Skip to content
Volume 68 Number 2
  • ISSN: 2056-5135


Green ammonia, produced through renewable energy-powered electrochemical and thermal processes, is emerging as a promising candidate to replace fossil fuel-based ammonia in the fertiliser, transportation and energy sectors. This paper provides an overview of the production methods, utilisation methods and technological advancements for green ammonia. The electrochemical production and Haber-Bosch with renewable hydrogen and energy are discussed in detail highlighting recent material advances. Green ammonia utilisation methods are discussed with direct use cases such as ammonia combustion and direct ammonia fuel cells examined. Green ammonia’s potential as a carbon-free hydrogen carrier is also discussed in regards to ammonia cracking for effective hydrogen recovery. This paper concludes that green ammonia has the potential to play a significant role in the transition to a sustainable energy system and offers new opportunities for the fertiliser, transportation and energy industries.


Article metrics loading...

Loading full text...

Full text loading...



  1. Budinis S., Gouy A., Levi P., Mandová H., and Vass T. ‘Ammonia Technology Roadmap: Towards More Sustainable Nitrogen Fertiliser Production’, International Energy Agency, Paris, France, October, 2021 LINK [Google Scholar]
  2. Lan R., Irvine J. T. S., and Tao S. Int. J. Hydrogen Energy, 2012, 37, (2), 1482 LINK [Google Scholar]
  3. Smart K. Johnson Matthey Technol. Rev., 2022, 66, (3), 230 LINK [Google Scholar]
  4. Brightling J. Johnson Matthey Technol. Rev., 2018, 62, (1), 32 LINK [Google Scholar]
  5. Salmon N., and Bañares-Alcántara R. Sustain. Energy Fuels, 2021, 5, (11), 2814 LINK [Google Scholar]
  6. Ayvalı T., Tsang S. C. E., and Van Vrijaldenhoven T. Johnson Matthey Technol. Rev., 2021, 65, (2), 291 LINK [Google Scholar]
  7. Ayvalı T., Tsang S. C. E., and Van Vrijaldenhoven T. Johnson Matthey Technol. Rev., 2021, 65, (2), 275 LINK [Google Scholar]
  8. Liu H. ‘Ruthenium Based Ammonia Synthesis Catalysts’, in “Ammonia Synthesis Catalysts: Innovation, Practice”, World Scientific Publishing Co Pte Ltd, Singapore,Chemical Industry Press, Beijing, China, 2013, pp. 425542 LINK [Google Scholar]
  9. Humphreys J., Lan R., and Tao S. Adv. Energy Sustain. Res., 2020, 2, (1), 2000043 LINK [Google Scholar]
  10. Erisman J. W., Sutton M. A., Galloway J., Klimont Z., and Winiwarter W. Nat. Geosci., 2008, 1, (10), 636 LINK [Google Scholar]
  11. MacFarlane D. R., Cherepanov P. V., Choi J., Suryanto B. H. R., Hodgetts R. Y., Bakker J. M., Ferrero Vallana F. M., and Simonov A. N. Joule, 2020, 4, (6), 1186 LINK [Google Scholar]
  12. Ronduda H., Zybert M., Patkowski W., Ostrowski A., Jodłowski P., Szymański D., and Raróg-Pilecka W. Int. J. Hydrogen Energy, 2022, 47, (84), 35689 LINK [Google Scholar]
  13. Song C., Song C., and Subramani V. ‘Introduction to Hydrogen, Syngas Production, Purification Technologies’, in “Hydrogen, Syngas Production, Purification Technologies”, eds. Liu K., John Wiley & Sons Inc, Hoboken, USA, 2009, pp. 113 LINK [Google Scholar]
  14. Howarth R. W., and Jacobson M. Z. Energy Sci. Eng., 2021, 9, (10), 1676 LINK [Google Scholar]
  15. Jeerh G., Zhang M., and Tao S. J. Mater. Chem. A, 2021, 9, (2), 727 LINK [Google Scholar]
  16. ‘Technology: The Green Ammonia Landscape’, Eneus Energy, Edinburgy, UK: (Accessed on 7th July 2024) [Google Scholar]
  17. Fastrup B., and Nielsen H. N. Catal. Letters, 1992, 14, (2), 233 LINK [Google Scholar]
  18. Humphreys J., Lan R., Chen S., Walker M., Han Y., and Tao S. Appl. Catal. B: Environ., 2021, 285, 119843 LINK [Google Scholar]
  19. Liu H. Chinese J. Catal., 2014, 35, (10), 1619 LINK [Google Scholar]
  20. Štěpán O., and Štverák B. Collect. Czech. Chem. Commun., 1971, 36, (6), 2358 LINK [Google Scholar]
  21. Boudart M., and Khammoum S. B. T. ‘Abstracts of Papers: Ammonia Synthesis on Supported Iron Catalysts’, 164th National Meeting of the American Chemical Society, New York, USA, 1972, 15 [Google Scholar]
  22. Zubritsk D. Zhurnal Prikl. Khimii, 1973, 46, (2), 329 [Google Scholar]
  23. Berengar M. G., Rudnitskij L. A., Rabina P. D., and Kuznetsove L. D. Dok. Akad. Nauk SSSR, 1974, 214, (3), 601 [Google Scholar]
  24. Badik V. S., Lyubchenko Yu. A., Sergaeva A. N., and Dmitrenko L. M. J. App. Chem. USSR, 1974, 47, (10), 2239 [Google Scholar]
  25. Dvornik O. S., Streltsov O. A., and Chernobrivets V. L. Ukrain. Khim. Zhur., 1975, 41, (5), 544 [Google Scholar]
  26. Bridger G. L., Pole G. R., and Beinlich A. W. Chem. Eng. Prog., 1947, 43, (6), 291 [Google Scholar]
  27. Yu X., Lin B., Lin J., Wang R., and Wei K. J. Rare Earths, 2008, 26, (5), 711 LINK [Google Scholar]
  28. Wang P., Xie H., Guo J., Zhao Z., Kong X., Gao W., Chang F., He T., Wu G., Chen M., Jiang L., and Chen P. Angew. Chem. Int. Ed., 2017, 56, (30), 8716 LINK [Google Scholar]
  29. Gao W., Guo J., Wang P., Wang Q., Chang F., Pei Q., Zhang W., Liu L., and Chen P. Nat. Energy, 2018, 3, (12), 1067 LINK [Google Scholar]
  30. Humphreys J., Lan R., Chen S., and Tao S. J. Mater. Chem. A, 2020, 8, (32), 16676 LINK [Google Scholar]
  31. Kitano M., Inoue Y., Sasase M., Kishida K., Kobayashi Y., Nishiyama K., Tada T., Kawamura S., Yokoyama T., Hara M., and Hosono H. Angew. Chem. Int. Ed., 2018, 57, (10), 2648 LINK [Google Scholar]
  32. Kitano M., Inoue Y., Yamazaki Y., Hayashi F., Kanbara S., Matsuishi S., Yokoyama T., Kim S.-W., Hara M., and Hosono H. Nat. Chem., 2012, 4, (11), 934 LINK [Google Scholar]
  33. Lu Y., Li J., Ye T.-N., Kobayashi Y., Sasase M., Kitano M., and Hosono H. ACS Catal., 2018, 8, (12), 11054 LINK [Google Scholar]
  34. Ronduda H., Zybert M., Patkowski W., Tarka A., Ostrowski A., and Raróg-Pilecka W. J. Taiwan Inst. Chem. Eng., 2020, 114, 241 LINK [Google Scholar]
  35. Zhang X., Liu L., Wang J., Ju X., Si R., Feng J., Guo J., and Chen P. J. Catal., 2023, 417, 382 LINK [Google Scholar]
  36. Ronduda H., Zybert M., Patkowski W., Moszyński D., Albrecht A., Sobczak K., Małolepszy A., and Raróg-Pilecka W. RSC Adv., 2023, 13, (7), 4787 LINK [Google Scholar]
  37. Ronduda H., Zybert M., Dziewulska A., Patkowski W., Sobczak K., Ostrowski A., and Raróg-Pilecka W. Surf. Interfaces, 2023, 36, 102530 LINK [Google Scholar]
  38. Feng J., Liu L., Zhang X., Wang J., Ju X., Li R., Guo J., He T., and Chen P. Catal. Sci. Technol., 2023, 13, (3), 844 LINK [Google Scholar]
  39. Luz I., Parvathikar S., Carpenter M., Bellamy T., Amato K., Carpenter J., and Lail M. Catal. Sci. Technol., 2020, 10, (1), 105 LINK [Google Scholar]
  40. Karolewska M., Truszkiewicz E., Wściseł M., Mierzwa B., Kępiński L., and Raróg-Pilecka W. J. Catal., 2013, 303, 130 LINK [Google Scholar]
  41. Shen H., Choi C., Masa J., Li X., Qiu J., Jung Y., and Sun Z. Chem, 2021, 7, (7), 1708 LINK [Google Scholar]
  42. Jiao F., and Xu B. Adv. Mater., 2019, 31, (31), 1805173 LINK [Google Scholar]
  43. Zhao R., Xie H., Chang L., Zhang X., Zhu X., Tong X., Wang T., Luo Y., Wei P., Wang Z., and Sun X. EnergyChem, 2019, 1, (2), 100011 LINK [Google Scholar]
  44. Amar I. A., Lan R., Petit C. T. G., and Tao S. J. Solid State Electrochem., 2011, 15, (9), 1845 LINK [Google Scholar]
  45. Du H.-L., Chatti M., Hodgetts R. Y., Cherepanov P. V., Nguyen C. K., Matuszek K., MacFarlane D. R., and Simonov A. N. Nature, 2022, 609, (7928), 722 LINK [Google Scholar]
  46. Li S., Zhou Y., Li K., Saccoccio M., Sažinas R., Andersen S. Z., Pedersen J. B., Fu X., Shadravan V., Chakraborty D., Kibsgaard J., Vesborg P. C. K., Nørskov J. K., and Chorkendorff I. Joule, 2022, 6, (9), 2083 LINK [Google Scholar]
  47. Zhang C., Liu S., Chen T., Li Z., and Hao J. Chem. Commun., 2019, 55, (51), 7370 LINK [Google Scholar]
  48. Zhang L., Cong M., Ding X., Jin Y., Xu F., Wang Y., Chen L., and Zhang L. Angew. Chem. Int. Ed., 2020, 59, (27), 10888 LINK [Google Scholar]
  49. Liu Y., Kong X., Guo X., Li Q., Ke J., Wang R., Li Q., Geng Z., and Zeng J. ACS Catal., 2020, 10, (2), 1077 LINK [Google Scholar]
  50. Wu T., Zhu X., Xing Z., Mou S., Li C., Qiao Y., Liu Q., Luo Y., Shi X., Zhang Y., and Sun X. Angew. Chem. Int. Ed., 2019, 58, (51), 18449 LINK [Google Scholar]
  51. Cai J., Wei Y., Cao A., Huang J., Jiang Z., Lu S., and Zang S.-Q. Appl. Catal. B: Environ., 2022, 316, 121683 LINK [Google Scholar]
  52. Liu S., Qian T., Wang M., Ji H., Shen X., Wang C., and Yan C. Nat. Catal., 2021, 4, (4), 322 LINK [Google Scholar]
  53. Lv Y., Wang Y., Yang M., Mu Z., Liu S., Ding W., and Ding M. J. Mater. Chem. A, 2021, 9, (3), 1480 LINK [Google Scholar]
  54. Wei Z., Gu Z., Zhang Y., Luo K., and Zhao S. Appl. Catal. B: Environ., 2023, 320, 121915 LINK [Google Scholar]
  55. Lim J., Liu C.-Y., Park J., Liu Y.-H., Senftle T. P., Lee S. W., and Hatzell M. C. ACS Catal., 2021, 11, (12), 7568 LINK [Google Scholar]
  56. Schüth F., Palkovits R., Schlögl R., and Su D. S. Energy Environ. Sci., 2012, 5, (4), 6278 LINK [Google Scholar]
  57. Lamb K. E., Dolan M. D., and Kennedy D. F. Int. J. Hydrogen Energy, 2019, 44, (7), 3580 LINK [Google Scholar]
  58. Okura K., Okanishi T., Muroyama H., Matsui T., and Eguchi K. ChemCatChem, 2016, 8, (18), 2988 LINK [Google Scholar]
  59. Okura K., Miyazaki K., Muroyama H., Matsui T., and Eguchi K. RSC Adv., 2018, 8, (56), 32102 LINK [Google Scholar]
  60. Tabassum H., Mukherjee S., Chen J., Holiharimanana D., Karakalos S., Yang X., Hwang S., Zhang T., Lu B., Chen M., Tang Z., Kyriakidou E. A., Ge Q., and Wu G. Energy Environ. Sci., 2022, 15, (10), 4190 LINK [Google Scholar]
  61. Pinzón M., Avilés-García O., de la Osa A. R., de Lucas-Consuegra A., Sánchez P., and Romero A. Sustain. Chem. Pharm., 2022, 25, 100615 LINK [Google Scholar]
  62. Li G., Yu X., Yin F., Lei Z., Zhang H., and He X. Catal. Today, 2022, 402, 45 LINK [Google Scholar]
  63. El-Shafie M., Kambara S., and Hayakawa Y. Catal. Today, 2022, 397399, 103 LINK [Google Scholar]
  64. Le T. A., Kim Y., Kim H. W., Lee S.-U., Kim J.-R., Kim T.-W., Lee Y.-J., and Chae H.-J. Appl. Catal. B: Environ., 2021, 285, 119831 LINK [Google Scholar]
  65. Furusawa T., Kuribara H., Kimura K., Sato T., and Itoh N. Ind. Eng. Chem. Res., 2020, 59, (41), 18460 LINK [Google Scholar]
  66. Pinzón M., Romero A., de Lucas Consuegra A., de la Osa A. R., and Sánchez P. J. Ind. Eng. Chem., 2021, 94, 326 LINK [Google Scholar]
  67. Duan X., Qian G., Zhou X., Sui Z., Chen D., and Yuan W. Appl. Catal. B: Environ., 2011, 101, (3–4), 189 LINK [Google Scholar]
  68. Ogasawara K., Nakao T., Kishida K., Ye T.-N., Lu Y., Abe H., Niwa Y., Sasase M., Kitano M., and Hosono H. ACS Catal., 2021, 11, (17), 11005 LINK [Google Scholar]
  69. Im Y., Muroyama H., Matsui T., and Eguchi K. Int. J. Hydrogen Energy, 2020, 45, (51), 26979 LINK [Google Scholar]
  70. Sayas S., Morlanés N., Katikaneni S. P., Harale A., Solami B., and Gascon J. Catal. Sci. Technol., 2020, 10, (15), 5027 LINK [Google Scholar]
  71. Andersen J. A., Christensen J. M., Østberg M., Bogaerts A., and Jensen A. D. Int. J. Hydrogen Energy, 2022, 47, (75), 32081 LINK [Google Scholar]
  72. Akiyama M., Aihara K., Sawaguchi T., Matsukata M., and Iwamoto M. Int. J. Hydrogen Energy, 2018, 43, (31), 14493 LINK [Google Scholar]
  73. Wang L., Zhao Y., Liu C., Gong W., and Guo H. Chem. Commun., 2013, 49, (36), 3787 LINK [Google Scholar]
  74. Wang L., Yi Y., Guo H., Du X., Zhu B., and Zhu Y. Catalysts, 2019, 9, (2), 107 LINK [Google Scholar]
  75. Erdemir D., and Dincer I. Int. J. Energy Res., 2020, 45, (4), 4827 LINK [Google Scholar]
  76. Han L., Cai S., Gao M., Hasegawa J., Wang P., Zhang J., Shi L., and Zhang D. Chem. Rev., 2019, 119, (19), 10916 LINK [Google Scholar]
  77. Jin R., Liu Y., Wang Y., Cen W., Wu Z., Wang H., and Weng X. Appl. Catal. B: Environ., 2014, 148149, 582 LINK [Google Scholar]
  78. Ma S., Zhao X., Li Y., Zhang T., Yuan F., Niu X., and Zhu Y. Appl. Catal. B: Environ., 2019, 248, 226 LINK [Google Scholar]
  79. Chiong M.-C., Chong C. T., Ng J.-H., Mashruk S., Chong W. W. F., Samiran N. A., Mong G. R., and Valera-Medina A. Energy Convers. Manag., 2021, 244, 114460 LINK [Google Scholar]
  80. Lhuillier C., Brequigny P., Contino F., and Mounaïm-Rousselle C. Proc. Combust. Inst., 2021, 38, (4), 5859 LINK [Google Scholar]
  81. Galdo M. I. L., Castro-Santos L., and Rodriguez Vidal C. G. J. Mar. Sci. Eng., 2020, 8, (2), 109 LINK [Google Scholar]
  82. Franco M. C., Rocha R. C., Costa M., and Yehia M. Proc. Combust. Inst., 2021, 38, (4), 5129 LINK [Google Scholar]
  83. Zhu X., Khateeb A. A., Guiberti T. F., and Roberts W. L. Proc. Combust. Inst., 2021, 38, (4), 5155 LINK [Google Scholar]
  84. Abbasi R., Setzler B. P., Wang J., Zhao Y., Wang T., Gottesfeld S., and Yan Y. Curr. Opin. Electrochem., 2020, 21, 335 LINK [Google Scholar]
  85. Lan R., and Tao S. Electrochem. Solid-State Lett., 2010, 13, (8), B 83 LINK [Google Scholar]
  86. Zhao Y., Setzler B. P., Wang J., Nash J., Wang T., Xu B., and Yan Y. Joule, 2019, 3, (10), 2472 LINK [Google Scholar]
  87. Zhong F., Yang S., Chen C., Fang H., Chen K., Zhou C., Lin L., Luo Y., Au C., and Jiang L. J. Power Sources, 2022, 520, 230847 LINK [Google Scholar]
  88. Pan Y., Zhang H., Xu K., Zhou Y., Zhao B., Yuan W., Sasaki K., Choi Y., Chen Y., and Liu M. Appl. Catal. B: Environ., 2022, 306, 121071 LINK [Google Scholar]
  89. Jeerh G., Zou P., Zhang M., and Tao S. Appl. Catal. B: Environ., 2022, 319, 121919 LINK [Google Scholar]
  90. Li Y., Pillai H. S., Wang T., Hwang S., Zhao Y., Qiao Z., Mu Q., Karakalos S., Chen M., Yang J., Su D., Xin H., Yan Y., and Wu G. Energy Environ. Sci., 2021, 14, (3), 1449 LINK [Google Scholar]
  91. Hanada N., Kohase Y., Hori K., Sugime H., and Noda S. Electrochim. Acta, 2020, 341, 136027 LINK [Google Scholar]
  92. Morita S., Kudo E., Shirasaka R., Yonekawa M., Nagai K., Ota H., Gamo M. N.-, and Shiroishi H. J. Electroanal. Chem., 2016, 762, 29 LINK [Google Scholar]
  93. Zhang H., Wang Y., Wu Z., and Leung D. Y. C. Energy Proc., 2017, 142, 1539 LINK [Google Scholar]
  94. Zhong F., Zhang Y., Luo Y., Chen C., Fang H., Chen K., Zhou C., Lin L., Au C., and Jiang L. J. Power Sources, 2022, 524, 231078 LINK [Google Scholar]
  95. Meng G., Jiang C., Ma J., Ma Q., and Liu X. J. Power Sources, 2007, 173, (1), 189 LINK [Google Scholar]
  96. Gottesfeld S. J. Electrochem. Soc., 2018, 165, (15), J 3405 LINK [Google Scholar]
  97. Zhang M., Zhang J., Jeerh G., Zou P., Sun B., Walker M., Xie K., and Tao S. J. Mater. Chem. A, 2022, 10, (36), 18701 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error