Skip to content
1887
Volume 62, Issue 4
  • ISSN: 2056-5135
  • oa Making the Most of Precious Metal Nanoparticles in the Purification of Industrial Wastewater by Catalytic Wet Air Oxidation

    Revealing synergy between platinum and catalyst support

  • Authors: Korrin Saunders1, Dafydd Davies1, Stan Golunski1, Peter Johnston2 and Pawel Plucinski3
  • Affiliations: 1 Cardiff Catalysis Institute, School of Chemistry, Cardiff UniversityCardiff CF10 3ATUK 2 Johnson Matthey PlcOrchard Road, Royston SG8 5HEUK 3 Department of Chemical Engineering, University of BathBath BA2 7AYUK
  • Source: Johnson Matthey Technology Review, Volume 62, Issue 4, Oct 2018, p. 429 - 437
  • DOI: https://doi.org/10.1595/205651318X15299289846952
    • Published online: 01 Jan 2018

Abstract

The aim of catalytic wet air oxidation is to use air to remove organic contaminants from wastewater through their complete oxidation, without having to vaporise the water. To date, the widespread exploitation of this process has been held back by the low activity of available catalysts, which means that it has to be operated at above-atmospheric pressure in order to keep the water in the liquid phase at the elevated temperatures required to achieve complete oxidation. Here we present an overview of an ongoing study examining the key requirements of both the active phase and the support material in precious metal catalysts for wet air oxidation, using phenol as the model contaminant. The major outcome to date is that the results reveal a synergy between platinum and hydrophobic support materials, which is not apparent when the active phase is ruthenium.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X15299289846952
2018-01-01
2024-12-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/4/Golunski_16a_Imp.html?itemId=/content/journals/10.1595/205651318X15299289846952&mimeType=html&fmt=ahah

References

  1. K.-H. Kim, S.-K. Ihm, J. Hazard. Mater., 2011, 186, (1), 16 LINK https://doi.org/10.1016/j.jhazmat.2010.11.011 [Google Scholar]
  2. M. Weber, M. Weber, ‘Phenols’, in “Phenolic Resins: A Century of Progress”, ed. L. Pilato, Springer-Verlag, Berlin, Germany, 2010, pp. 923 LINK https://doi.org/10.1007/978-3-642-04714-5_2 [Google Scholar]
  3. G. Busca, S. Berardinelli, C. Resini, L. Arrighi, J. Hazard. Mater., 2008, 160, (2–3), 265 LINK https://doi.org/10.1016/j.jhazmat.2008.03.045 [Google Scholar]
  4. M. A. Lunagómez Rocha, G. Del Ángel, G. Torres-Torres, A. Cervantes, A. Vázquez, A. Arrieta, J. N. Beltramini, Catal. Today, 2015, 250, 145 LINK https://doi.org/10.1016/j.cattod.2014.09.016 [Google Scholar]
  5. J. Guo, M. Al-Dahhan, Ind. Eng. Chem. Res., 2003, 42, (12), 2450 LINK https://doi.org/10.1021/ie020344t [Google Scholar]
  6. F. Stüber, J. Font, A. Fortuny, C. Bengoa, A. Eftaxias, A. Fabregat, Top. Catal., 2005, 33, (1–4), 3 LINK https://doi.org/10.1007/s11244-005-2497-1 [Google Scholar]
  7. D. Janecki, A. Szczotka, A. Burghardt, G. Bartelmus, J. Chem. Technol. Biotechnol., 2016, 91, (3), 596 LINK https://doi.org/10.1002/jctb.4610 [Google Scholar]
  8. H. Debellefontaine, M. Chakchouk, J. N Foussard, D. Tissot, P. Striolo, Environ. Pollut., 1996, 92, (2), 155 LINK https://doi.org/10.1016/0269-7491(95)00100-X [Google Scholar]
  9. F. Luck, Catal. Today, 1999, 53, (1), 81 LINK https://doi.org/10.1016/S0920-5861(99)00112-1 [Google Scholar]
  10. S. T Kolaczkowski, P. Plucinski, F. J Beltran, F. J. Rivas, D. B. McLurgh, Chem. Eng. J., 1999, 73, (2), 143 LINK https://doi.org/10.1016/S1385-8947(99)00022-4 [Google Scholar]
  11. A. Cybulski, J. Trawczynski, Appl. Catal. B: Environ., 2004, 47, (1), 1 LINK https://doi.org/10.1016/S0926-3373(03)00327-8 [Google Scholar]
  12. J. Levec, A. Pintar, Catal. Today, 2007, 124, (3–4), 172 LINK https://doi.org/10.1016/j.cattod.2007.03.035 [Google Scholar]
  13. A. Sadana, J. R Katzer, Ind. Eng. Chem. Fundamen., 1974, 13, (2), 127 LINK https://doi.org/10.1021/i160050a007 [Google Scholar]
  14. L. Zhou, H. Cao, C. Descorme, Y. Xie, Front. Env. Sci. Eng., 2018, 12, (1), 1 LINK https://doi.org/10.1007/s11783-017-0970-2 [Google Scholar]
  15. S. Yang, Y. Cui, Y. Sun, H. Yang, J. Hazard. Mater., 2014, 280, 55 LINK https://doi.org/10.1016/j.jhazmat.2014.07.051 [Google Scholar]
  16. R. P Rocha, O. S. G. P. Soares, A. G. Gonçalves, J. J. M. Órfão, M. F. R. Pereira, J. L. Figueiredo, Appl. Catal. A: Gen., 2017, 548, 62 LINK https://doi.org/10.1016/j.apcata.2017.08.033 [Google Scholar]
  17. C. Ma, Y. Wen, Q. Yue, A. Li, J. Fu, N. Zhang, H. Gai, J. Zheng, B. H Chen, RSC Adv., 2017, 7, (43), 27079 LINK https://doi.org/10.1039/C7RA04037G [Google Scholar]
  18. H. Sassi, G. Lafaye, H. B Amor, A. Gannouni, M. R. Jeday, J. Barbier Jr., Front. Environ. Sci. Eng., 2018, 12, (1), 2 LINK https://doi.org/10.1007/s11783-017-0971-1 [Google Scholar]
  19. F. Arena, R. Di Chio, B. Gumina, L. Spadaro, G. Trunfio, Inorg. Chim. Acta, 2015, 431, 101 LINK https://doi.org/10.1016/j.ica.2014.12.017 [Google Scholar]
  20. L. Oliviero, J. Barbier Jr., D. Duprez, H. Wahyu, J. W. Ponton, I. S. Metcalfe, D. Mantzavinos, Appl. Catal. B: Environ., 2001, 35, (1), 1 LINK https://doi.org/10.1016/S0926-3373(01)00226-0 [Google Scholar]
  21. M. Martín-Hernández, J. Carrera, M. E. Suárez-Ojeda, M. Besson, C. Descorme, Appl. Catal. B: Environ., 2012, 123–124, 141 LINK https://doi.org/10.1016/j.apcatb.2012.04.001 [Google Scholar]
  22. J. Barbier Jr., L. Oliviero, B. Renard, D. Duprez, Top. Catal., 2005, 33, (1–4), 77 LINK https://doi.org/10.1007/s11244-005-2509-1 [Google Scholar]
  23. A. Espinosa de los Monteros, G. Lafaye, A. Cervantes, G. Del Angel, J. Barbier Jr., G. Torres, Catal. Today, 2015, 258, (2), 564 LINK https://doi.org/10.1016/j.cattod.2015.01.009 [Google Scholar]
  24. D. Davies, S. Golunski, P. Johnston, G. Lalev, S. H Taylor, ACS Catal., 2018, 8, (4), 2730 LINK https://doi.org/10.1021/acscatal.7b04039 [Google Scholar]
  25. D. I Enache, P. Landon, C. M Lok, S. D. Pollington, E. H. Stitt, Ind. Eng. Chem. Res., 2005, 44, (25), 9431 LINK https://doi.org/10.1021/ie0502180 [Google Scholar]
  26. M. E. Suarez-Ojeda, F. Stüber, A. Fortuny, A. Fabregat, J. Carrera, J. Font, Appl. Catal. B: Environ., 2005, 58, (1–2), 105 LINK https://doi.org/10.1016/j.apcatb.2004.11.017 [Google Scholar]
  27. J. R. Akse, J. E. Atwater, Top. Catal., 2005, 33, (1–4), 51 LINK https://doi.org/10.1007/s11244-005-2501-9 [Google Scholar]
  28. K. Lavelle, J. B McMonagle, Chem. Eng. Sci., 2001, 56, (17), 5091 LINK https://doi.org/10.1016/S0009-2509(01)00181-6 [Google Scholar]
  29. N. Acerbi, S. Golunski, S. C Tsang, H. Daly, C. Hardacre, R. Smith, P. Collier, J. Phys. Chem. C, 2012, 116, (25), 13569 LINK https://doi.org/10.1021/jp212233u [Google Scholar]
  30. ‘Hazardous Waste Management System: Identification and Listing of Hazardous Waste Solvents: Final Decision’, SWH-FRL-6185-3, Federal Register, Environmental Protection Agency, Washington, USA, 19thNovember, 1998, Vol. 63, Issue 223, pp. 6437264402 [Google Scholar]
/content/journals/10.1595/205651318X15299289846952
Loading
/content/journals/10.1595/205651318X15299289846952
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test