Skip to content
Volume 62, Issue 4
  • ISSN: 2056-5135


The aim of catalytic wet air oxidation is to use air to remove organic contaminants from wastewater through their complete oxidation, without having to vaporise the water. To date, the widespread exploitation of this process has been held back by the low activity of available catalysts, which means that it has to be operated at above-atmospheric pressure in order to keep the water in the liquid phase at the elevated temperatures required to achieve complete oxidation. Here we present an overview of an ongoing study examining the key requirements of both the active phase and the support material in precious metal catalysts for wet air oxidation, using phenol as the model contaminant. The major outcome to date is that the results reveal a synergy between platinum and hydrophobic support materials, which is not apparent when the active phase is ruthenium.


Article metrics loading...

Loading full text...

Full text loading...



  1. Kim K.-H., and Ihm S.-K. J. Hazard. Mater., 2011, 186, (1), 16 LINK [Google Scholar]
  2. Weber M., Weber M., ‘Phenols’, in “Phenolic Resins: A Century of Progress”, ed. and Pilato L. Springer-Verlag, Berlin, Germany, 2010, pp. 923 LINK [Google Scholar]
  3. Busca G., Berardinelli S., Resini C., and Arrighi L. J. Hazard. Mater., 2008, 160, (2–3), 265 LINK [Google Scholar]
  4. Lunagómez Rocha M. A., Del Ángel G., Torres-Torres G., Cervantes A., Vázquez A., Arrieta A., and Beltramini J. N. Catal. Today, 2015, 250, 145 LINK [Google Scholar]
  5. Guo J., and Al-Dahhan M. Ind. Eng. Chem. Res., 2003, 42, (12), 2450 LINK [Google Scholar]
  6. Stüber F., Font J., Fortuny A., Bengoa C., Eftaxias A., and Fabregat A. Top. Catal., 2005, 33, (1–4), 3 LINK [Google Scholar]
  7. Janecki D., Szczotka A., Burghardt A., and Bartelmus G. J. Chem. Technol. Biotechnol., 2016, 91, (3), 596 LINK [Google Scholar]
  8. Debellefontaine H., Chakchouk M., Foussard J. N, Tissot D., and Striolo P. Environ. Pollut., 1996, 92, (2), 155 LINK [Google Scholar]
  9. Luck F. Catal. Today, 1999, 53, (1), 81 LINK [Google Scholar]
  10. Kolaczkowski S. T, Plucinski P., Beltran F. J, Rivas F. J., and McLurgh D. B. Chem. Eng. J., 1999, 73, (2), 143 LINK [Google Scholar]
  11. Cybulski A., and Trawczynski J. Appl. Catal. B: Environ., 2004, 47, (1), 1 LINK [Google Scholar]
  12. Levec J., and Pintar A. Catal. Today, 2007, 124, (3–4), 172 LINK [Google Scholar]
  13. Sadana A., and Katzer J. R Ind. Eng. Chem. Fundamen., 1974, 13, (2), 127 LINK [Google Scholar]
  14. Zhou L., Cao H., Descorme C., and Xie Y. Front. Env. Sci. Eng., 2018, 12, (1), 1 LINK [Google Scholar]
  15. Yang S., Cui Y., Sun Y., and Yang H. J. Hazard. Mater., 2014, 280, 55 LINK [Google Scholar]
  16. Rocha R. P, Soares O. S. G. P., Gonçalves A. G., Órfão J. J. M., Pereira M. F. R., and Figueiredo J. L. Appl. Catal. A: Gen., 2017, 548, 62 LINK [Google Scholar]
  17. Ma C., Wen Y., Yue Q., Li A., Fu J., Zhang N., Gai H., Zheng J., and Chen B. H RSC Adv., 2017, 7, (43), 27079 LINK [Google Scholar]
  18. Sassi H., Lafaye G., Amor H. B, Gannouni A., Jeday M. R., and Barbier J. Jr. Front. Environ. Sci. Eng., 2018, 12, (1), 2 LINK [Google Scholar]
  19. Arena F., Di Chio R., Gumina B., Spadaro L., and Trunfio G. Inorg. Chim. Acta, 2015, 431, 101 LINK [Google Scholar]
  20. Oliviero L., Barbier J. Jr., Duprez D., Wahyu H., Ponton J. W., Metcalfe I. S., and Mantzavinos D. Appl. Catal. B: Environ., 2001, 35, (1), 1 LINK [Google Scholar]
  21. Martín-Hernández M., Carrera J., Suárez-Ojeda M. E., Besson M., and Descorme C. Appl. Catal. B: Environ., 2012, 123–124, 141 LINK [Google Scholar]
  22. Barbier J. Jr., Oliviero L., Renard B., and Duprez D. Top. Catal., 2005, 33, (1–4), 77 LINK [Google Scholar]
  23. de los Monteros A. Espinosa, Lafaye G., Cervantes A., Del Angel G., Barbier J. Jr., and Torres G. Catal. Today, 2015, 258, (2), 564 LINK [Google Scholar]
  24. Davies D., Golunski S., Johnston P., Lalev G., and Taylor S. H ACS Catal., 2018, 8, (4), 2730 LINK [Google Scholar]
  25. Enache D. I, Landon P., Lok C. M, Pollington S. D., and Stitt E. H. Ind. Eng. Chem. Res., 2005, 44, (25), 9431 LINK [Google Scholar]
  26. Suarez-Ojeda M. E., Stüber F., Fortuny A., Fabregat A., Carrera J., and Font J. Appl. Catal. B: Environ., 2005, 58, (1–2), 105 LINK [Google Scholar]
  27. Akse J. R., and Atwater J. E. Top. Catal., 2005, 33, (1–4), 51 LINK [Google Scholar]
  28. Lavelle K., and McMonagle J. B Chem. Eng. Sci., 2001, 56, (17), 5091 LINK [Google Scholar]
  29. Acerbi N., Golunski S., Tsang S. C, Daly H., Hardacre C., Smith R., and Collier P. J. Phys. Chem. C, 2012, 116, (25), 13569 LINK [Google Scholar]
  30. ‘Hazardous Waste Management System: Identification and Listing of Hazardous Waste Solvents: Final Decision’, SWH-FRL-6185-3, Federal Register, Environmental Protection Agency, Washington, USA, 19thNovember, 1998, Vol. 63, Issue 223, pp. 6437264402 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error