Skip to content
Volume 67 Number 4
  • ISSN: 2056-5135


Hydrogen offers a source of energy that does not produce any greenhouse gas (GHG) when combusted. However, some hydrogen manufacturing methods consume large amounts of energy and produce carbon dioxide as a byproduct. The production of hydrogen by bacteria is an attractive alternative because it is not energy intensive and, under the right conditions, does not release GHG. In this review, we introduce the five known ways by which bacteria can evolve hydrogen. We then describe methods to encapsulate living bacteria in synthetic layers, called biocoatings, for applications in bioreactors. We review the few examples in which biocoatings have been used to produce hydrogen the photofermentation method. Although not used in biocoatings so far, the dark fermentation method of hydrogen production avoids the need for illumination while offering a high yield with low oxygen evolution. We identify the potential for using genetically-modified bacteria in future research on biocoatings.


Article metrics loading...

Loading full text...

Full text loading...



  1. Farias C. B. B., Barreiros R. C. S., da Silva M. F., Casazza A. A., Converti A., and Sarubbo L. A. Energies, 2022, 15, (1), 311 LINK [Google Scholar]
  2. Abdin Z., Zafaranloo A., Rafiee A., Mérida W., Lipiński W., and Khalilpour K. R. Renew. Sustain. Energy Rev., 2020, 120, 109620 LINK [Google Scholar]
  3. Dawood F., Anda M., and Shafiullah G. M. Int. J. Hydrogen Energy, 2020, 45, (7), 3847 LINK [Google Scholar]
  4. ‘Hydrogen Strategy Update to the Market: July 2022’, Policy Paper, Department for Energy Security and Net Zero, Department for Business, Energy & Industrial Strategy, The Stationery Office, London, UK, 2022 LINK [Google Scholar]
  5. Dincer I. Int. J. Hydrogen Energy, 2012, 37, (2), 1954 LINK [Google Scholar]
  6. Kim D.-H., and Kim M.-S. Bioresour. Technol., 2011, 102, (18), 8423 LINK [Google Scholar]
  7. Greening C., Biswas A., Carere C. R., Jackson C. J., Taylor M. C., Stott M. B., Cook G. M., and Morales S. E. ISME J., 2016, 10, (3), 761 LINK [Google Scholar]
  8. Huang G., Wagner T., Wodrich M. D., Ataka K., Bill E., Ermler U., Hu X., and Shima S. Nat. Catal., 2019, 2, (6), 537 LINK [Google Scholar]
  9. Lazaro C. Z., Hallenbeck P. C., Mohan S. V., Chang J.-S., Hallenbeck P. C., and Larroche C. ‘Fundamentals of Biohydrogen Production’, in “Biohydrogen”, eds. Pandey A., Elsevier BV, Amstersdam, The Netherlands, 2019, pp. 2548 LINK [Google Scholar]
  10. Rittmann S., and Herwig C. Microb. Cell Fact., 2012, 11, 115 LINK [Google Scholar]
  11. Akhlaghi N., and Najafpour-Darzi G. Int. J. Hydrogen Energy, 2020, 45, (43), 22492 LINK [Google Scholar]
  12. Sanchez-Torres V., Maeda T., and Wood T. K. Appl. Environ. Microbiol., 2009, 75, (17), 5639 LINK [Google Scholar]
  13. Singh N., Sarma S., ‘Biological Routes of Hydrogen Production: A Critical Assessment’, in “Handbook of Biofuels”, ed. and Sahay S. Elsevier Inc, San Diego, USA, 2022, pp. 419434 LINK [Google Scholar]
  14. Piskorska M., Soule T., Gosse J. L., Milliken C., Flickinger M. C., Smith G. W., and Yeager C. M. Microb. Biotechnol., 2013, 6, (5), 515 LINK [Google Scholar]
  15. Cao Y., Liu H., Liu W., Guo J., and Xian M. Microb. Cell Fact., 2022, 21, 166 LINK [Google Scholar]
  16. Sinha P., Roy S., and Das D. Int. J. Hydrogen Energy, 2015, 40, (29), 8806 LINK [Google Scholar]
  17. Fan Z., Yuan L., and Chatterjee R. PLoS One, 2009, 4, (2), e4432 LINK [Google Scholar]
  18. Maeda T., Sanchez-Torres V., and Wood T. K. Microb. Biotechnol., 2011, 5, (2), 214 LINK [Google Scholar]
  19. Bahadar A., and Bilal Khan M. Renew. Sustain. Energy Rev., 2013, 27, 128 LINK [Google Scholar]
  20. Srirangan K., Pyne M. E., and Perry Chou C. Bioresour. Technol., 2011, 102, (18), 8589 LINK [Google Scholar]
  21. Abo-Hashesh M., Wang R., and Hallenbeck P. C. Bioresour. Technol., 2011, 102, (18), 8414 LINK [Google Scholar]
  22. McNeely K., Xu Y., Bennette N., Bryant D. A., and Dismukes G. C. Appl. Environ. Microbiol., 2010, 76, (15), 5032 LINK [Google Scholar]
  23. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., and Mori H. Mol. Syst. Biol., 2006, 2, 2006.0008 LINK [Google Scholar]
  24. Valle A., Cantero D., and Bolívar J. Biotechnol. Adv., 2019, 37, (5), 616 LINK [Google Scholar]
  25. Yoshida A., Nishimura T., Kawaguchi H., Inui M., and Yukawa H. Appl. Environ. Microbiol., 2005, 71, (11), 6762 LINK [Google Scholar]
  26. Maeda T., Sanchez-Torres V., and Wood T. K. Microb. Biotechnol., 2007, 1, (1), 30 LINK [Google Scholar]
  27. Tran K. T., Maeda T., and Wood T. K. Appl. Microbiol. Biotechnol., 2014, 98, (10), 4757 LINK [Google Scholar]
  28. Cortez S., Nicolau A., Flickinger M. C., and Mota M. Biochem. Eng. J., 2017, 121, 25 LINK [Google Scholar]
  29. Lopez D., Vlamakis H., and Kolter R. Cold Spring Harb. Perspect. Biol., 2010, 2, (7), a000398 LINK [Google Scholar]
  30. Caldwell G. S., In-na P., Hart R., Sharp E., Stefanova A., Pickersgill M., Walker M., Unthank M., Perry J., and Lee J. G. M. Energies, 2021, 14, (9), 2566 LINK [Google Scholar]
  31. Flickinger M. C., Bernal O. I., Schulte M. J., Broglie J. J., Duran C. J., Wallace A., Mooney C. B., and Velev O. D. J. Coatings Technol. Res., 2017, 14, (4), 791 LINK [Google Scholar]
  32. Chen Y., Krings S., Beale A. M. J. M., Guo B., Hingley-Wilson S., and Keddie J. L. Adv. Sustain. Syst., 2022, 6, (12), 2200312 LINK [Google Scholar]
  33. Hart R., In-na P., Kapralov M. V, Lee J. G. M., and Caldwell G. S. J. Appl. Phycol., 2021, 33, (3), 1525 LINK [Google Scholar]
  34. González-Martín J., Cantera S., Lebrero R., and Muñoz R. Chemosphere, 2022, 287, (3), 132182 LINK [Google Scholar]
  35. Estrada J. M., Bernal O. I., Flickinger M. C., Muñoz R., and Deshusses M. A. Biotechnol. Bioeng., 2015, 112, (2), 263 LINK [Google Scholar]
  36. Bernal O. I., Mooney C. B., and Flickinger M. C. Biotechnol. Bioeng., 2014, 111, (10), 1993 LINK [Google Scholar]
  37. In-na P., Umar A. A., Wallace A. D., Flickinger M. C., Caldwell G. S., and Lee J. G. M. J. CO2 Util., 2020, 42, 101348 LINK [Google Scholar]
  38. In-na P., Sharp E. B., Caldwell G. S., Unthank M. G., Perry J. J., and Lee J. G. M. Sci. Rep., 2022, 12, 18735 LINK [Google Scholar]
  39. Keddie J. L., and Routh A. F. “Fundamentals of Latex Film Formation: Processes and Properties”, Springer, Dordecht, The Netherlands, 2010 LINK [Google Scholar]
  40. Chen Y., Krings S., Booth J. R., Bon S. A. F., Hingley-Wilson S., and Keddie J. L. Biomacromolecules, 2020, 21, (11), 4545 LINK [Google Scholar]
  41. Gosse J. L., Chinn M. S., Grunden A. M., Bernal O. I., Jenkins J. S., Yeager C., Kosourov S., Seibert M., and Flickinger M. C. J. Ind. Microbiol. Biotechnol., 2012, 39, (9), 1269 LINK [Google Scholar]
  42. Routh A. F., and Russel W. B. Ind. Eng. Chem. Res., 2001, 40, (20), 4302 LINK [Google Scholar]
  43. Gosse J. L., Engel B. J., Rey F. E., Harwood C. S., Scriven L. E., and Flickinger M. C. Biotechnol. Prog., 2007, 23, (1), 124 LINK [Google Scholar]
  44. Seol E., Kim S., Raj S. M., and Park S. Int. J. Hydrogen Energy, 2008, 33, (19), 5169 LINK [Google Scholar]
  45. Gosse J. L., Engel B. J., Hui J. C. H., Harwood C. S., and Flickinger M. C. Biotechnol. Prog., 2010, 26, (4), 907 LINK [Google Scholar]
  46. Lyngberg O. K., Ng C. P., Thiagarajan V., Scriven L. E., and Flickinger M. C. Biotechnol. Prog., 2001, 17, (6), 1169 LINK [Google Scholar]
  47. Thiagarajan V. S., Huang Z., Scriven L. E., Schottel J. L., and Flickinger M. C. J. Colloid Interface Sci., 1999, 215, (2), 244 LINK [Google Scholar]
  48. Ishikawa M., Yamamura S., Takamura Y., Sode K., Tamiya E., and Tomiyama M. Int. J. Hydrogen Energy, 2006, 31, (11), 1484 LINK [Google Scholar]
  49. Ishikawa M., Yamamura S., Ikeda R., Takamura Y., Sode K., Tamiya E., and Tomiyama M. Int. J. Hydrogen Energy, 2008, 33, (5), 1593 LINK [Google Scholar]
  50. Bernal O. I., Pawlak J. J., and Flickinger M. C. BioResources, 2017, 12, (2), 4013 LINK [Google Scholar]
  51. Swope K. L., and Flickinger M. C. Biotechnol. Bioeng., 1996, 51, (3), 360 LINK<360::aid-bit11>;2-q [Google Scholar]
  52. Lyngberg O. K., Thiagarajan V., Stemke D. J., Schottel J. L., Scriven L. E., and Flickinger M. C. Biotechnol. Bioeng., 1999, 62, (1), 44 LINK<44::aid-bit6>;2-w [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error