Skip to content
1887
Volume 69, Issue 1
  • ISSN: 2056-5135

Abstract

The data analysis workflow for electron microscopy experiments can require a significant amount of human-intensive and repetitive effort. The generation of Python-based scripts that incorporate simple machine learning algorithms are quite well established in biological sciences but not often utilised in the study of catalytic systems. Such scripted analysis is not only more efficient, but readily reproducible and allows a wide range of quantitative results to be reported, including but not limited to average and total particle size, particle counting and particle size distributions. In this work we utilise these tools to examine the effect of cycling reducing and oxidising atmospheres on copper oxide nanoparticles.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651324X17060084998569
2025-01-01
2024-12-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/1/Cavaye_13a_Imp.html?itemId=/content/journals/10.1595/205651324X17060084998569&mimeType=html&fmt=ahah

References

  1. S. Zander, E. L. Kunkes, M. E. Schuster, J. Schumann, G. Weinberg, D. Teschner, N. Jacobsen, R. Schlögl, M. Behrens, Angew. Chem. Int. Ed., 2013, 52, (25), 6536 LINK https://doi.org/10.1002/anie.201301419
    [Google Scholar]
  2. C. G. Bell, K. P. Treder, J. S. Kim, M. E. Schuster, A. I. Kirkland, T. J. A. Slater, J. Microsc., 2022, 288, (3), 169 LINK https://doi.org/10.1111/jmi.13110
    [Google Scholar]
  3. K. P. Treder, C. Huang, C. G. Bell, T. J. A. Slater, M. E. Schuster, D. Özkaya, J. S. Kim, A. I. Kirkland, npj Comput. Mater., 2023, 9, 18 LINK https://doi.org/10.1038/s41524-022-00949-7
    [Google Scholar]
  4. K. P. Treder, C. Huang, J. S. Kim, A. I. Kirkland, Microscopy, 2022, 71, (1), i100 LINK https://doi.org/10.1093/jmicro/dfab043
    [Google Scholar]
  5. S. Mitchell, F. Parés, D. F. Akl, S. M. Collins, D. M. Kepaptsoglou, Q. M. Ramasse, D. Garcia-Gasulla, J. Pérez-Ramírez, N. López, J. Am. Chem. Soc., 2022, 144, (18), 8018 LINK https://doi.org/10.1021/jacs.1c12466
    [Google Scholar]
  6. M. Botifoll, I. Pinto-Huguet, J. Arbiol, Nanoscale Horiz., 2022, 7, (12), 1427 LINK https://doi.org/10.1039/d2nh00377e
    [Google Scholar]
  7. D. Cheng, W. Sha, Z. Xu, L. Huang, Y. Du, S. Tang, Y. Guo, Y.-C. Cao, S. Cheng, Adv. Intell. Syst., 2021, 4, (3), 2100158 LINK https://doi.org/10.1002/aisy.202100158
    [Google Scholar]
  8. G. van Rossum, ‘Python Programming Language’, USENIX Annual Technical Conference, Santa Clara, USA, 17th–22nd June, 2007, USENIX, Berkeley, USA, 2007
    [Google Scholar]
  9. S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu, the scikit-image contributors, PeerJ, 2014, 2, e453 LINK https://doi.org/10.7717/peerj.453
    [Google Scholar]
  10. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, J. Mach. Learn. Proc., 2011, 12, 2825 LINK https://www.jmlr.org/papers/v12/pedregosa11a.html
    [Google Scholar]
  11. J.-J. Velasco-Vélez, C.-H. Chuang, D. Gao, Q. Zhu, D. Ivanov, H. S. Jeon, R. Arrigo, R. V. Mom, E. Stotz, H.-L. Wu, T. E. Jones, B. Roldan Cuenya, A. Knop-Gericke, R. Schlögl, ACS Catal., 2020, 10, (19), 11510 LINK https://doi.org/10.1021/acscatal.0c03484
    [Google Scholar]
  12. Y. Zhang, C. Chen, X. Lin, D. Li, X. Chen, Y. Zhan, Q. Zheng, Int. J. Hydrogen Energy, 2014, 39, (8), 3746 LINK https://doi.org/10.1016/j.ijhydene.2013.12.161
    [Google Scholar]
  13. I. Böttger, T. Schedel-Niedrig, O. Timpe, R. Gottschall, M. Hävecker, T. Ressler, R. Schlögl, Chem. Eur. J., 2000, 6, (10), 1870 LINK https://doi.org/10.1002/(sici)1521-3765(20000515)6:10<1870::aid-chem1870>3.0.co;2-0
    [Google Scholar]
  14. J. Cao, A. Rinaldi, M. Plodinec, X. Huang, E. Willinger, A. Hammud, S. Hieke, S. Beeg, L. Gregoratti, C. Colbea, R. Schlögl, M. Antonietti, M. Greiner, M. Willinger, Nat. Commun., 2020, 11, 3554 LINK https://doi.org/10.1038/s41467-020-17346-7
    [Google Scholar]
/content/journals/10.1595/205651324X17060084998569
Loading
/content/journals/10.1595/205651324X17060084998569
Loading

Data & Media loading...

Supplements

Supplementary Material 

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test