Skip to content
1887
Volume 67 Number 4
  • ISSN: 2056-5135
  • oa Impact of Solution Chemistry on the Biotechnological Synthesis and Properties of Palladium Nanoparticles

    Palladium solution chemistry plays an important role in the bioreduction of Pd(II)

  • Authors: Christopher Egan-Morriss1, Richard L. Kimber2, Nigel A. Powell3 and Jonathan R. Lloyd1
  • Affiliations: 1 Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of ManchesterOxford Road, Manchester, M13 9PLUK 2 Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna1090, ViennaAustria 3 Johnson MattheyBlounts Court, Sonning Common, Reading, RG4 9NHUK
  • Source: Johnson Matthey Technology Review, Volume 67, Issue 4, Oct 2023, p. 438 - 448
  • DOI: https://doi.org/10.1595/205651323X16813753335431
    • Received: 20 Jan 2023
    • Accepted: 11 Apr 2023
    • Published online: 13 Apr 2023

Abstract

The biosynthesis of palladium nanoparticles supported on microbial cells (bio-Pd) has attracted much recent interest, but the effect of solution chemistry on the process remains poorly understood. Biological buffers can be used to maintain physiological pH during the bioreduction of Pd(II) to Pd(0) by microbial cells, however, buffer components have the potential to complex Pd(II), and this may affect the subsequent microbe-metal interaction. In this study, a range of Pd(II) salts and biological buffers were selected to assess the impact of the solution chemistry on the rate of bioreduction of Pd(II) by , and the resulting biogenic palladium nanoparticles. The different buffer and Pd(II) combinations resulted in changes in the dominant Pd(II) species in solution, and this affected the amount of palladium recovered from solution by the microbial cells. The physical properties of the bio-Pd nanoparticles were altered under different solution chemistries; only slight variations were observed in the mean particle size (<6 nm), but significant variations in particle agglomeration, the extent of Pd(II) bioreduction and subsequent catalytic activity for the reduction of 4-nitrophenol (4-NP) were observed. The combination of sodium tetrachloropalladate and bicarbonate buffer resulted in bio-Pd with the smallest mean particle size, and the fastest initial rate of reaction for 4-NP reduction (0.33 min–1). Other solution chemistries appeared to damage the cells and result in bio-Pd with relatively poor catalytic performance. This work emphasises that future studies into bio-Pd synthesis should consider the importance of solution chemistry in controlling the speciation of Pd(II) and its impact on both the bioreduction process and the resulting properties of the nanoparticles produced, in order to maximise Pd(II) biorecovery and optimise catalytic properties.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16813753335431
2023-04-13
2025-01-08
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/4/Lloyd_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16813753335431&mimeType=html&fmt=ahah

References

  1. J. R. Lloyd, J. M. Byrne, V. S. Coker, Curr. Opin. Biotechnol., 2011, 22, (4), 509 LINK https://doi.org/10.1016/j.copbio.2011.06.008 [Google Scholar]
  2. C. Egan-Morriss, R. L. Kimber, N. A. Powell, J. R. Lloyd, Nanoscale Adv., 2022, 4, (3), 654 LINK https://doi.org/10.1039/d1na00686j [Google Scholar]
  3. J. R. Lloyd, P. Yong, L. E. Macaskie, Appl. Environ. Microbiol., 1998, 64, (11), 4607 LINK https://doi.org/10.1128/aem.64.11.4607-4609.1998 [Google Scholar]
  4. W. De Windt, P. Aelterman, W. Verstraete, Environ. Microbiol., 2005, 7, (3), 314 LINK https://doi.org/10.1111/j.1462-2920.2005.00696.x [Google Scholar]
  5. A. M. Pat-Espadas, E. Razo-Flores, J. R. Rangel-Mendez, F. J. Cervantes, Appl. Microbiol. Biotechnol., 2012, 97, (21), 9553 LINK https://doi.org/10.1007/s00253-012-4640-9 [Google Scholar]
  6. Y. Tuo, G. Liu, J. Zhou, A. Wang, J. Wang, R. Jin, H. Lv, Bioresour. Technol., 2013, 133, 606 LINK https://doi.org/10.1016/j.biortech.2013.02.016 [Google Scholar]
  7. K. Deplanche, J. A. Bennett, I. P. Mikheenko, J. Omajali, A. S. Wells, R. E. Meadows, J. Wood, L. E. Macaskie, Appl. Catal. B: Environ., 2014, 147, 651 LINK https://doi.org/10.1016/j.apcatb.2013.09.045 [Google Scholar]
  8. C. Colombo, C. J. Oates, A. J. Monhemius, J. A. Plant, Geochem.: Explor. Environ. Anal., 2008, 8, (1), 91 LINK https://doi.org/10.1144/1467-7873/07-151 [Google Scholar]
  9. L. I. Elding, L. F. Olsson, J. Phys. Chem., 1978, 82, (1), 69 LINK https://doi.org/10.1021/j100490a018 [Google Scholar]
  10. R. M. Izatt, D. Eatough, J. J. Christensen, J. Chem. Soc. A, 1967, 1301 LINK https://doi.org/10.1039/j19670001301 [Google Scholar]
  11. D. W. Barnum, Inorg. Chem., 1983, 22, (16), 2297 LINK https://doi.org/10.1021/ic00158a016 [Google Scholar]
  12. F. Kettemann, M. Wuithschick, G. Caputo, R. Kraehnert, N. Pinna, K. Rademann, J. Polte, CrystEngComm, 2015, 17, (8), 1865 LINK https://doi.org/10.1039/c4ce01025f [Google Scholar]
  13. C. M. H. Ferreira, I. S. S. Pinto, E. V. Soares, H. M. V. M. Soares, RSC Adv., 2015, 5, (39), 30989 LINK https://doi.org/10.1039/c4ra15453c [Google Scholar]
  14. R. E. Wildung, Y. A. Gorby, K. M. Krupka, N. J. Hess, S. W. Li, A. E. Plymale, J. P. McKinley, J. K. Fredrickson, Appl. Environ. Microbiol., 2000, 66, (6), 2451 LINK https://doi.org/10.1128/aem.66.6.2451-2460.2000 [Google Scholar]
  15. L. Shi, S. M. Belchik, A. E. Plymale, S. Heald, A. C. Dohnalkova, K. Sybirna, H. Bottin, T. C. Squier, J. M. Zachara, J. K. Fredrickson, Appl. Environ. Microbiol., 2011, 77, (16), 5584 LINK https://doi.org/10.1128/aem.00260-11 [Google Scholar]
  16. C. Engelbrekt, K. H. Sørensen, J. Zhang, A. C. Welinder, P. S. Jensen, J. Ulstrup, J. Mater. Chem., 2009, 19, (42), 7839 LINK https://doi.org/10.1039/b911111e [Google Scholar]
  17. C. Engelbrekt, K. H. Sørensen, T. Lübcke, J. Zhang, Q. Li, C. Pan, N. J. Bjerrum, J. Ulstrup, ChemPhysChem, 2010, 11, (13), 2844 LINK https://doi.org/10.1002/cphc.201000380 [Google Scholar]
  18. J. I. B. Janairo, K. Sakaguchi, Chem. Lett., 2014, 43, (8), 1315 LINK https://doi.org/10.1246/cl.140405 [Google Scholar]
  19. A. G. Delgado, P. Parameswaran, D. Fajardo-Williams, R. U. Halden, R. Krajmalnik-Brown, Microb. Cell Fact., 2012, 11, 128 LINK https://doi.org/10.1186/1475-2859-11-128 [Google Scholar]
  20. C.-H. Liao, L. M. Shollenberger, Lett. Appl. Microbiol., 2003, 37, (1), 45 LINK https://doi.org/10.1046/j.1472-765x.2003.01345.x [Google Scholar]
  21. B. E. Fischer, U. K. Häring, R. Tribolet, H. Sigel, Eur. J. Biochem., 1979, 94, (2), 523 LINK https://doi.org/10.1111/j.1432-1033.1979.tb12921.x [Google Scholar]
  22. J.-F. Boily, T. M. Seward, J. M. Charnock, Geochim. Cosmochim. Acta, 2007, 71, (20), 4834 LINK https://doi.org/10.1016/j.gca.2007.08.015 [Google Scholar]
  23. C. J. le Roux, R. J. Kriek, Hydrometallurgy, 2017, 169, 447 LINK https://doi.org/10.1016/j.hydromet.2017.02.023 [Google Scholar]
  24. C. Drew Tait, D. R. Janecky, P. S. Z. Rogers, Geochim. Cosmochim. Acta, 1991, 55, (5), 1253 LINK https://doi.org/10.1016/0016-7037(91)90304-n [Google Scholar]
  25. J. M. van Middlesworth, S. A. Wood, Geochim. Cosmochim. Acta, 1999, 63, (11–12), 1751 LINK https://doi.org/10.1016/s0016-7037(99)00058-7 [Google Scholar]
  26. P. A. Simonov, S. Y. Troitskii, V. A. Likholobov, Kinet. Catal., 2000, 41, (2), 255 LINK https://doi.org/10.1007/bf02771428 [Google Scholar]
  27. J. Wang, S. Bi, Y. Chen, Y. Hu, Ecotoxicol. Environ. Saf., 2020, 190, 110124 LINK https://doi.org/10.1016/j.ecoenv.2019.110124 [Google Scholar]
  28. A. Sari, D. Mendil, M. Tuzen, M. Soylak, J. Hazard. Mater., 2009, 162, (2–3), 874 LINK https://doi.org/10.1016/j.jhazmat.2008.05.112 [Google Scholar]
  29. L. Rasmussen, K. Jørgensen, Acta Chem. Scand., 1968, 22, (7), 2313 [Google Scholar]
  30. J.-F. Boily, T. M. Seward, Geochim. Cosmochim. Acta, 2005, 69, (15), 3773 LINK https://doi.org/10.1016/j.gca.2005.03.015 [Google Scholar]
  31. J. J. Cruywagen, R. J. Kriek, J. Coord. Chem., 2007, 60, (4), 439 LINK https://doi.org/10.1080/00958970600873588 [Google Scholar]
  32. R. H. Byrne, W. Yao, Geochim. Cosmochim. Acta, 2000, 64, (24), 4153 LINK https://doi.org/10.1016/s0016-7037(00)00501-9 [Google Scholar]
  33. C. J. le Roux, R. J. Kriek, Hydrometallurgy, 2019, 186, 21 LINK https://doi.org/10.1016/j.hydromet.2019.03.009 [Google Scholar]
  34. D. Spielbauer, H. Zeilinger, H. Knoezinger, Langmuir, 1993, 9, (2), 460 LINK https://doi.org/10.1021/la00026a017 [Google Scholar]
  35. J. Richard-Daniel, D. Boudreau, ChemNanoMat, 2020, 6, (6), 907 LINK https://doi.org/10.1002/cnma.202000158 [Google Scholar]
  36. V. Yadav, S. Jeong, X. Ye, C. W. Li, Chem. Mater., 2022, 34, (4), 1897 LINK https://doi.org/10.1021/acs.chemmater.1c04176 [Google Scholar]
  37. S. De Corte, S. Bechstein, A. R. Lokanathan, J. Kjems, N. Boon, R. L. Meyer, Colloids Surf. B: Biointerfaces, 2013, 102, 898 LINK https://doi.org/10.1016/j.colsurfb.2012.08.045 [Google Scholar]
  38. L. S. Søbjerg, A. T. Lindhardt, T. Skrydstrup, K. Finster, R. L. Meyer, Colloids Surf. B: Biointerfaces, 2011, 85, (2), 373 LINK https://doi.org/10.1016/j.colsurfb.2011.03.014 [Google Scholar]
/content/journals/10.1595/205651323X16813753335431
Loading
/content/journals/10.1595/205651323X16813753335431
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test