Skip to content
1887
Volume 62, Issue 4
  • ISSN: 2056-5135

Abstract

Oxidative destruction of organic compounds in water streams could significantly reduce environmental effects associated with discharging waste. We report the development of a process to oxidise phenol in aqueous solutions, a model for waste stream contaminants, using Fenton’s reactions combined with synthesised hydrogen peroxide (HO). Bifunctional palladium-iron supported catalysts, where Pd is responsible for HO synthesis while Fe ensures the production of reactive oxygen species required for the degradation of phenol to less toxic species is reported. A comparison is made between generated and commercial HO and the effect of phenol degradation products on catalyst stability is explored.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X15302623075041
2018-01-01
2024-11-23
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/4/Lewis_16a_Imp.html?itemId=/content/journals/10.1595/205651318X15302623075041&mimeType=html&fmt=ahah

References

  1. P. Kazemi, M. Peydayesh, A. Bandegi, T. Mohammadi, O. Bakhtiari, Chem. Eng. Res. Des., 2014, 92, (2), 375 LINK https://doi.org/10.1016/j.cherd.2013.07.023 [Google Scholar]
  2. S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian, A. Najafi, E. Mofarrah, Desalin. Water Treat., 2015, 53, (8), 2215 LINK https://doi.org/10.1080/19443994.2014.883327 [Google Scholar]
  3. G. Gupta, V. Rao, J. Environ. Sci. Health, Part A: Environ. Sci. Eng., 1998, 33, (1), 83 LINK https://doi.org/10.1080/10934529809376719 [Google Scholar]
  4. A. Dhakshinamoorthy, S. Navalon, M. Alvaro, H. Garcia, ChemSusChem, 2012, 5, (1), 46 LINK https://doi.org/10.1002/cssc.201100517 [Google Scholar]
  5. V. Kavitha, K. Palanivelu, Chemosphere, 2004, 55, (9), 1235 LINK https://doi.org/10.1016/j.chemosphere.2003.12.022 [Google Scholar]
  6. J. Araña, E. Tello Rendón, J. M. Doña Rodrýìguez, J. A. Herrera Melián, O. González Dýìaz, J. Pérez Peña, Chemosphere, 2001, 44, (5), 1017 LINK https://doi.org/10.1016/S0045-6535(00)00359-3 [Google Scholar]
  7. B. Iurascu, I. Siminiceanu, D. Vione, M. A. Vicente, A. Gil, Water Res., 2009, 43, (5), 1313 LINK https://doi.org/10.1016/j.watres.2008.12.032 [Google Scholar]
  8. N. Wang, T. Zheng, G. Zhang, P. Wang, J. Environ. Chem. Eng., 2016, 4, (1), 762 LINK https://doi.org/10.1016/j.jece.2015.12.016 [Google Scholar]
  9. D. H. Bremner, A. E. Burgess, D. Houllemare, K.-C. Namkung, Appl. Catal. B: Environ., 2006, 63, (1–2), 15 LINK https://doi.org/10.1016/j.apcatb.2005.09.005 [Google Scholar]
  10. S. Esplugas, J. Giménez, S. Contreras, E. Pascual, M. Rodrýìguez, Water Res., 2002, 36, (4), 1034 LINK https://doi.org/10.1016/S0043-1354(01)00301-3 [Google Scholar]
  11. J. J. Pignatello, E. Oliveros, A. MacKay, Crit. Rev. Environ. Sci. Technol., 2006, 36, (1), 1 LINK https://doi.org/10.1080/10643380500326564 [Google Scholar]
  12. H. J. H. Fenton, J. Chem. Soc., Trans., 1894, 65, 899 LINK https://doi.org/10.1039/CT8946500899 [Google Scholar]
  13. P. V. Nidheesh, R. Gandhimathi, S. T. Ramesh, Environ. Sci. Pollut. Res., 2013, 20, (4), 2099 LINK https://doi.org/10.1007/s11356-012-1385-z [Google Scholar]
  14. J. Feng, X. Hu, P. L. Yue, H. Y. Zhu, G. Q. Lu, Ind. Eng. Chem. Res., 2003, 42, (10), 2058 LINK https://doi.org/10.1021/ie0207010 [Google Scholar]
  15. R. Chand, N. H. Ince, P. R. Gogate, D. H. Bremner, Sep. Purif. Technol., 2009, 67, (1), 103 LINK https://doi.org/10.1016/j.seppur.2009.03.035 [Google Scholar]
  16. S.-Y. Pang, J. Jiang, J. Ma, Environ. Sci. Technol., 2011, 45, (1), 307 LINK https://doi.org/10.1021/es102401d [Google Scholar]
  17. S. H. Bossmann, E. Oliveros, S. Göb, M. Kantor, A. Göppert, L. Lei, P. L. Yue, A. M. Braun, Water Sci. Technol., 2001, 44, (5), 257 LINK https://doi.org/10.2166/wst.2001.0300 [Google Scholar]
  18. A. Georgi, R. Gonzalez-Olmos, R. Köhler, F.-D. Kopinke, Sep. Sci. Technol., 2010, 45, (11), 1579 LINK https://doi.org/10.1080/01496395.2010.487466 [Google Scholar]
  19. J. Feng, X. Hu, P. L. Yue, H. Y. Zhu, G. Q. Lu, Water Res., 2003, 37, (15), 3776 LINK https://doi.org/10.1016/S0043-1354(03)00268-9 [Google Scholar]
  20. P. L. Yue, J. Y. Feng, X. Hu, Water Sci. Technol., 2004, 49, (4), 85 LINK https://doi.org/10.2166/wst.2004.0228 [Google Scholar]
  21. J. Feng, X. Hu, P. L. Yue, Environ. Sci. Technol., 2004, 38, (1), 269 LINK https://doi.org/10.1021/es034515c [Google Scholar]
  22. F. Martínez, G. Calleja, J. A. Melero, R. Molina, Appl. Catal. B: Environ., 2005, 60, (3–4), 181 LINK https://doi.org/10.1016/j.apcatb.2005.03.004 [Google Scholar]
  23. R.-M. Liou, S.-H. Chen, M.-Y. Hung, C.-S. Hsu, J.-Y. Lai, Chemosphere, 2005, 59, (1), 117 LINK https://doi.org/10.1016/j.chemosphere.2004.09.080 [Google Scholar]
  24. S. Queirós, V. Morais, C. S. D. Rodrigues, F. J. Maldonado-Hódar, L. M. Madeira, Sep. Purif. Technol., 2015, 141, 235 LINK https://doi.org/10.1016/j.seppur.2014.11.046 [Google Scholar]
  25. Y. Yan, X. Wu, H. Zhang, Sep. Purif. Technol., 2016, 171, 52 LINK https://doi.org/10.1016/j.seppur.2016.06.047 [Google Scholar]
  26. H. R. Devlin, I. J. Harris, Ind. Eng. Chem. Fundamen., 1984, 23, (4), 387 LINK https://doi.org/10.1021/i100016a002 [Google Scholar]
  27. A. Santos, P. Yustos, A. Quintanilla, F. García-Ochoa, J. A. Casas, J. J. Rodríguez, Environ. Sci. Technol., 2004, 38, (1), 133 LINK https://doi.org/10.1021/es030476t [Google Scholar]
  28. S. Leonard, P. M. Gannett, Y. Rojanasakul, D. Schwegler-Berry, V. Castranova, V. Vallyathan, X. Shi, J. Inorg. Biochem., 1998, 70, (3–4), 239 LINK https://doi.org/10.1016/S0162-0134(98)10022-3 [Google Scholar]
  29. I. A. Salem, M. S. El-Maazawi, Chemosphere, 2000, 41, (8), 1173 LINK https://doi.org/10.1016/S0045-6535(00)00009-6 [Google Scholar]
  30. S. Jiang, H. Zhang, Y. Yan, Catal. Commun., 2015, 71, 28 LINK https://doi.org/10.1016/j.catcom.2015.08.006 [Google Scholar]
  31. S. Jiang, H. Zhang, Y. Yan, Sep. Purif. Technol., 2018, 190, 243 LINK https://doi.org/10.1016/j.seppur.2017.09.001 [Google Scholar]
  32. N. S. Inchaurrondo, P. Massa, R. Fenoglio, J. Font, P. Haure, Chem. Eng. J., 2012, 198–199, 426 LINK https://doi.org/10.1016/j.cej.2012.05.103 [Google Scholar]
  33. R. J. Watts, J. Sarasa, F. J. Loge, A. L. Teel, J. Environ. Eng., 2005, 131, (1), 158 LINK https://doi.org/10.1061/(ASCE)0733-9372(2005)131:1(158) [Google Scholar]
  34. E. V. Rokhina, M. Lahtinen, M. C. M. Nolte, J. Virkutyte, Appl. Catal. B: Environ., 2009, 87, (3–4), 162 LINK https://doi.org/10.1016/j.apcatb.2008.09.006 [Google Scholar]
  35. M. Triki, S. Contreras, F. Medina, J. Sol-Gel Sci. Technol., 2014, 71, (1), 96 LINK https://doi.org/10.1007/s10971-014-3333-5 [Google Scholar]
  36. Y. Liu, Z. Yu, Y. Hou, Z. Peng, L. Wang, Z. Gong, J. Zhu, D. Su, Catal. Commun., 2016, 86, 63 LINK https://doi.org/10.1016/j.catcom.2016.08.012 [Google Scholar]
  37. Y. Qin, M. Sun, H. Liu, J. Qu, Electrochim. Acta, 2015, 186, 328 LINK https://doi.org/10.1016/j.electacta.2015.10.122 [Google Scholar]
  38. M. S. Yalfani, S. Contreras, F. Medina, J. Sueiras, Appl. Catal. B: Environ., 2009, 89, (3–4), 519 LINK https://doi.org/10.1016/j.apcatb.2009.01.007 [Google Scholar]
  39. M. S. Yalfani, S. Contreras, F. Medina, J. E. Sueiras, J. Hazard. Mater., 2011, 192, (1), 340 LINK https://doi.org/10.1016/j.jhazmat.2011.05.029 [Google Scholar]
  40. M. S. Yalfani, A. Georgi, S. Contreras, F. Medina, F.-D. Kopinke, Appl. Catal. B: Environ., 2011, 104, (1–2), 161 LINK https://doi.org/10.1016/j.apcatb.2011.02.017 [Google Scholar]
  41. J. K. Edwards, B. E. Solsona, P. Landon, A. F. Carley, A. Herzing, C. J. Kiely, G. J. Hutchings, J. Catal., 2005, 236, (1), 69 LINK https://doi.org/10.1016/j.jcat.2005.09.015 [Google Scholar]
  42. J. K. Edwards, G. J. Hutchings, Angew. Chem. Int. Ed., 2008, 47, (48), 9192 LINK https://doi.org/10.1002/anie.200802818 [Google Scholar]
  43. R. C. C. Costa, M. F. F. Lelis, L. C. A. Oliveira, J. D. Fabris, J. D. Ardisson, R. R. V. A. Rios, C. N. Silva, R. M. Lago, J. Hazard. Mater., 2006, 129, (1–3), 171 LINK https://doi.org/10.1016/j.jhazmat.2005.08.028 [Google Scholar]
  44. A. N. Pham, G. Xing, C. J. Miller, T. D. Waite, J. Catal., 2013, 301, 54 LINK https://doi.org/10.1016/j.jcat.2013.01.025 [Google Scholar]
  45. A. D. Bokare, W. Choi, J. Hazard. Mater., 2014, 275, 121 LINK https://doi.org/10.1016/j.jhazmat.2014.04.054 [Google Scholar]
  46. V. R. Choudhary, C. Samanta, A. G. Gaikwad, Chem. Commun., 2004, (18), 2054 LINK https://doi.org/10.1039/B405415F [Google Scholar]
  47. V. R. Choudhary, C. Samanta, P. Jana, Ind. Eng. Chem. Res., 2007, 46, (10), 3237 LINK https://doi.org/10.1021/ie0608408 [Google Scholar]
  48. A. Georgi, M. Velasco Polo, K. Crincoli, K. Mackenzie, F.-D. Kopinke, Environ. Sci. Technol., 2016, 50, (11), 5882 LINK https://doi.org/10.1021/acs.est.6b01049 [Google Scholar]
  49. A. Babuponnusami, K. Muthukumar, J. Environ. Chem. Eng., 2014, 2, (1), 557 LINK https://doi.org/10.1016/j.jece.2013.10.011 [Google Scholar]
  50. L. Szpyrkowicz, C. Juzzolino, S. N. Kaul, Water Res., 2001, 35, (9), 2129 LINK https://doi.org/10.1016/S0043-1354(00)00487-5 [Google Scholar]
  51. F. J. Rivas, F. J. Beltrán, J. Frades, P. Buxeda, Water Res., 2001, 35, (2), 387 LINK https://doi.org/10.1016/S0043-1354(00)00285-2 [Google Scholar]
  52. P. C. Wegner, ‘Hydrogen Peroxide Stabilizer and Resulting Product and Applications’, US Patent Appl., 2003/ 151,024 [Google Scholar]
/content/journals/10.1595/205651318X15302623075041
Loading
/content/journals/10.1595/205651318X15302623075041
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test