Skip to content
1887
Volume 62, Issue 4
  • ISSN: 2056-5135

Abstract

Exhaust gas recirculation is a widely used technology on conventional vehicles, primarily for lowering emissions of local pollutants. Here we use chemical models to show that an exhaust-gas recirculation loop can be converted into a heat-recovery system by incorporating a catalytic reformer. The system is predicted to be particularly effective for gasoline-fuelled spark ignition engines. The high temperature and low oxygen-content of the exhaust gas mean that endothermic reactions will predominate, when some of the gasoline is injected into the recirculation loop upstream of the reformer. The output of the reformer will, therefore, have a higher fuel heating value than the gasoline consumed. Chemical efficiency calculations, based on the predicted reformer output at chemical equilibrium, indicate that the direct improvement in fuel economy could be as high as 14%. Initial tests using a rhodium reforming catalyst suggest that much of the heat recovery predicted by the thermodynamic models can be achieved in practice, which together with a reduction in throttling may allow a gasoline spark ignition engine to match the fuel economy of a diesel engine.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X15318154729616
2018-01-01
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/4/Leung_16a_Imp.html?itemId=/content/journals/10.1595/205651318X15318154729616&mimeType=html&fmt=ahah

References

  1. “Climate Change 2014: Mitigation of Climate Change”, eds. Edenhofer O., Pichs-Madruga R., Sokona Y., Minx J. C., Farahani E., Kadner S., Seyboth , Adler A., Baum I., Brunner S., Eickemeier P., Kriemann B., Savolainen J., Schlömer S., von Stechow C., and Zwickel T. Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland, 2014, 1454 pp LINK http://www.ipcc.ch/report/ar5/wg3/ [Google Scholar]
  2. Lapuerta M., Rodriguez-Fernandez J., Herreros J. M., ‘Gaseous and Particle Greenhouse Emissions from Road Transport’, in “Environmental Impacts of Road Vehicles: Past, Present and Future”, eds. Harrison R. M., and Hester R. E. The Royal Society of Chemistry, London, UK, 2017, pp. 2545 LINK http://dx.doi.org/10.1039/9781788010221-00025 [Google Scholar]
  3. Sprouse C. III, and Depcik C. Appl. Therm. Eng., 2013, 51, (1–2), 711 LINK https://doi.org/10.1016/j.applthermaleng.2012.10.017 [Google Scholar]
  4. Katsanos C. O., Hountalas D. T., and Zannis T. C. Energy Conv. Manage., 2013, 76, 712 LINK https://doi.org/10.1016/j.enconman.2013.08.022 [Google Scholar]
  5. Lee D. H., Lee J. S., and Park J. S. Appl. Energy, 2010, 87, (5), 1716 LINK https://doi.org/10.1016/j.apenergy.2009.11.004 [Google Scholar]
  6. Liang X., Wang X., Shu G., Wei H., Tian H., and Wang X. Int. J. Engine Res., 2015, 39, (4), 453 LINK https://doi.org/10.1002/er.3242 [Google Scholar]
  7. Fennell D., Herreros J., Tsolakis A., Cockle K., Pignon J., and Millington P. RSC Adv., 2015, 5, (44), 35252 LINK https://doi.org/10.1039/C5RA03111G [Google Scholar]
  8. Bogarra M., Herreros J. M., Tsolakis A., York A. P. E., and Millington P. J. Appl. Energy, 2016, 180, 245 LINK https://doi.org/10.1016/j.apenergy.2016.07.100 [Google Scholar]
  9. Barbier J. Jr., and Duprez D. Appl. Catal. B: Environ., 1994, 4, (2–3), 105 LINK https://doi.org/10.1016/0926-3373(94)80046-4 [Google Scholar]
  10. Jenkins J. W., and Shutt E. Platinum Metals Rev., 1989, 33, (3), 118 LINK https://www.technology.matthey.com/article/33/3/118-127/ [Google Scholar]
  11. Edwards N., Ellis S. R., Frost J. C., Golunski S. E., van Keulen A. N. J., Lindewald N. G., and Reinkingh J. G. J. Power Sources, 1998, 71, (1–2), 123 LINK https://doi.org/10.1016/S0378-7753(97)02797-3 [Google Scholar]
  12. Geissler K., Newson E., Vogel F., Truong T.-B., Hottinger P., and Wokaun A. Phys. Chem. Chem. Phys., 2001, 3, (3), 289 LINK https://doi.org/10.1039/B004881J [Google Scholar]
  13. Golunski S. Platinum Metals Rev., 1998, 42, (1), 2 LINK https://www.technology.matthey.com/article/42/1/2-7/ [Google Scholar]
  14. Golunski S. Energy Environ. Sci., 2010, 3, (12), 1918 LINK https://doi.org/10.1039/C0EE00252F [Google Scholar]
  15. Lau C. S., Allen D., Tsolakis A., Golunski S. E., and Wyszynski M. L. Biomass Bioenergy, 2012, 40, 86 LINK https://doi.org/10.1016/j.biombioe.2012.02.004 [Google Scholar]
  16. Sall E. D., Morgenstern D. A., Fornango J. P., Taylor J. W., Chomic N., and Wheeler J. Energy Fuels, 2013, 27, (9), 5579 LINK https://doi.org/10.1021/ef4011274 [Google Scholar]
  17. Peucheret S., Feaviour M., and Golunski S. Appl. Catal. B: Environ., 2006, 65, (3–4), 201 LINK https://doi.org/10.1016/j.apcatb.2006.01.009 [Google Scholar]
  18. Chang Y., Szybist J. P., Pihl J. A., and Brookshear D. W. Energy Fuels, 2018, 32, (2), 2245 LINK https://doi.org/10.1021/acs.energyfuels.7b02564 [Google Scholar]
  19. Leung P., Tsolakis A., Rodríguez-Fernández J., and Golunski S. Energy Environ. Sci., 2010, 3, (6), 780 LINK https://doi.org/10.1039/B927199F [Google Scholar]
  20. Chang Y., Szybist J. P., Pihl J. A., and Brookshear D. W. Energy Fuels, 2018, 32, (2), 2257 LINK https://doi.org/10.1021/acs.energyfuels.7b02565 [Google Scholar]
  21. Heywood J. B. ‘Engine Friction and Lubrication: Engine Friction Data: SI Engines’, in “Internal Combustion Engines Fundamentals”,McGraw-Hill Inc, New York, USA, 1988, pp. 722723 [Google Scholar]
  22. Fennell D. A. ‘Exhaust Gas Fuel Reforming for Improved Gasoline Direct Injection Engine Efficiency and Emissions’, PhD thesis, University of Birmingham, Birmingham, UK, 2014 LINK http://etheses.bham.ac.uk/5439/ [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651318X15318154729616
Loading
/content/journals/10.1595/205651318X15318154729616
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error