Skip to content
1887
Volume 62, Issue 4
  • ISSN: 2056-5135

Abstract

Atomic force microscopy (AFM) an analytical technique based on probing a surface or interface with a microcantilever, has become widely used in formulation engineering applications such as consumer goods, food and pharmaceutical products. Its application is not limited to imaging surface topography with nanometre spatial resolution, but is also useful for analysing material properties such as adhesion, hardness and surface chemistry. AFM offers unparalleled advantages over other microscopy techniques when studying colloidal systems. The minimum sample preparation requirements, observation and flexible operational conditions enable it to act as a versatile platform for surface analysis. In this review we will present some applications of AFM, and discuss how it has developed into a repertoire of techniques for analysing formulated products at the nanoscale under native conditions.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X15342609861275
2018-01-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/4/Zhang_16a_Imp.html?itemId=/content/journals/10.1595/205651318X15342609861275&mimeType=html&fmt=ahah

References

  1. Schubert H., Ax K., and Behrend O. Trends Food Sci. Technol., 2003, 14, (1–2), 9 LINK https://doi.org/10.1016/S0924-2244(02)00245-5 [Google Scholar]
  2. Álvarez Gómez J. M., and Rodríguez Patino J. M. Ind. Eng. Chem. Res., 2006, 45, (22), 7510 LINK https://doi.org/10.1021/ie060924g [Google Scholar]
  3. Ellis A. L., Norton A. B., Mills T. B., and Norton I. T. Food Hydrocoll., 2017, 73, 222 LINK https://doi.org/10.1016/j.foodhyd.2017.06.038 [Google Scholar]
  4. Santos J., Trujillo-Cayado L. A., Calero N., Alfaro M. C., and Muñoz J. J. Ind. Eng. Chem., 2016, 36, 90 LINK https://doi.org/10.1016/j.jiec.2016.01.024 [Google Scholar]
  5. Huang B., Bates M., and Zhuang X. Annu. Rev. Biochem., 2009, 78, (1), 993 LINK https://doi.org/10.1146/annurev.biochem.77.061906.092014 [Google Scholar]
  6. Bowen W. R., and Hilal N. “Atomic Force Microscopy in Process Engineering: Introduction to AFM for Improved Processes and Products”, Elsevier Ltd, Oxford, UK, 2009, 304 pp LINK https://doi.org/10.1016/C2009-0-18509-4 [Google Scholar]
  7. Binnig G., Quate C. F., and Gerber Ch. Phys. Rev. Lett., 1986, 56, (9), 930 LINK https://doi.org/10.1103/PhysRevLett.56.930 [Google Scholar]
  8. Binnig G., Rohrer H., Gerber Ch., and Weibel E. Appl. Phys. Lett., 1982, 40, (2), 178 LINK https://doi.org/10.1063/1.92999 [Google Scholar]
  9. Allison D. P., Mortensen N. P., Sullivan C. J., and Doktycz M. J. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2010, 2, (6), 618 LINK https://doi.org/10.1002/wnan.104 [Google Scholar]
  10. “Atomic Force Microscopy: Biomedical Methods and Applications”, eds. Braga P. C., and Ricci D. 242, Humana Press Inc, New Jersey, USA, 2004, 394 pp LINK https://doi.org/10.1385/1592596479 [Google Scholar]
  11. “Atomic Force Microscopy Investigations into Biology: From Cell to Protein”, ed. Frewin C. L. InTech, Rijeka, Croatia, 2012, 354 pp LINK https://doi.org/10.5772/2092 [Google Scholar]
  12. “Atomic Force Microscopy in Liquid: Biological Applications”, eds. Baró A. M., and Reifenberger R. G. Wiley-VCH Verlag and Co KGaA, Weinheim, Germany, 2012, 402 pp [Google Scholar]
  13. Gibson C. T., Watson G. S., and Myhra S. Wear, 1997, 213, (1–2), 72 LINK https://doi.org/10.1016/S0043-1648(97)00175-0 [Google Scholar]
  14. Fukuma T., Ueda Y., Yoshioka S., and Asakawa H. Phys. Rev. Lett., 2010, 104, (1), 016101 LINK https://doi.org/10.1103/PhysRevLett.104.016101 [Google Scholar]
  15. Garcia R., and Proksch R. Eur. Polym. J., 2013, 49, (8), 1897 LINK https://doi.org/10.1016/j.eurpolymj.2013.03.037 [Google Scholar]
  16. Trtik P., Kaufmann J., and Volz U. Cement Concrete Res., 2012, 42, (1), 215 LINK https://doi.org/10.1016/j.cemconres.2011.08.009 [Google Scholar]
  17. Kaemmer S. B. ‘Introduction to Bruker’s ScanAsyst and PeakForce Tapping AFM Technology’, Application Note 133, Rev. A0, Bruker Corporation, Santa Barbara, USA, 2011, 12 pp LINK https://www.bruker.com/products/surface-and-dimensional-analysis/atomic-force-microscopes/afm-application-notes/an133-introduction-to-brukers-scanasyst-and-peakforce-tapping.html [Google Scholar]
  18. Cappella B., and Dietler G. Surf. Sci. Rep., 1999, 34(1), 1 LINK https://doi.org/10.1016/S0167-5729(99)00003-5 [Google Scholar]
  19. Butt H.-J., Cappella B., and Kappl M. Surf. Sci. Rep., 2005, 59, (1–6), 1 LINK https://doi.org/10.1016/j.surfrep.2005.08.003 [Google Scholar]
  20. Hutter J. L., and Bechhoefer J. Rev. Sci. Instrum., 1993, 64, (7), 1868 LINK https://doi.org/10.1063/1.1143970 [Google Scholar]
  21. Franz C. M., Taubenberger A., ‘AFM-Based Single-Cell Force Spectroscopy’, in “Atomic Force Microscopy in Liquid: Biological Applications”, eds. Baró A. M., and Reifenberger R. G. Wiley-VCH Verlag and Co KGaA, Weinheim, Germany, 2012, pp. 307330 LINK https://doi.org/10.1002/9783527649808.ch12 [Google Scholar]
  22. Sader J. E., Chon J. W. M., and Mulvaney P. Rev. Sci. Instrum., 1999, 70, (10), 3967 LINK https://doi.org/10.1063/1.1150021 [Google Scholar]
  23. Jing G. Y., Ma Jun., and Yu D. P. J. Electron Microsc., 2007, 56, (1), 21 LINK https://doi.org/10.1093/jmicro/dfm001 [Google Scholar]
  24. Dufrêne Y. F., Ando T., Garcia R., Alsteens D., Martinez-Martin D., Engel A., Gerber C., and Müller D. J. Nature Nanotechnol., 2017, 12, (4), 295 LINK https://doi.org/10.1038/nnano.2017.45 [Google Scholar]
  25. Lin M., Tay S. H., Yang H., Yang B., and Li H. Food Hydrocoll., 2017, 69, 440 LINK https://doi.org/10.1016/j.foodhyd.2017.03.014 [Google Scholar]
  26. Lin M., Tay S. H., Yang H., Yang B., and Li H. Food Chem., 2017, 229, 663 LINK https://doi.org/10.1016/j.foodchem.2017.02.132 [Google Scholar]
  27. Sow L. C., Peh Y. R., Pekerti B. N., Fu C., Bansal N., and Yang H. LWT – Food Sci. Technol., 2017, 85, (Part A), 137 LINK https://doi.org/10.1016/j.lwt.2017.07.014 [Google Scholar]
  28. Wang Y., and Hahn T. H. Compos. Sci. Technol., 2007, 67, (1), 92 LINK https://doi.org/10.1016/j.compscitech.2006.03.030 [Google Scholar]
  29. Pollard B., and Raschke M. B. Beilstein J. Nanotechnol., 2016, 7, 605 LINK https://doi.org/10.3762/bjnano.7.53 [Google Scholar]
  30. Lorenzoni M., Evangelio L., Verhaeghe S., Nicolet C., Navarro C., and Pérez-Murano F. Langmuir, 2015, 31, (42), 11630 LINK https://doi.org/10.1021/acs.langmuir.5b02595 [Google Scholar]
  31. Cano L., Builes D. H., Carrasco-Hernandez S., Gutierrez J., and Tercjak A. Polym. Test., 2017, 57, 38 LINK https://doi.org/10.1016/j.polymertesting.2016.11.009 [Google Scholar]
  32. Peruffo M., Mbogoro M. M., Adobes-Vidal M., and Unwin P. R. J. Phys. Chem. C, 2016, 120, (22), 12100 LINK https://doi.org/10.1021/acs.jpcc.6b03560 [Google Scholar]
  33. Jones C. E., Macpherson J. V., and Unwin P. R. J. Phys. Chem. B, 2000, 104, (10), 2351 LINK https://doi.org/10.1021/jp993532e [Google Scholar]
  34. Seshadri I. P., and Bhushan B. J. Colloid Interface Sci., 2008, 325, (2), 580 LINK https://doi.org/10.1016/j.jcis.2008.06.015 [Google Scholar]
  35. Hansen K. V., Wu Y., Jacobsen T., Mogensen M. B., and Kuhn L. T. Rev. Sci. Instrum., 2013, 84, (7), 073701 LINK https://doi.org/10.1063/1.4811848 [Google Scholar]
  36. Hansen K. V., Norrman K., and Jacobsen T. Ultramicroscopy, 2016, 170, 69 LINK https://doi.org/10.1016/j.ultramic.2016.07.019 [Google Scholar]
  37. Rheinlaender J., Geisse N. A., Proksch R., and Schäffer T. E. Langmuir, 2011, 27, (2), 697 LINK https://doi.org/10.1021/la103275y [Google Scholar]
  38. Page A., Perry D., and Unwin P. R. Proc. Royal Soc. A, 2017, 473, (2200) LINK https://doi.org/10.1098/rspa.2016.0889 [Google Scholar]
  39. Vezenov D. V., Noy A., and Ashby P. J. Adhes. Sci. Technol., 2005, 19, (3–5), 313 LINK https://doi.org/10.1163/1568561054352702 [Google Scholar]
  40. Korte M., Akari S., Kühn H., Baghdadli N., Möhwald H., and Luengo G. S. Langmuir, 2014, 30, (41), 12124 LINK https://doi.org/10.1021/la500461y [Google Scholar]
  41. Max E., Häfner W., Bartels F. W., Sugiharto A., Wood C., and Fery A. Ultramicroscopy, 2010, 110, (4), 320 LINK https://doi.org/10.1016/j.ultramic.2010.01.003 [Google Scholar]
  42. Gourianova S., Willenbacher N., and Kutschera M. Langmuir, 2005, 21, (12), 5429 LINK https://doi.org/10.1021/la0501379 [Google Scholar]
  43. Ally J., Vittorias E., Amirfazli A., Kappl M., Bonaccurso E., McNamee C. E., and Butt H.-J. Langmuir, 2010, 26, (14), 11797 LINK https://doi.org/10.1021/la1010924 [Google Scholar]
  44. Bowen J., Cheneler D., Andrews J. W., Avery A. R., Zhang Z., Ward M. C. L., and Adams M. J. Langmuir, 2011, 27, (18), 11489 LINK https://doi.org/10.1021/la202060f [Google Scholar]
  45. Tejedor M. B., Nordgren N., Schuleit M., Pazesh S., Alderborn G., Millqvist-Fureby A., and Rutland M. W. Langmuir, 2017, 33, (4), 920 LINK https://doi.org/10.1021/acs.langmuir.6b03969 [Google Scholar]
  46. Jones R., Pollock H. M., Geldart D., and Verlinden-Luts A. Ultramicroscopy, 2004, 100, (1–2), 59 LINK https://doi.org/10.1016/j.ultramic.2004.01.009 [Google Scholar]
  47. Jones R., Pollock H. M., Cleaver J. A. S., and Hodges C. S. Langmuir, 2002, 18, (21), 8045 LINK https://doi.org/10.1021/la0259196 [Google Scholar]
  48. Goode K. R, Bowen J., Akhtar N., Robbins P. T., and Fryer P. J. J. Food Eng., 2013, 118, (4), 371 LINK https://doi.org/10.1016/j.jfoodeng.2013.03.016 [Google Scholar]
  49. Tejedor M. B., Nordgren N., Schuleit M., Millqvist-Fureby A., and Rutland M. W. Langmuir, 2017, 33, (46), 13180 LINK https://doi.org/10.1021/acs.langmuir.7b02189 [Google Scholar]
  50. Álvarez-Asencio R., Wallqvist V., Kjellin M., Rutland M. W., Camacho A., Nordgren N., and Luengo G. S. J. Mech. Behav. Biomed. Mater., 2016, 54, 185 LINK https://doi.org/10.1016/j.jmbbm.2015.09.014 [Google Scholar]
  51. Mettu S., Wu C., and Dagastine R. R. J. Colloid Interface Sci., 2018, 517, 166 LINK https://doi.org/10.1016/j.jcis.2018.01.104 [Google Scholar]
  52. Shi C., Zhang L., Xie L., Lu X., Liu Q., He J., Mantilla C. A., Van den berg F. G. A., and Zeng H. Langmuir, 2017, 33, (5), 1265 LINK https://doi.org/10.1021/acs.langmuir.6b04265 [Google Scholar]
  53. Wu J., Liu F., Chen G., Wu X., Ma D., Liu Q., Xu S., Huang S., Chen T., Zhang W., Yang H., and Wang J. Energy Fuels, 2016, 30, (1), 273 LINK https://doi.org/10.1021/acs.energyfuels.5b02614 [Google Scholar]
  54. Wu J., Liu F., Yang H., Xu S., Xie Q., Zhang M., Chen T., Hu G., and Wang J. J. Ind. Eng. Chem., 2017, 56, 342 LINK https://doi.org/10.1016/j.jiec.2017.07.030 [Google Scholar]
  55. Lorenz B., Ceccato M., Andersson M. P., Dobberschütz S., Rodriguez-Blanco J. D., Dalby K. N., Hassenkam T., and Stipp S. L. S. Energy Fuels, 2017, 31, (5), 4670 LINK https://doi.org/10.1021/acs.energyfuels.6b02969 [Google Scholar]
  56. Sauerer B., Stukan M., Abdallah W., Derkani M. H., Fedorov M., Buiting J., and Zhang Z. J. J. Colloid Interface Sci., 2016, 472, 237 LINK https://doi.org/10.1016/j.jcis.2016.03.049 [Google Scholar]
  57. Xie L., Wang J., Shi C., Cui X., Huang J., Zhang H., Liu Q., Liu Q., and Zeng H. J. Phys. Chem. C., 2017, 121, (10), 5620 LINK https://doi.org/10.1021/acs.jpcc.6b12909 [Google Scholar]
  58. Österberg M., and Valle-Delgado J. J. Curr. Opin. Colloid Interface Sci., 2017, 27, 33 LINK https://doi.org/10.1016/j.cocis.2016.09.005 [Google Scholar]
  59. Neuman R. D., Berg J. M., and Claesson P. M. Nordic Pulp Paper Res. J., 1993, 8, (1), 96 LINK https://doi.org/10.3183/NPPRJ-1993-08-01-p096-104 [Google Scholar]
  60. Turesson M., Åkesson T., and Forsman J. J. Colloid Interface Sci., 2009, 329, (1), 67 LINK https://doi.org/10.1016/j.jcis.2008.09.049 [Google Scholar]
  61. Wang D., and Russell T. P. Macromolecules, 2018, 51, (1), 3 LINK https://doi.org/10.1021/acs.macromol.7b01459 [Google Scholar]
  62. Sethuraman A., Han M., Kane R. S., and Belfort G. Langmuir, 2004, 20, (18), 7779 LINK https://doi.org/10.1021/la049454q [Google Scholar]
  63. Xu L.-C., and Siedlecki C. A. Biomaterials, 2007, 28, (22), 3273 LINK https://doi.org/10.1016/j.biomaterials.2007.03.032 [Google Scholar]
  64. Kidoaki S., and Matsuda T. Langmuir, 1999, 15, (22), 7639 LINK https://doi.org/10.1021/la990357k [Google Scholar]
  65. Zhang W., Yang H., Liu F., Chen T., Hu G., Guo D., Hou O., Wu X., Su Y., and Wang J. RSC Adv., 2017, 7, (52), 32518 LINK https://doi.org/10.1039/C7RA04228K [Google Scholar]
  66. Kumar N., and Hahm J. Langmuir, 2005, 21, (15), 6652 LINK https://doi.org/10.1021/la050331v [Google Scholar]
  67. Kumar N., Parajuli O., Gupta A., and Hahm J. Langmuir, 2008, 24, (6), 2688 LINK https://doi.org/10.1021/la7022456 [Google Scholar]
  68. Song S., Ravensbergen K., Alabanza A., Soldin D., and Hahm J. ACS Nano, 2014, 8, (5), 5257 LINK https://doi.org/10.1021/nn5013397 [Google Scholar]
  69. Song S., Xie T., Ravensbergen K., and Hahm J. Nanoscale, 2016, 8, (6), 3496 LINK https://doi.org/10.1039/C5NR07465G [Google Scholar]
  70. Sakai K., Yoshimura T., and Esumi K. Langmuir, 2003, 19, (4), 1203 LINK https://doi.org/10.1021/la026388o [Google Scholar]
  71. Sakai K., Yoshimura T., and Esumi K. Langmuir, 2002, 18, (10), 3993 LINK https://doi.org/10.1021/la011786x [Google Scholar]
  72. Liu J.-F., Min G., and Ducker W. A. Langmuir, 2001, 17, (16), 4895 LINK https://doi.org/10.1021/la0017936 [Google Scholar]
  73. An J., Liu X., Dedinaite A., Korchagina E., Winnik F. M., and Claesson P. M. J. Colloid Interface Sci., 2017, 487, 88 LINK https://doi.org/10.1016/j.jcis.2016.10.021 [Google Scholar]
  74. Raj A., Wang M., Liu C., Ali L., Karlsson N. G., Claesson P. M., and Dëdinaitë A. J. Colloid Interface Sci., 2017, 495, 200 LINK https://doi.org/10.1016/j.jcis.2017.02.007 [Google Scholar]
  75. Naderi A., Iruthayaraj J., Pettersson T., Makuška R., and Claesson P. M. Langmuir, 2008, 24, (13), 6676 LINK https://doi.org/10.1021/la800089v [Google Scholar]
  76. Nordgren N., and Rutland M. W. Nano Lett., 2009, 9, (8), 2984 LINK https://doi.org/10.1021/nl901411e [Google Scholar]
  77. Ishida N., and Biggs S. Langmuir, 2007, 23, (22), 11083 LINK https://doi.org/10.1021/la701461b [Google Scholar]
  78. Gabriel S., Jérôme C., Jérôme R., Fustin C.-A., Pallandre A., Plain J., Jonas A. M., and Duwez A.-S. J. Am. Chem. Soc., 2007, 129, (27), 8410 LINK https://doi.org/10.1021/ja071723m [Google Scholar]
  79. Willet N., Gabriel S., Jérôme C., Du Prez F. E., and Duwez A.-S. Soft Matter., 2014, 10, (37), 7256 LINK https://doi.org/10.1039/C4SM01266F [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651318X15342609861275
Loading
/content/journals/10.1595/205651318X15342609861275
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error