Skip to content
Volume 67 Number 4
  • ISSN: 2056-5135


The biosynthesis of palladium nanoparticles supported on microbial cells (bio-Pd) has attracted much recent interest, but the effect of solution chemistry on the process remains poorly understood. Biological buffers can be used to maintain physiological pH during the bioreduction of Pd(II) to Pd(0) by microbial cells, however, buffer components have the potential to complex Pd(II), and this may affect the subsequent microbe-metal interaction. In this study, a range of Pd(II) salts and biological buffers were selected to assess the impact of the solution chemistry on the rate of bioreduction of Pd(II) by , and the resulting biogenic palladium nanoparticles. The different buffer and Pd(II) combinations resulted in changes in the dominant Pd(II) species in solution, and this affected the amount of palladium recovered from solution by the microbial cells. The physical properties of the bio-Pd nanoparticles were altered under different solution chemistries; only slight variations were observed in the mean particle size (<6 nm), but significant variations in particle agglomeration, the extent of Pd(II) bioreduction and subsequent catalytic activity for the reduction of 4-nitrophenol (4-NP) were observed. The combination of sodium tetrachloropalladate and bicarbonate buffer resulted in bio-Pd with the smallest mean particle size, and the fastest initial rate of reaction for 4-NP reduction (0.33 min–1). Other solution chemistries appeared to damage the cells and result in bio-Pd with relatively poor catalytic performance. This work emphasises that future studies into bio-Pd synthesis should consider the importance of solution chemistry in controlling the speciation of Pd(II) and its impact on both the bioreduction process and the resulting properties of the nanoparticles produced, in order to maximise Pd(II) biorecovery and optimise catalytic properties.


Article metrics loading...

Loading full text...

Full text loading...



  1. Lloyd J. R., Byrne J. M., and Coker V. S. Curr. Opin. Biotechnol., 2011, 22, (4), 509 LINK [Google Scholar]
  2. Egan-Morriss C., Kimber R. L., Powell N. A., and Lloyd J. R. Nanoscale Adv., 2022, 4, (3), 654 LINK [Google Scholar]
  3. Lloyd J. R., Yong P., and Macaskie L. E. Appl. Environ. Microbiol., 1998, 64, (11), 4607 LINK [Google Scholar]
  4. De Windt W., Aelterman P., and Verstraete W. Environ. Microbiol., 2005, 7, (3), 314 LINK [Google Scholar]
  5. Pat-Espadas A. M., Razo-Flores E., Rangel-Mendez J. R., and Cervantes F. J. Appl. Microbiol. Biotechnol., 2012, 97, (21), 9553 LINK [Google Scholar]
  6. Tuo Y., Liu G., Zhou J., Wang A., Wang J., Jin R., and Lv H. Bioresour. Technol., 2013, 133, 606 LINK [Google Scholar]
  7. Deplanche K., Bennett J. A., Mikheenko I. P., Omajali J., Wells A. S., Meadows R. E., Wood J., and Macaskie L. E. Appl. Catal. B: Environ., 2014, 147, 651 LINK [Google Scholar]
  8. Colombo C., Oates C. J., Monhemius A. J., and Plant J. A. Geochem.: Explor. Environ. Anal., 2008, 8, (1), 91 LINK [Google Scholar]
  9. Elding L. I., and Olsson L. F. J. Phys. Chem., 1978, 82, (1), 69 LINK [Google Scholar]
  10. Izatt R. M., Eatough D., and Christensen J. J. J. Chem. Soc. A, 1967, 1301 LINK [Google Scholar]
  11. Barnum D. W. Inorg. Chem., 1983, 22, (16), 2297 LINK [Google Scholar]
  12. Kettemann F., Wuithschick M., Caputo G., Kraehnert R., Pinna N., Rademann K., and Polte J. CrystEngComm, 2015, 17, (8), 1865 LINK [Google Scholar]
  13. Ferreira C. M. H., Pinto I. S. S., Soares E. V., and Soares H. M. V. M. RSC Adv., 2015, 5, (39), 30989 LINK [Google Scholar]
  14. Wildung R. E., Gorby Y. A., Krupka K. M., Hess N. J., Li S. W., Plymale A. E., McKinley J. P., and Fredrickson J. K. Appl. Environ. Microbiol., 2000, 66, (6), 2451 LINK [Google Scholar]
  15. Shi L., Belchik S. M., Plymale A. E., Heald S., Dohnalkova A. C., Sybirna K., Bottin H., Squier T. C., Zachara J. M., and Fredrickson J. K. Appl. Environ. Microbiol., 2011, 77, (16), 5584 LINK [Google Scholar]
  16. Engelbrekt C., Sørensen K. H., Zhang J., Welinder A. C., Jensen P. S., and Ulstrup J. J. Mater. Chem., 2009, 19, (42), 7839 LINK [Google Scholar]
  17. Engelbrekt C., Sørensen K. H., Lübcke T., Zhang J., Li Q., Pan C., Bjerrum N. J., and Ulstrup J. ChemPhysChem, 2010, 11, (13), 2844 LINK [Google Scholar]
  18. Janairo J. I. B., and Sakaguchi K. Chem. Lett., 2014, 43, (8), 1315 LINK [Google Scholar]
  19. Delgado A. G., Parameswaran P., Fajardo-Williams D., Halden R. U., and Krajmalnik-Brown R. Microb. Cell Fact., 2012, 11, 128 LINK [Google Scholar]
  20. Liao C.-H., and Shollenberger L. M. Lett. Appl. Microbiol., 2003, 37, (1), 45 LINK [Google Scholar]
  21. Fischer B. E., Häring U. K., Tribolet R., and Sigel H. Eur. J. Biochem., 1979, 94, (2), 523 LINK [Google Scholar]
  22. Boily J.-F., Seward T. M., and Charnock J. M. Geochim. Cosmochim. Acta, 2007, 71, (20), 4834 LINK [Google Scholar]
  23. le Roux C. J., and Kriek R. J. Hydrometallurgy, 2017, 169, 447 LINK [Google Scholar]
  24. Drew Tait C., Janecky D. R., and Rogers P. S. Z. Geochim. Cosmochim. Acta, 1991, 55, (5), 1253 LINK [Google Scholar]
  25. van Middlesworth J. M., and Wood S. A. Geochim. Cosmochim. Acta, 1999, 63, (11–12), 1751 LINK [Google Scholar]
  26. Simonov P. A., Troitskii S. Y., and Likholobov V. A. Kinet. Catal., 2000, 41, (2), 255 LINK [Google Scholar]
  27. Wang J., Bi S., Chen Y., and Hu Y. Ecotoxicol. Environ. Saf., 2020, 190, 110124 LINK [Google Scholar]
  28. Sari A., Mendil D., Tuzen M., and Soylak M. J. Hazard. Mater., 2009, 162, (2–3), 874 LINK [Google Scholar]
  29. Rasmussen L., and Jørgensen K. Acta Chem. Scand., 1968, 22, (7), 2313 [Google Scholar]
  30. Boily J.-F., and Seward T. M. Geochim. Cosmochim. Acta, 2005, 69, (15), 3773 LINK [Google Scholar]
  31. Cruywagen J. J., and Kriek R. J. J. Coord. Chem., 2007, 60, (4), 439 LINK [Google Scholar]
  32. Byrne R. H., and Yao W. Geochim. Cosmochim. Acta, 2000, 64, (24), 4153 LINK [Google Scholar]
  33. le Roux C. J., and Kriek R. J. Hydrometallurgy, 2019, 186, 21 LINK [Google Scholar]
  34. Spielbauer D., Zeilinger H., and Knoezinger H. Langmuir, 1993, 9, (2), 460 LINK [Google Scholar]
  35. Richard-Daniel J., and Boudreau D. ChemNanoMat, 2020, 6, (6), 907 LINK [Google Scholar]
  36. Yadav V., Jeong S., Ye X., and Li C. W. Chem. Mater., 2022, 34, (4), 1897 LINK [Google Scholar]
  37. De Corte S., Bechstein S., Lokanathan A. R., Kjems J., Boon N., and Meyer R. L. Colloids Surf. B: Biointerfaces, 2013, 102, 898 LINK [Google Scholar]
  38. Søbjerg L. S., Lindhardt A. T., Skrydstrup T., Finster K., and Meyer R. L. Colloids Surf. B: Biointerfaces, 2011, 85, (2), 373 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error