Skip to content
1887
Volume 68, Issue 4
  • ISSN: 2056-5135

Abstract

Cellulose is a natural polymer contained in growing fibres, such as pineapple fibres. Cellulose can be modified into cellulose acetate, a modified polymer that can be used in the synthesis of a cellulose acetate/polyethylene glycol (CA/PEG) membrane. The phase inversion method was used in this study to produce CA/PEG membranes. Variations in polyethylene glycol (PEG) concentration with a ratio of 1:1 to cellulose acetate, where variations in PEG concentrations used are 2%, 5% and 8%. Acetone and dimethylformamide are used as organic solvents. Membrane morphological analysis using scanning electron microscopy (SEM) and functional group analysis using a Fourier transform infrared (FTIR) spectrometer were performed for membrane characterisation. The result of the synthesis of the CA/PEG membrane is in the form of a thin white layer. The characterisation results of the FTIR spectrometer showed the vibration of the carbonyl bond at wavenumber 1729 cm−1 and the vibration of the hydroxyl bond torque at the wave number 648 cm−1, where the vibration intensity decreased with each addition to the concentration. The results of SEM characterisation show that the increase in PEG concentration increases the percentage porosity of the membrane. The membranes with 2%, 5% and 8% PEG have porosity percentages of 51.54%, 68.70% and 73.50%, respectively. As the membrane with 2% PEG has the lowest percent porosity, it has more potential in removing or filtering solutes from a fluid.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651324X17077480978707
2024-10-01
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/68/4/Bahfie3_13a_Imp.html?itemId=/content/journals/10.1595/205651324X17077480978707&mimeType=html&fmt=ahah

References

  1. A. Tropea, , D. Wilson, , L. G. La Torre, , R. B. Lo Curto, , P. Saugman, , P. Troy-Davies, , G. Dugo, , K. W. Waldron, , J. Food Res., 2014, 3, (4), 60 LINK https://doi.org/10.5539/jfr.v3n4p60
    [Google Scholar]
  2. K. Wahyuningsih, , E. S. Iriani, , F. Fahma, , Indones. J. Chem., 2018, 16, (2), 181 LINK https://doi.org/10.22146/ijc.21162
    [Google Scholar]
  3. J. Zhou, , J. Chen, , M. He, , J. Yao, , J. Appl. Polym. Sci., 2016, 133, (39) LINK https://doi.org/10.1002/app.43946
    [Google Scholar]
  4. R. Q. Assis, , P. D’Angelo Rios, , A. de O. Rios, , F. C. Olivera, , Ind. Crops Prod., 2020, 147, 112212 LINK https://doi.org/10.1016/j.indcrop.2020.112212
    [Google Scholar]
  5. S. D. Yuwono, , D. A. Iryani, , C. Gusti, , Suharto, , Buhani, , Suharso, , Asian J. Chem., 2019, 31, (12), 2725 LINK https://doi.org/10.14233/ajchem.2019.22084
    [Google Scholar]
  6. J. A. Sánchez-Márquez, , R. Fuentes-Ramírez, , I. Cano-Rodríguez, , Z. Gamiño-Arroyo, , E. Rubio-Rosas, , J. M. Kenny, , N. Rescignano, , Int. J. Polym. Sci., 2015 LINK https://doi.org/10.1155/2015/320631
    [Google Scholar]
  7. H. Japonika, , J. Bioeng., 2015
    [Google Scholar]
  8. A. Makowka, and B. Pospiech, , Autex Res. J., 2019, 19, (3), 288 LINK https://doi.org/10.1515/aut-2018-0056
    [Google Scholar]
  9. M. K. Purkait, , M. K. Sinha, , P. Mondal, , R. Singh, , ‘Introduction to Membranes’, in “Stimuli Responsive Polymeric Membranes: Smart Polymeric Membranes”, Interface Science and Technology Series, ch. 1, Vol. 25, Elsevier Ltd, London, UK, 2018, pp. 137 LINK https://doi.org/10.1016/b978-0-12-813961-5.00001-2
    [Google Scholar]
  10. E. A. Slejko, , A. Tuan, , N. Scuor, , Waste Manag. Bull., 2024, 1, (4), 67 LINK https://doi.org/10.1016/j.wmb.2023.10.001
    [Google Scholar]
  11. T. Taufikurahman, , W. O. Delimanto, , 3BIO: J. Biol. Sci. Technol. Manag., 2020, 2, (1), 31 LINK https://doi.org/10.5614/3bio.2020.2.1.5
    [Google Scholar]
  12. N. Abu Kassim, , A. Z. Mohamed, , E. S. Zainudin, , S. Zakaria, , S. K. Z. Azman, , H. Abdullah, , BioResources, 2018, 14, (1), 1198 LINK https://doi.org/10.15376/biores.14.1.1198-1209
    [Google Scholar]
  13. D. Gao, , W. R. Clark, , ‘Structural and Performance Characteristics of Hemodialysis Membranes’, in “New Insights into Membrane Science and Technology: Polymeric and Biofunctional Membranes”, Interface Science and Technology Series, ch. 10, Vol. 8, Elsevier BV, Amsterdam, The Netherlands, 2003, pp. 291232 LINK https://doi.org/10.1016/s0927-5193(03)80013-x
    [Google Scholar]
  14. S. Sundararajan, , A. B. Samui, , P. S. Kulkarni, , Solar Energy, 2017, 144, 32 LINK https://doi.org/10.1016/j.solener.2016.12.056
    [Google Scholar]
  15. S. Mulyati, , S. Aprilia, , Safiah, , Syawaliah, , M. A. Armando, , H. Mawardi, , IOP Conf. Ser.: Mater. Sci. Eng., 2018, 352, 12051 LINK https://doi.org/10.1088/1757-899x/352/1/012051
    [Google Scholar]
  16. W. T. Fonseca, , R. F. Santos, , J. N. Alves, , S. D. Ribeiro, , R. M. Takeuchi, , A. L. Santos, , R. M. N. Assunção, , G. R. Filho, , R. A. A. Muñoz, , Electroanalysis, 2015, 27, (8), 1847 LINK https://doi.org/10.1002/elan.201500011
    [Google Scholar]
  17. S. D. Yuwono, , Mulyono, , S. Sudibyo, , F. Nurjaman, , E. Prasetyo, , T. Haryono, , D. Susanti, , H. Ardhyananta, , B. Kurniawan, , D. Handoko, , T. Suseno, , A. T. Mursito, , B. R. Hastilestari, , R. N. Baiti, , W. S. Sipahutar, , F. Bahfie, , Herald Bauman Moscow State Techn. Univ. Ser. Nat. Sci., 2024, 112, (1), 133
    [Google Scholar]
  18. M. P. Dalwadi, , I. M. Griffiths, , M. Bruna, , Proc. R. Soc. A, 2015, 471, (2182), 20150464 LINK https://doi.org/10.1098/rspa.2015.0464
    [Google Scholar]
  19. S. Nurkhamidah, , B. C. Devi, , B. A. Febriansyah, , A. Ramadhani, , R. D. Nyamiati, , Y. Rahmawati, , A. Chafidz, , IOP Conf. Ser.: Mater. Sci. Eng., 2020, 732, 12002 LINK https://doi.org/10.1088/1757-899x/732/1/012002
    [Google Scholar]
  20. S. S. Haramkar, , G. N. Thombre, , S. V Jadhav, , B. N. Thorat, , Comptes Rendus Chim., 2021, 24, (2), 255 LINK https://doi.org/10.5802/crchim.84
    [Google Scholar]
/content/journals/10.1595/205651324X17077480978707
Loading
/content/journals/10.1595/205651324X17077480978707
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): cellulose acetate; characterisation; phase inversion; polyethylene glycol; pore
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test