Skip to content
1887
Volume 69, Issue 1
  • ISSN: 2056-5135

Abstract

Raman spectroscopy is a useful analytical tool for characterising the carbon chemistry of proton exchange membrane fuel cell (PEMFC) catalyst coated membranes (CCMs) and understanding changes in the carbon matrix due to corrosion and degradation processes. However, interpretation of the data is highly sensitive to the sampling and spectral analysis methods employed. Here we critically assess the use of Raman spectroscopy for diagnostic analysis of uncycled PEMFC CCMs and equivalent CCMs subjected to dynamic load cycling (DLC). We first consider different approaches to quantitative analysis of Raman spectra and show that a two peak spectral fitting model which only considers the characteristic D1 and G peaks in the Raman spectrum provides an inferior fit compared to a four peak fitting model that includes the minority D3 and D4 peaks associated with amorphous carbon and disordered graphitic domains. We furthermore demonstrate that in specific cases these two models can generate opposing trends. We then compare quantitative Raman metrics generated from spectral maps at different locations of CCMs subjected to different durations of cycling. A large degree of scatter in the data precluded conclusive correlation between Raman data and duration of cycling, highlighting the importance of sufficiently large sample sizes when performing quantitative analysis. However, a difference in behaviour between cathode and anode was observed, characterised most prominently by a higher degree of scatter in the Raman metrics associated with disordered and amorphous carbon, potentially pointing to contrasting ageing phenomena resulting from the different conditions at the cathode and anode. We also demonstrate that spectral differences across the cycled anode appear to be highly spatially heterogeneous, indicating that the associated chemical changes are localised on the <100 μm scale.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651325X17187054425007
2025-01-01
2025-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/69/1/Samajdar_13a_Imp.html?itemId=/content/journals/10.1595/205651325X17187054425007&mimeType=html&fmt=ahah

References

  1. Y. Wang, Y. Pang, H. Xu, A. Martinez, K. S. Chen, Energy Environ. Sci., 2022, 15, (6), 2288 LINK https://doi.org/10.1039/d2ee00790h
    [Google Scholar]
  2. L. Castanheira, L. Dubau, M. Mermoux, G. Berthomé, N. Caqué, E. Rossinot, M. Chatenet, F. Maillard, ACS Catal., 2014, 4, (7), 2258 LINK https://doi.org/10.1021/cs500449q
    [Google Scholar]
  3. L. Castanheira, W. O. Silva, F. H. B. Lima, A. Crisci, L. Dubau, F. Maillard, ACS Catal., 2015, 5, (4), 2184 LINK https://doi.org/10.1021/cs501973j
    [Google Scholar]
  4. M. Hara, M. Lee, C.-H. Liu, B.-H. Chen, Y. Yamashita, M. Uchida, H. Uchida, M. Watanabe, Electrochim. Acta, 2012, 70, 171 LINK https://doi.org/10.1016/j.electacta.2012.03.043
    [Google Scholar]
  5. Y. Qi, Y. Huang, Z. Gao, C. H. Chen, A. Perego, H. Yildirim, M. Odgaard, T. Asset, P. Atanassov, I. V. Zenyuk, J. Power Sources, 2022, 551, 232209 LINK https://doi.org/10.1016/j.jpowsour.2022.232209
    [Google Scholar]
  6. A. Taniguchi, T. Akita, K. Yasuda, Y. Miyazaki, J. Power Sources, 2004, 130, (1–2), 42 LINK https://doi.org/10.1016/j.jpowsour.2003.12.035
    [Google Scholar]
  7. Z. Zhao, L. Castanheira, L. Dubau, G. Berthomé, A. Crisci, F. Maillard, J. Power Sources, 2013, 230, 236 LINK https://doi.org/10.1016/j.jpowsour.2012.12.053
    [Google Scholar]
  8. J. Zhao, Z. Tu, S. H. Chan, J. Power Sources, 2021, 488, 229434 LINK https://doi.org/10.1016/j.jpowsour.2020.229434
    [Google Scholar]
  9. N. Loupe, J. Doan, E. S. Smotkin, Catal. Today, 2017, 283, 11 LINK https://doi.org/10.1016/j.cattod.2016.06.012
    [Google Scholar]
  10. B. Mattsson, H. Ericson, L. M. Torell, F. Sundholm, Electrochim. Acta, 2000, 45, (8–9), 1405 LINK https://doi.org/10.1016/s0013-4686(99)00351-5
    [Google Scholar]
  11. A. Zana, J. Speder, N. E. A. Reeler, T. Vosch, M. Arenz, Electrochim. Acta, 2013, 114, 455 LINK https://doi.org/10.1016/j.electacta.2013.10.097
    [Google Scholar]
  12. I. Jiménez-Morales, A. Reyes-Carmona, M. Dupont, S. Cavaliere, M. Rodlert, F. Mornaghini, M. J. Larsen, M. Odgaard, J. Zajac, D. J. Jones, J. Rozière, Carbon Energy, 2021, 3, (4), 654 LINK https://doi.org/10.1002/cey2.109
    [Google Scholar]
  13. A. C. Ferrari, J. Robertson, Phys. Rev. B, 2000, 61, (20), 14095 LINK https://doi.org/10.1103/physrevb.61.14095
    [Google Scholar]
  14. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Carbon, 2005, 43, (8), 1731 LINK https://doi.org/10.1016/j.carbon.2005.02.018
    [Google Scholar]
  15. M. Kakihana, M. Osada, ‘Raman Spectroscopy as a Characterization Tool for Carbon Materials’, in “Carbon Alloys: Novel Concepts to Develop Carbon Science and Technology”, eds. E. Yasuda, M. Inagaki, K. Kaneko, M. Endo, A. Oya, Y. Tanabe, Elsevier Science Ltd, Oxford, UK, 2003, pp. 285298 LINK https://doi.org/10.1016/b978-008044163-4/50018-8
    [Google Scholar]
  16. A. C. Ferrari, Solid State Commun., 2007, 143, (1–2), 47 LINK https://doi.org/10.1016/j.ssc.2007.03.052
    [Google Scholar]
  17. Z. E. Brubaker, J. J. Langford, R. J. Kapsimalis, J. L. Niedziela, J. Mater. Sci., 2021, 56, (27), 15087 LINK https://doi.org/10.1007/s10853-021-06225-1
    [Google Scholar]
  18. J. Hack, L. Rasha, P. L. Cullen, J. J. Bailey, T. P. Neville, P. R. Shearing, N. P. Brandon, D. J. L. Brett, Electrochim. Acta, 2020, 352, 136464 LINK https://doi.org/10.1016/j.electacta.2020.136464
    [Google Scholar]
  19. G. Hinds, E. Brightman, Electrochem. Commun., 2012, 17, 26 LINK https://doi.org/10.1016/j.elecom.2012.01.007
    [Google Scholar]
  20. S. Kreitmeier, A. Wokaun, F. N. Büchi, J. Electrochem. Soc., 2012, 159, (11), F787 LINK https://doi.org/10.1149/2.019212jes
    [Google Scholar]
  21. Y. Yamashita, S. Itami, J. Takano, M. Kodama, K. Kakinuma, M. Hara, M. Watanabe, M. Uchida, J. Electrochem. Soc., 2016, 163, (7), F644 LINK https://doi.org/10.1149/2.0771607jes
    [Google Scholar]
/content/journals/10.1595/205651325X17187054425007
Loading
/content/journals/10.1595/205651325X17187054425007
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test