Skip to content
1887
Volume 69, Issue 1
  • ISSN: 2056-5135
  • oa A Comprehensive Exploration of Biomass Gasification Technologies Advancing United Nations Sustainable Development Goals: Part I

    Mechanisms, sources, processes and products of gasification

  • Authors: M. N. Uddin1 and N. A. Nithe2
  • Affiliations: 1 School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; SEM, FEM, Prince of Songkla University, Hat-yai, Songkhla 90110, Thailand; School of Energy and Science, Ontario Tech University, Oshawa, Ontario, L1G 0C5, Canada; NOVA IMS, University Nova de Lisboa, Lisbon, Portugal; School of Mathematical and Physical Sciences, University of Technology Sydney, PO Box 123, Australia; IPT, FIUNA, Universidad Nacional de Asuncion, San Lorenzo, Paraguay; ME, Dzemal Bijedic University Mostaru, 88104, Bosnia and Herzegovina; EEE, Northern University Bangladesh, Dhaka 1230, Bangladesh; Kulliya of Engineering, International Islamic University, 53100, Selangor, Malaysia; CPS, Tomas Bata University in Zlin, Zlin, , Czech Republic 2 School of Energy and Science, Ontario Tech University, Oshawa, Ontario, L1G 0C5, Canada
    [email protected]
  • Source: Johnson Matthey Technology Review, Volume 69, Issue 1, Jan 2025, p. 4 - 12
  • DOI: https://doi.org/10.1595/205651325X17128380208047
    • Received: 28 Jan 2024
    • Accepted: 10 Apr 2024

Abstract

The pursuit of sustainable energy sources on a worldwide scale is a crucial and pressing matter, with the United Nations Sustainable Development Goals (UNSDGs) offering a comprehensive framework for properly addressing this challenge. This two-part paper provides an overview of the various technologies now available for the process of biomass gasification. Compared to other renewable energy sources, which have undergone significant technological advancements in recent years, the field of biomass conversion is still relatively new. Keeping up with the newest breakthroughs becomes increasingly crucial as new conversion techniques are rapidly being created. In the thermochemical conversion process called ‘biomass gasification’, biomass solid source materials are degraded or incompletely burned in an oxygen-free or oxygen-deficient high-temperature atmosphere, resulting in the production of biomass gas. Part I delves into different biomass gasification techniques, including upstream, gasification and downstream processes, highlighting their importance in transforming biomass into clean and combustible gases.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17128380208047
2025-01-01
2024-12-30
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/1/Uddin_13a_Imp-Pt1.html?itemId=/content/journals/10.1595/205651325X17128380208047&mimeType=html&fmt=ahah

References

  1. S. N. Naik, , V. V. Goud, , P. K. Rout, , A. K. Dalai, , Renew. Sustain. Energy Rev., 2010, 14, (2), 578 LINK https://doi.org/10.1016/j.rser.2009.10.003
    [Google Scholar]
  2. L. Reijnders, , Energy Policy, 2006, 34, (7), 863 LINK https://doi.org/10.1016/j.enpol.2004.09.001
    [Google Scholar]
  3. S. Türe, , D. Uzun, , I. E. Türe, , Energy, 1997, 22, (1), 17 LINK https://doi.org/10.1016/0360-5442(95)00024-0
    [Google Scholar]
  4. M. Shahabuddin, , M. N. Uddin, , J. I. Chowdhury, , S. F. Ahmed, , M. N. Uddin, , M. Mofijur, , M. A. Uddin, , Int. J. Environ. Sci. Technol., 2023, 20, (4), 4513 LINK https://doi.org/10.1007/s13762-022-04274-w
    [Google Scholar]
  5. Z. I. Rony, , M. G. Rasul, , M. I. Jahirul, , M. Mofijur, , Fuel, 2024, 358, (A), 130099 LINK https://doi.org/10.1016/j.fuel.2023.130099
    [Google Scholar]
  6. A. Molino, , F. Nanna, , Y. Ding, , B. Bikson, , G. Braccio, , Fuel, 2013, 103, 1003 LINK https://doi.org/10.1016/j.fuel.2012.07.070
    [Google Scholar]
  7. A. Molino, , M. Migliori, , Y. Ding, , B. Bikson, , G. Giordano, , G. Braccio, , Fuel, 2013, 107, 585 LINK https://doi.org/10.1016/j.fuel.2012.10.058
    [Google Scholar]
  8. W. Laursen, , Chem. Eng., 2005, 774–775, 32
    [Google Scholar]
  9. M. Simpson-Holley, , A. Higson, , G. Evans, , Chem. Eng., 2007, 795, 46
    [Google Scholar]
  10. S. Rajagopalan, , R. P. Datar, , R. S. Lewis, , Biomass Bioenergy, 2002, 23, (6), 487 LINK https://doi.org/10.1016/s0961-9534(02)00071-5
    [Google Scholar]
  11. N. Eisberg, , Chem. Ind., 2006, 17, 24
    [Google Scholar]
  12. A. Molino, , V. Larocca, , S. Chianese, , D. Musmarra, , Energies, 2018, 11, (4), 811 LINK https://doi.org/10.3390/en11040811
    [Google Scholar]
  13. A. Demirbas, , Energy Convers. Manag., 2009, 50, (9), 2239 LINK https://doi.org/10.1016/j.enconman.2009.05.010
    [Google Scholar]
  14. J. He, , W. Zhang, , J. Zhejiang Univ. Sci. A, 2008, 9, (5), 714 LINK https://doi.org/10.1631/jzus.a071417
    [Google Scholar]
  15. A. Van der Drift, , H. Boerrigter, , “Synthesis Gas from Biomass for Fuels and Chemicals”, Report No. ECN-C-06-001, Netherlands Organization for Applied Scientific Research (TNO), The Hague, The Netherlands, 2006, 31 pp LINK https://www.osti.gov/etdeweb/biblio/20723901
    [Google Scholar]
  16. O. Drzyzga, , O. Revelles, , G. Durante-Rodríguez, , E. Díaz, , J. L. García, , A. Prieto, , J. Chem. Technol. Biotechnol., 2015, 90, (10), 1735 LINK https://doi.org/10.1002/jctb.4721
    [Google Scholar]
  17. A. Molino, , M. Migliori, , A. Blasi, , M. Davoli, , T. Marino, , S. Chianese, , E. Catizzone, , G. Giordano, , Fuel, 2017, 206, 155 LINK https://doi.org/10.1016/j.fuel.2017.05.091
    [Google Scholar]
  18. R. E. H. Sims, , W. Mabee, , J. N. Saddler, , M. Taylor, , Bioresour. Technol., 2010, 101, (6), 1570 LINK https://doi.org/10.1016/j.biortech.2009.11.046
    [Google Scholar]
  19. A. Molino, , V. Larocca, , S. Chianese, , D. Musmarra, , Energies, 2018, 11, (4), 811 LINK https://doi.org/10.3390/en11040811
    [Google Scholar]
  20. “Renewable Bioresources: Scope, Modification for Non-Food Applications”, eds. C. V. Stevens, , R. Verhé, , John Wiley & Sons Ltd, Chichester, UK, 2004, 330 pp
    [Google Scholar]
  21. A. A. C. M. Beenackers, , W. P. M. Van Swaaij, , ‘Gasification of Biomass: A State of the Art Review’, in “Thermochemical Processing of Biomass”, ed. A. V. Bridgwater, , Butterworth, London, UK, 1984, pp. 91136
    [Google Scholar]
  22. G. Gautam, , S. Adhikari, , S. Thangalazhy-Gopakumar, , C. Brodbeck, , S. Bhavnani, , S. Taylor, , BioResources, 2011, 6, (4), 4652 LINK https://doi.org/10.15376/biores.6.4.4652-4661
    [Google Scholar]
  23. N. A. Samiran, , M. N. M. Jaafar, , C. T. Chong, , N. Jo-Han, , J. Teknol., 2015, 72, (5), 13 LINK https://doi.org/10.11113/jt.v72.3932
    [Google Scholar]
  24. Y. Chhiti, , M. Kemiha, , Int. J. Eng. Sci., 2013, 2, (3), 75 LINK https://www.theijes.com/papers/v2-i3/M023075085.pdf
    [Google Scholar]
  25. [Google Scholar]
  26. G. G. Jankes, , M. M. Trninić, , M. S. Stamenić, , T. S. Simonović, , N. Tanasić, , J. M. Labus, , Therm. Sci., 2012, 16, (S1), 115 LINK https://doi.org/10.2298/tsci120216066j
    [Google Scholar]
  27. S. Pipatmanomai, , J. Sustain. Energy Environ., 2011, 2, (S1), 29 LINK https://www.thaiscience.info/journals/Article/JOSE/10977082.pdf
    [Google Scholar]
  28. A. D. Upadhyay, , B. R. N. Patel, , C. N. K. Shah, , ‘Review on 10 KWe Downdraft Gasifier with Different Feedstocks’, International Conference of Current Trends in Technology, NIRMA University, Ahmedabad, 2011
    [Google Scholar]
  29. A. Surjosatyo, , F. Vidian, , Yu. S. Nugroho, , J. Mek., 2010, 31, (2), 62
    [Google Scholar]
  30. M. Puig-Arnavat, , J. C. Bruno, , A. Coronas, , Renew. Sustain. Energy Rev., 2010, 14, (9), 2841 LINK https://doi.org/10.1016/j.rser.2010.07.030
    [Google Scholar]
  31. L. Wang, , C. L. Weller, , D. D. Jones, , M. A. Hanna, , Biomass Bioenergy, 2008, 32, (7), 573 LINK https://doi.org/10.1016/j.biombioe.2007.12.007
    [Google Scholar]
  32. T. B. Reed, , A. Das, , “Handbook of Biomass Downdraft Gasifier Engine Systems”, Solar Energy Research Institute Report No. SERI/SP-271-3022, Office of Scientific and Technical Information (OSTI), Oak Ridge, USA, 1988, 148 pp LINK https://doi.org/10.2172/5206099
    [Google Scholar]
  33. A. Molino, , S. Chianese, , D. Musmarra, , J. Energy Chem., 2016, 25, (1), 10 LINK https://doi.org/10.1016/j.jechem.2015.11.005
    [Google Scholar]
  34. S. V. Singh, , Z. Ming, , P. S. Fennell, , N. Shah, , E. J. Anthony, , Prog. Energy Combust. Sci., 2017, 61, 189 LINK https://doi.org/10.1016/j.pecs.2017.04.001
    [Google Scholar]
  35. A. V. Bridgwater, , Chem. Eng. J., 2003, 91, (2–3), 87 LINK https://doi.org/10.1016/s1385-8947(02)00142-0
    [Google Scholar]
  36. A. Kumar, , D. D. Jones, , M. A. Hanna, , Energies, 2009, 2, (3), 556 LINK https://doi.org/10.3390/en20300556
    [Google Scholar]
  37. H. de Lasa, , E. Salaices, , J. Mazumder, , R. Lucky, , Chem. Rev., 2011, 111, (9), 5404 LINK https://doi.org/10.1021/cr200024w
    [Google Scholar]
  38. J. Udomsirichakorn, , P. A. Salam, , Renew. Sustain. Energy Rev., 2014, 30, 565 LINK https://doi.org/10.1016/j.rser.2013.10.013
    [Google Scholar]
  39. V. S. Sikarwar, , M. Zhao, , P. Clough, , J. Yao, , X. Zhong, , M. Z. Memon, , N. Shah, , E. J. Anthony, , P. S. Fennell, , Energy Environ. Sci., 2016, 9, (10), 2939 LINK https://doi.org/10.1039/c6ee00935b
    [Google Scholar]
  40. J.-P. Lange, , Biofuels Bioprod. Biorefining, 2007, 1, (1), 39 LINK https://doi.org/10.1002/bbb.7
    [Google Scholar]
  41. P. McKendry, , Biores. Technol., 2002, 83, (1), 37 LINK https://doi.org/10.1016/s0960-8524(01)00118-3
    [Google Scholar]
  42. R. Van den Broek, , A. Faaij, , A. van Wijk, , Biomass Bioenergy, 1996, 11, (4), 271 LINK https://doi.org/10.1016/0961-9534(96)00033-5
    [Google Scholar]
  43. Z. Pei-dong, , J. Guomei, , W. Gang, , Renew. Sustain. Energy Rev., 2007, 11, (8), 1903 LINK https://doi.org/10.1016/j.rser.2005.11.009
    [Google Scholar]
  44. D. Tilman, , R. Socolow, , J. A. Foley, , J. Hill, , E. Larson, , L. Lynd, , S. Pacala, , J. Reilly, , T. Searchinger, , C. Somerville, , R. Williams, , Science, 2009, 325, (5938), 270 LINK https://doi.org/10.1126/science.1177970
    [Google Scholar]
  45. A. Demirbas, , J. Anal. Appl. Pyrolysis, 2005, 73, (1), 39 LINK https://doi.org/10.1016/j.jaap.2004.04.002
    [Google Scholar]
  46. İ. Demiral, , S. Şensöz, , Biores. Technol., 2008, 99, (17), 8002 LINK https://doi.org/10.1016/j.biortech.2008.03.053
    [Google Scholar]
  47. D. Mohan, , C. U. Pittman, , M. Bricka, , F. Smith, , B. Yancey, , J. Mohammad, , P. H. Steele, , M. F. Alexandre-Franco, , V. Gómez-Serrano, , H. Gong, , J. Colloid Interface Sci., 2007, 310, (1), 57 LINK https://doi.org/10.1016/j.jcis.2007.01.020
    [Google Scholar]
  48. A. Aho, , N. Kumar, , K. Eränen, , T. Salmi, , M. Hupa, , D. Yu. Murzin, , Fuel, 2008, 87, (12), 2493 LINK https://doi.org/10.1016/j.fuel.2008.02.015
    [Google Scholar]
  49. F. Karaosmanoǧlu, , E. Teti̇k, , Renew. Energy, 1999, 16, (1–4), 1090 LINK https://doi.org/10.1016/s0960-1481(98)00422-4
    [Google Scholar]
  50. P. A. Jensen, , B. Sander, , K. Dam-Johansen, , Biomass Bioenergy, 2001, 20, (6), 431 LINK https://doi.org/10.1016/s0961-9534(01)00005-8
    [Google Scholar]
  51. E. Pütün, , B. B. Uzun, , A. E. Pütün, , Bioresour. Technol., 2006, 97, (5), 701 LINK https://doi.org/10.1016/j.biortech.2005.04.005
    [Google Scholar]
  52. M. N. Uddin, , K. Techato, , J. Taweekun, , M. Mofijur, , M. G. Rasul, , T. M. I. Mahlia, , S. M. Ashrafur, , Energies, 2018, 11, (11), 3115 LINK https://doi.org/10.3390/en11113115
    [Google Scholar]
  53. J. Popp, , Z. Lakner, , M. Harangi-Rákos, , M. Fári, , Renew. Sustain. Energy Rev., 2014, 32, 559 LINK https://doi.org/10.1016/j.rser.2014.01.056
    [Google Scholar]
  54. A. Sauciuc, , Z. Abosteif, , G. Weber, , A. Potetz, , R. Rauch, , H. Hofbauer, , G. Schaub, , L. Dumitrescu, , Biomass Convers. Biorefinery, 2012, 2, (3), 253 LINK https://doi.org/10.1007/s13399-012-0060-4
    [Google Scholar]
  55. Y. Zhang, , Y. Cui, , P. Chen, , S. Liu, , N. Zhou, , K. Ding, , L. Fan, , P. Peng, , M. Min, , Y. Cheng, , Y. Wang, , Y. Wan, , Y. Liu, , B. Li, , R. Ruan, , ‘Gasification Technologies and Their Energy Potentials’, in “Sustainable Resource Recovery and Zero Waste Approaches”, eds. M. J. Taherzadeh, , K. Bolton, , J. Wong, , A. Pandey, , ch. 14, Elsevier BV, Amsterdam, The Netherlands, 2019, pp. 193206 LINK https://doi.org/10.1016/B978-0-444-64200-4.00014-1
    [Google Scholar]
  56. A. Demirbas, , Appl. Energy, 2011, 88, (1), 17 LINK https://doi.org/10.1016/j.apenergy.2010.07.016
    [Google Scholar]
  57. A. Demirbas, , Prog. Energy Combust. Sci., 2007, 33, (1), 1 LINK https://doi.org/10.1016/j.pecs.2006.06.001
    [Google Scholar]
  58. B. M. Güell, , J. Sandquist, , L. Sørum, , J. Energy Resour. Technol., 2013, 135, (1), 014001 LINK https://doi.org/10.1115/1.4007660
    [Google Scholar]
  59. “Biofuels for Fuel Cells: Renewable Energy from Biomass Fermentation”, eds. P. Lens, , P. Westermann, , M. Haberbauer, , A. Moreno, , Integrated Environmental Technology Series, Vol. 4, IWA Publishing, London, UK, 2005 LINK https://doi.org/10.2166/9781780403021
    [Google Scholar]
  60. Y. Adachi, , M. Komoto, , I. Watanabe, , Y. Ohno, , K. Fujimoto, , Fuel, 2000, 79, (3–4), 229 LINK https://doi.org/10.1016/s0016-2361(99)00156-8
    [Google Scholar]
  61. A. Sardesai, , T. Tartamella, , S. Lee, , ‘CO2/Dimethyl Ether (DME) Feed Mixtures in the DME-to-Hydrocarbons (DTH) Process’, 12th Annual International Pittsburgh Coal Conference, Pittsburgh, USA, 11th–15th September, 1995
    [Google Scholar]
  62. A. Caldeira-Pires, , S. M. da Luz, , S. Palma-Rojas, , T. Rodrigues, , V. C. Silverio, , F. Vilela, , P. C. Barbosa, , A. M. Alves, , Energies, 2013, 6, (1), 329 LINK https://doi.org/10.3390/en6010329
    [Google Scholar]
  63. R. Rauch, , J. Hrbek, , H. Hofbauer, , WIREs Energy Environ., 2014, 3, (4), 343 LINK https://doi.org/10.1002/wene.97
    [Google Scholar]
  64. K. Göransson, , U. Söderlind, , J. He, , W. Zhang, , Renew. Sustain. Energy Rev., 2011, 15, (1), 482 LINK https://doi.org/10.1016/j.rser.2010.09.032
    [Google Scholar]
  65. P. L. Spath, , D. C. Dayton, , “Preliminary Screening: Technical, Economic Assessment of Synthesis Gas to Fuels, Chemicals with Emphasis on the Potential for Biomass-Derived Syngas”, Report No. NREL/TP-510-34929, National Renewable Energy Laboratory, Golden, USA, December, 2003 LINK https://doi.org/10.2172/1216404
    [Google Scholar]
  66. W. Zhang, , Fuel Process. Technol., 2010, 91, (8), 866 LINK https://doi.org/10.1016/j.fuproc.2009.07.010
    [Google Scholar]
  67. M. N. Uddin, , N. A. Nithe, , Johnson Matthey Technol. Rev., 2025, 69, (1), 13 LINK https://doi.org/10.1595/205651325X17252884203333
    [Google Scholar]
/content/journals/10.1595/205651325X17128380208047
Loading
/content/journals/10.1595/205651325X17128380208047
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): biomass; gasification; greenhouse gas; renewable energy; sustainability
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test