. Chen, S. Krings, A. M. J. M. Beale, B. Guo, S. Hingley-Wilson, J. L. Keddie, Adv. Sustain. Syst., 2022, 6, (12), 2200312 LINK https://doi.org/10.1002/adsu.202200312 [Google Scholar]
  33. R. Hart, P. In-na, M. V Kapralov, J. G. M. Lee, G. S. Caldwell, J. Appl. Phycol., 2021, 33, (3), 1525 LINK https://doi.org/10.1007/s10811-021-02410-6 [Google Scholar]
  34. J. González-Martín, S. Cantera, R. Lebrero, R. Muñoz, Chemosphere, 2022, 287, (3), 132182 LINK https://doi.org/10.1016/j.chemosphere.2021.132182 [Google Scholar]
  35. J. M. Estrada, O. I. Bernal, M. C. Flickinger, R. Muñoz, M. A. Deshusses, Biotechnol. Bioeng., 2015, 112, (2), 263 LINK https://doi.org/10.1002/bit.25353 [Google Scholar]
  36. O. I. Bernal, C. B. Mooney, M. C. Flickinger, Biotechnol. Bioeng., 2014, 111, (10), 1993 LINK https://doi.org/10.1002/bit.25280 [Google Scholar]
  37. P. In-na, A. A. Umar, A. D. Wallace, M. C. Flickinger, G. S. Caldwell, J. G. M. Lee, J. CO2 Util., 2020, 42, 101348 LINK https://doi.org/10.1016/j.jcou.2020.101348 [Google Scholar]
  38. P. In-na, E. B. Sharp, G. S. Caldwell, M. G. Unthank, J. J. Perry, J. G. M. Lee, Sci. Rep., 2022, 12, 18735 LINK https://doi.org/10.1038/s41598-022-21686-3 [Google Scholar]
  39. J. L. Keddie, A. F. Routh, “Fundamentals of Latex Film Formation: Processes and Properties”, Springer, Dordecht, The Netherlands, 2010 LINK https://doi.org/10.1007/978-90-481-2845-7 [Google Scholar]
  40. Y. Chen, S. Krings, J. R. Booth, S. A. F. Bon, S. Hingley-Wilson, J. L. Keddie, Biomacromolecules, 2020, 21, (11), 4545 LINK https://doi.org/10.1021/acs.biomac.0c00649 [Google Scholar]
  41. J. L. Gosse, M. S. Chinn, A. M. Grunden, O. I. Bernal, J. S. Jenkins, C. Yeager, S. Kosourov, M. Seibert, M. C. Flickinger, J. Ind. Microbiol. Biotechnol., 2012, 39, (9), 1269 LINK https://doi.org/10.1007/s10295-012-1135-8 [Google Scholar]
  42. A. F. Routh, W. B. Russel, Ind. Eng. Chem. Res., 2001, 40, (20), 4302 LINK https://doi.org/10.1021/ie001070h [Google Scholar]
  43. J. L. Gosse, B. J. Engel, F. E. Rey, C. S. Harwood, L. E. Scriven, M. C. Flickinger, Biotechnol. Prog., 2007, 23, (1), 124 LINK https://doi.org/10.1021/bp060254+ [Google Scholar]
  44. E. Seol, S. Kim, S. M. Raj, S. Park, Int. J. Hydrogen Energy, 2008, 33, (19), 5169 LINK https://doi.org/10.1016/j.ijhydene.2008.05.007 [Google Scholar]
  45. J. L. Gosse, B. J. Engel, J. C. H. Hui, C. S. Harwood, M. C. Flickinger, Biotechnol. Prog., 2010, 26, (4), 907 LINK https://doi.org/10.1002/btpr.406 [Google Scholar]
  46. O. K. Lyngberg, C. P. Ng, V. Thiagarajan, L. E. Scriven, M. C. Flickinger, Biotechnol. Prog., 2001, 17, (6), 1169 LINK https://doi.org/10.1021/bp0100979 [Google Scholar]
  47. V. S. Thiagarajan, Z. Huang, L. E. Scriven, J. L. Schottel, M. C. Flickinger, J. Colloid Interface Sci., 1999, 215, (2), 244 LINK https://doi.org/10.1006/jcis.1999.6179 [Google Scholar]
  48. M. Ishikawa, S. Yamamura, Y. Takamura, K. Sode, E. Tamiya, M. Tomiyama, Int. J. Hydrogen Energy, 2006, 31, (11), 1484 LINK https://doi.org/10.1016/j.ijhydene.2006.06.014 [Google Scholar]
  49. M. Ishikawa, S. Yamamura, R. Ikeda, Y. Takamura, K. Sode, E. Tamiya, M. Tomiyama, Int. J. Hydrogen Energy, 2008, 33, (5), 1593 LINK https://doi.org/10.1016/j.ijhydene.2007.09.035 [Google Scholar]
  50. O. I. Bernal, J. J. Pawlak, M. C. Flickinger, BioResources, 2017, 12, (2), 4013 LINK https://doi.org/10.15376/biores.12.2.4013-4030 [Google Scholar]
  51. K. L. Swope, M. C. Flickinger, Biotechnol. Bioeng., 1996, 51, (3), 360 LINK https://doi.org/10.1002/(sici)1097-0290(19960805)51:3<360::aid-bit11>3.0.co;2-q [Google Scholar]
  52. O. K. Lyngberg, V. Thiagarajan, D. J. Stemke, J. L. Schottel, L. E. Scriven, M. C. Flickinger, Biotechnol. Bioeng., 1999, 62, (1), 44 LINK https://doi.org/10.1002/(sici)1097-0290(19990105)62:1<44::aid-bit6>3.0.co;2-w [Google Scholar]
/content/journals/10.1595/205651323X16806845172690
Loading
/content/journals/10.1595/205651323X16806845172690
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test