Skip to content
1887
Volume 63, Issue 1
  • ISSN: 2056-5135

Abstract

In recent years, the application of high-nitrogen containing azine energy materials has been one of the hot spots in the field of energy materials in China and elsewhere. This paper reviews domestic and foreign studies into high-nitrogen azine energetic materials. The synthetic methods, structural and theoretical analysis, physical and chemical properties, sensitivity properties, thermal properties and detonation properties of some typical pyrazine energetic compounds are summarised, including: 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) of diazines, 4,4′,6,6′-tetra(azido)azo-1,3,5-triazine (TAAT) of triazines, 3,6-dihydrazino-1,2,4,5-tetrazine (DHT), 3,6-bis(1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine (BTATz) and 3,3′-azobis(6-amino-1,2,4,5-tetrazine) (DAAT) of tetrazine and their respective applications and potential value are described. The results of published studies reviewed here show that the application of azine energetic compounds in propellants can effectively improve the burning rate and reduce the characteristic signal; the application of azine energetic compounds in mixed explosives can reduce the sensitivity and improve the detonation performance; the application of azine energetic compounds in gas generators can reduce the combustion temperature and increase the gas content. Therefore, this class of compounds has a broad application prospect in energetic materials.

Loading

Article metrics loading...

/content/journals/10.1595/205651319X15421043166627
2019-01-01
2024-12-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/63/1/Yongjin_16a_Imp.html?itemId=/content/journals/10.1595/205651319X15421043166627&mimeType=html&fmt=ahah

References

  1. Y. X. Ou, J. Q. Liu, “High Energy Density Compound”, National Defense Industry Press, Beijing, China, 2005 [Google Scholar]
  2. S. Yang, S. Xu, H. Huang, W. Zhang, X. Zhang, Prog. Chem., 2008, 20, (4), 526 LINK http://manu56.magtech.com.cn/progchem/EN/abstract/abstract9717.shtml [Google Scholar]
  3. P. F. Pagoria, “Synthesis of 2,6-Diamino-3,5-Dinitropyrazine-1-Oxide”, UCRL-JC-117228, Rev. 1, Lawrence Livermore National Laboratory, Livermore, USA, 3rd January, 1995, 7 pp LINK https://e-reports-ext.llnl.gov/pdf/226584.pdf [Google Scholar]
  4. P. F. Pagoria, A. R. Mitchell, R. D. Schmidt, R. L. Simpson, F. Garcia, J. W. Forbes, R. W. Swansiger, D. M Hoffman, “Synthesis, Scale-up and Characterization of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105)”, UCRL-JC-130518, Lawrence Livermore National Laboratory, Livermore, USA, 27th April, 1998, 8 pp LINK https://www.osti.gov/biblio/672328 [Google Scholar]
  5. P. F. Pagoria, G. S. Lee, A. R. Mitchell, R. D. Schmidt, Thermochim. Acta, 2002, 384, (1–2), 187 LINK https://doi.org/10.1016/S0040-6031(01)00805-X [Google Scholar]
  6. J. Kerth, W. Kuglstatter, ‘Synthesis and Characterization of 2,6-Diamino-3,5-Dinitropyrazine-1-Oxide (NPEX-1)’, 32nd International Annual Conference of ICT, Frauhofer Institute for Chemical Technology, Karlsruhe, Germany, 3rd–6th July, 2001, pp. 166.1166.11 LINK http://publica.fraunhofer.de/documents/N-5938.html [Google Scholar]
  7. P. F. Pagoria, A. R. Mitchell, K. Bala, Lawrence Livermore National Security LLC,, ‘New Synthesis of 2,6-Diamino-3,5-Dinitropyrazine-1-Oxide from 2,6-Diaminopyrazine-1-Oxide’, US Patent Appl. 2009/299,067 [Google Scholar]
  8. P. F. Pagoria, M. X. Zhang, Lawrence Livermore National Security LLC,, ‘Synthesis of Pyrazines including 2,6-Diaminopyrazine-1-Oxyde (DAPO) and 2,6-Diamino-3,5-Dinitropyrazine-1-Oxyde (LLM-105)’, International Patent Appl. 2010/123, 806 [Google Scholar]
  9. N. B. Zuckerman, M. Shusteff, P. F. Pagoria, A. E. Gash, J. Flow Chem., 2015, 5, (3), 178 LINK https://rd.springer.com/article/10.1556/1846.2015.00016 [Google Scholar]
  10. P. Pagoria, M.-X. Zhang, N. Zuckerman, G. Lee, A. Mitchell, A. DeHope, A. Gash, C. Coon, P. Gallagher, Propel. Explos. Pyrotech., 2018, 43, (1), 15 LINK https://doi.org/10.1002/prep.201700182 [Google Scholar]
  11. F. Guo, Y. Liu, D. Liu, Y. Yu, Chin. J. Explos. Propel., 2006, 29, (1), 17 LINK http://www.hzyxb.cn/oa/DArticle.aspx?type=view&id=105 [Google Scholar]
  12. J. Liu, S. Chen, Y. Ou, S. Jin, Chem., 2006, 69, (2), 151 LINK http://caod.oriprobe.com/articles/10399229/Synthesis_of_2_6_Diamino_3_5_dinitropyrazing_1_oxide__LLM_105_.htm [Google Scholar]
  13. X. Yu, M. Lu, F. Nie, Chin. J. Explos. Propel., 2012, 35, (2), 10 LINK http://www.hzyxb.cn/oa/DArticle.aspx?type=view&id=201108018 [Google Scholar]
  14. M. Deng, J. Zhou, B. Wang, Z. Ye, Z. Tian, Chinese J. Energ. Mater., 2013, 21, (3), 294 LINK https://doi.org/10.3969/j.issn.1006-9941.2013.03.003 [Google Scholar]
  15. M. Deng, Z. Ye, H. Su, H. Liu, Y. Qi, Chin. J. Explos. Propel., 2009, 32, (4), 50 LINK http://www.hzyxb.cn/oa/DArticle.aspx?type=view&id=200904025 [Google Scholar]
  16. X. Zhou, B. Cheng, J. Huang, L. Zhang, H. Lu, L. Liao, Chinese J. Energ. Mater., 2012, 20, (4), 501 LINK https://doi.org/10.3969/j.issn.1006-9941.2012.04.023 [Google Scholar]
  17. Y. Wang, Z. Ge, B. Wang, Z. Ye, Y. Li, Y. Shang, Chinese J. Energ. Mater., 2011, 19, (5), 523 LINK https://doi.org/10.3969/j.issn.1006-9941.2011.05.009 [Google Scholar]
  18. C. Zhang, X. Zhang, L. Ma, Y. Wang, J. Chen, Z. Yuan, L. Yang, R. Zhou, Sci. Tech. Eng., 2015, 15, (23), 1617 LINK http://www.cnki.com.cn/Article/CJFDTotal-KXJS201523015.htm [Google Scholar]
  19. Y. Wang, F. Huang, M. Zhang, L. Hu, J. Zhou, C. Zhang, Chinese J. Energ. Mater., 2015, 23, (1), 29 LINK https://doi.org/10.11943/j.issn.1006-9941.2015.01.006 [Google Scholar]
  20. J. M. Wang, ‘Optimization of Synthesis Process Of 2,6-Diamino-3,5-Dinitropyrazine-1-Oxide’, Masters Thesis, University of Science and Technology, Nanjing, China, 27th March, 2017, 17 pp LINK http://cdmd.cnki.com.cn/Article/CDMD-10288-1017053228.htm [Google Scholar]
  21. W. He, G. Zhou, J. Li, A. Tian, J. Mol. Structure THEOCHEM, 2004, 668, (2–3), 201 LINK https://doi.org/10.1016/j.theochem.2003.10.058 [Google Scholar]
  22. H. Li, F. Nie, J. Li, B. Cheng, Chinese J. Synth. Chem., 2007, 15, (3), 296 LINK http://caod.oriprobe.com/articles/12333476/Synthesis_and_Crystal_Structure_of_2_6_Diamino_3_5_dinitropyrazine_1_o.htm [Google Scholar]
  23. C. Zhang, X. Wang, H. Huang, J. Am. Chem. Soc., 2008, 130, (26), 8359 LINK https://doi.org/10.1021/ja800712e [Google Scholar]
  24. Y. Wang, M. Deng, P. Lian, Y. Li, Z. Tian, Z. Ye, B. Wang, Chin. J. Explos. Propel., 2013, 36, (1), 38 LINK http://www.hzyxb.cn/oa/DArticle.aspx?type=view&id=201107016 [Google Scholar]
  25. W. He, G. Zhou, H. Hu, S. Tian, A. Tian, Z. Wen, P. Zhao, Q. Xu, Acta Chim. Sin., 2001, 59, (8), 1210 LINK http://manu19.magtech.com.cn/Jwk_hxxb/EN/abstract/abstract337334.shtml [Google Scholar]
  26. W. He, ‘Theoretical Research on a Novel Energetic Material LLM-105 and its Analogues’, Masters Thesis, Sichuan University, Chengdu, China, 15th April, 2002, 19 pp LINK http://cdmd.cnki.com.cn/article/cdmd-10610-2002121005.htm [Google Scholar]
  27. T. D. Tran, P. F. Pagoria, D. M. Hoffman, J. L. Cutting, R. S. Lee, R. L. Simpson, ‘Characterization of 2,6-Diamino-3,5-Dinitropyrazine-1-Oxide (LLM-105) as an Insensitive High Explosive Material’, 33rd International Annual Conference on ICT on Energetic Materials Synthesis, Production and Application, Karlsruhe, Germany, 25th–28th June, 2002, UCRL-JC-147932, Lawrence Livermore National Laboratory, Livermore, USA, 9th April, 2002, 15 pp LINK https://www.osti.gov/biblio/15005695 [Google Scholar]
  28. J. Kennedy, I. Plaksin, K. Thomas, E. Martin, K.-Y. Lee, A. Akinci, B. Asay, J. Campos, J. Direito, AIP Conf. Proc., 2004, 706, (1), 1500 LINK https://aip.scitation.org/doi/abs/10.1063/1.1780523 [Google Scholar]
  29. C. M. Tarver, P. A. Urtiew, T. D. Tran, J. Energ. Mater., 2005, 23, (3), 183 LINK https://doi.org/10.1080/07370650591001853 [Google Scholar]
  30. J. L. Cutting, R. L. Hodgin, D. M. Hoffman, F. Garcia, R. S. Lee, E. McGuire, A. R. Mitchell, P. F. Pagoria, R. D Schmidt, R. L. Simpson, P. C. Souers, R. W. Swansiger, ‘A Small-Scale Screening Test for HE Performance – Application to the New Explosive LLM-105’, UCRL-JC-131623, 11th International Detonation Symposium, Snowmass, USA, 30th August–4th September, 1998, Lawrence Livermore National Laboratory, Livermore, USA, 19th August, 1998, pp. 828835 [Google Scholar]
  31. T. D. Tran, P. F. Pagoria, D. M. Hoffman, B. Cunningham, R. L. Simpson, R. S. Lee, J. L. Cutting, ‘Small-Scale Safety and Performance Characterization of New Plastic Bonded Explosives Containing LLM-105’, 12th International Detonation Symposium, 11th–6th August, 2002, Lawrence Livermore National Laboratory, Livermore, USA, 2002, 11 pp [Google Scholar]
  32. X. Li, Q. Lin, J. Peng, B. Wang, Therm. Anal. Calorim., 2017, 127, (3), 2225 LINK https://doi.org/10.1007/s10973-016-5809-8 [Google Scholar]
  33. J. Zhou, J. Tian, G. Xue, Guangdong Chem. Ind., 2016, 43, (13), 90 LINK http://en.cnki.com.cn/Article_en/CJFDTotal-GDHG201613042.htm [Google Scholar]
  34. Y. Li, H. Huang, J. L. and, J. Li, Chinese J. Explos. Propel, 2008, 31, (5), 1 LINK http://www.hzyxb.cn/oa/DArticle.aspx?type=view&id=200807010 [Google Scholar]
  35. Y. Tan, Y. Liu, D. Li, Initiators Pyrotech., 2011, (4), 26 LINK http://caod.oriprobe.com/articles/28414287/Study_on_A_Kind_of_Melt_castable_Explosive_Using_L.htm [Google Scholar]
  36. Y. Liu, Z. Huang, X. Yu, Explos. Shock Waves, 2004, 24, (5), 465 LINK http://www.bzycj.cn/CN/abstract/abstract9987.shtml [Google Scholar]
  37. R. Wu, J. Huo, Y. Shu, X. Duan, Mater. Rev., 2006, 20, (11), 58 LINK http://en.cnki.com.cn/Article_en/CJFDTotal-CLDB200611017.htm [Google Scholar]
  38. Z. Wu, S. Hu, Chem. Eng. Equip., 2008, (12), 103 LINK http://www.cnki.com.cn/Article/CJFDTotal-FJHG200812040.htm [Google Scholar]
  39. M.-H. V. Huynh, M. A. Hiskey, E. L. Hartline, D. P. Montoya, R. Gilardi, Angew. Chem. Int. Ed., 2004, 43, (37), 4924 LINK https://doi.org/10.1002/anie.200460366 [Google Scholar]
  40. L. Li, W. Cai, S. Zhang, J. Sichuan Univ. Nat. Sci. Ed., 2011, 34, (5), 729 LINK http://www.cnki.com.cn/Article/CJFDTotal-SCSD201105028.htm [Google Scholar]
  41. E. Ott, Edwin Hanton Faust,, ‘Explosive and Process of Making Same’, US Patent Appl. 1921/1,390,378 [Google Scholar]
  42. P. Loew, C. D. Weisc, J. Heterocycl. Chem., 1976, 13, (4), 829 LINK https://doi.org/10.1002/jhet.5570130427 [Google Scholar]
  43. E. G. Gillan, Chem. Mater., 2000, 12, (12), 3906 LINK https://doi.org/10.1021/cm000570y [Google Scholar]
  44. M. A. Hiskey, D. E. Chavez, D. L. Naud, The Regents of the University of California,, ‘Low-Smoke Pyrotechnic Compositions’, US Patent 6,312,537; 2001 [Google Scholar]
  45. Y. J. Luo, S. H. Li, G. P. Li, C. P. Chai, S. P. Pang, “Novel Energetic Material”, National Defense Industry Press, Beijing, China, 2015 [Google Scholar]
  46. X. Li, S. Pang, Y. Y. and, Y. Luo, Chinese J. Energ. Mater., 2007, 15, (5), 485 LINK http://www.energetic-materials.org.cn/hncl/ch/reader/view_abstract.aspx?file_no=20070512&flag=1 [Google Scholar]
  47. Y.-C. Li, X.-J. Zhang, G. Fu, S.-P. Pang, C.-L. Zhao, Chinese J. Org. Chem., 2011, 31, (9), 1484 LINK http://sioc-journal.cn/Jwk_yjhx/EN/Y2011/V31/I09/1484 [Google Scholar]
  48. Y. Yu, Y.-C. Li, C. Qi, C.-H. Sun, S.-P. Pang, ‘Synthesis and Theoretical Studies of 4,4’,6,6’-Tetra(azido)azo-1,3,5-Triazine’, Proceedings of the 11th National Conference on Applied Chemistry, Guilin, China, 13th October, 2009, pp. 130134 LINK http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7295932 [Google Scholar]
  49. Z. Y. Geng, D. M. Wang, J. Northwest Univ., 2012, 48, (5), 53 LINK http://www.cnki.com.cn/Article/CJFDTotal-XBSF201205013.htm [Google Scholar]
  50. Q.-L. Yan, T. Musil, S. Zeman, R. Matyáš, X.-B. Shi, M. Vlček, V. Pelikán, Thermochim. Acta, 2015, 604, 106 LINK https://doi.org/10.1016/j.tca.2015.01.026 [Google Scholar]
  51. M. B. Talawar, R. Sivabalan, T. Mukundan, H. Muthurajan, A. K. Sikder, B. R. Gandhe, A. S. Rao, J. Hazard. Mater., 2009, 161, (2–3), 589 LINK https://doi.org/10.1016/j.jhazmat.2008.04.011 [Google Scholar]
  52. Q. Ma, Y. Yu, X. Zhang, S. Pang, Chin. J. Explos. Propel., 2012, 35, (1), 46 LINK http://www.hzyxb.cn/en/oa/DArticle.aspx?type=view&id=201106034 [Google Scholar]
  53. G. Steinhauser, T. M. Klapötke, Angew. Chem. Int. Ed., 2008, 47, (18), 3330 LINK https://doi.org/10.1002/anie.200704510 [Google Scholar]
  54. Y.-C. Li, C. Qi, S.-H. Li, H.-J. Zhang, C.-H. Sun, Y.-Z. Yu, S.-P. Pang, J. Am. Chem. Soc., 2010, 132, (35), 12172 LINK https://doi.org/10.1021/ja103525v [Google Scholar]
  55. A. M. Churakov, O. Yu. Smirnov, S. L. Ioffe, Y. A. Strelenko, V. A. Tartakovsky, ChemInform, 2002, 33, (46), 167 LINK https://doi.org/10.1002/chin.200246167 [Google Scholar]
  56. O. Yu. Smirnov, A. M. Churakov, A. Yu. Tyurin, Yu. A. Strelenko, S. L. Ioffe, V. A. Tartakovsky, ChemInform, 2003, 34, (20) LINK https://doi.org/10.1002/chin.200320182 [Google Scholar]
  57. Baker Ltd,, ‘New Tetrazine Derivatives’, IE831913, 1983 [Google Scholar]
  58. E. Lunt, M. F. G. Stevens, R. Stone, K. R. H. Wooldridge, E. S. Newlands, Cancer Research Campaign Technology Ltd,, ‘Tetrazine Derivatives’, US Patent 5,260,291; 1993 [Google Scholar]
  59. H. J. Marcus, Aero-jet-General Corp,, ‘Tetrazine Compounds’, US Patent 3,244,702; 1966 [Google Scholar]
  60. M. D. Coburn, D. G. Ott, The United States of America as represented by the United States Department of Energy,, ‘ADMPT and its Synthesis’, US Patent 5,274,091; 1993 [Google Scholar]
  61. M. D. Coburn, D. G. Ott, ‘Synthesis of 3,6-Diamino-1,2,4,5-Tetrazine’, US Patent 5,281,706; 1994 [Google Scholar]
  62. M. D. Coburn, M. A. Hiskey, K.-Y. Lee, D. G. Ott, M. M. Stinecipher, J. Heterocyc. Chem., 1993, 30, (6), 1593 LINK https://doi.org/10.1002/jhet.5570300623 [Google Scholar]
  63. D. E. Chavez, M. A. Hiskey, R. D. Gilardi, Angew. Chem. Int. Ed., 2000, 39, (10), 1791 LINK https://doi.org/10.1002/(SICI)1521-3773(20000515)39:10<1791::AID-ANIE1791>3.0.CO;2-9 [Google Scholar]
  64. D. E. Chavez, M. A. Hiskey, J. Energ. Mater., 1999, 17, (4), 357 LINK https://doi.org/10.1080/07370659908201796 [Google Scholar]
  65. M. A. Hiskey, N. Goldman, J. R. Stine, J. Energ. Mater., 1998, 16, (2–3), 119 LINK https://doi.org/10.1080/07370659808217508 [Google Scholar]
  66. M. B. Talawar, R. Sivabalan, N. Senthilkumar, G. Prabhu, S. N. Ashtana, J. Haz. Mater., 2004, 113, (1–3), 11 LINK https://doi.org/10.1016/j.jhazmat.2004.05.016 [Google Scholar]
  67. A. Cutivet, E. Leroy, E. Pasquinet, D. Poullain, Tetrahedron Lett., 2008, 49, (17), 2748 LINK https://doi.org/10.1016/j.tetlet.2008.02.145 [Google Scholar]
  68. T. M. Klapötke, A. Preimesser, S. Schedlbauer, J. Stiersstorfer, Cent. Eur. J. Energ. Mater., 2013, 10, (2), 151 LINK http://www.wydawnictwa.ipo.waw.pl/cejem/vol-10-2-2013/Klapotke.pdf [Google Scholar]
  69. B. Wang, P. Lian, W. Liu, H. Zhang, X. Wang, J. Bai, Chinese J. Energ. Mater., 2006, 14, (5), 352 LINK http://www.energetic-materials.org.cn/hncl/ch/reader/view_abstract.aspx?file_no=20060510&flag=1 [Google Scholar]
  70. W. Pan, J. He, Y. Tao, Chinese J. Energ. Mater., 2006, 14, (2), 116 LINK http://www.energetic-materials.org.cn/hncl/ch/reader/view_abstract.aspx?file_no=20060212&flag=1 [Google Scholar]
  71. S.-Y. Jia, H.-H. Zhang, B.-Z. Wang, ‘Synthesis and Properties of 3,6-Dimercapto-1,2,4,5-Tetrazine and its Energetic Salts’, Proceedings of the 2nd National Symposium on Hazardous Materials and Safety Emergency Technology, Sichuan, China, 14th November, 2013, p. 24 LINK http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGHY201311001008.htm [Google Scholar]
  72. D. He, ‘Synthesis of Tetrazine High Nitrogen Energetic Compounds’, Masters Thesis, Nanjing University of Science and Technology, Nanjing, China, 20th March, 2012, 10 LINK http://cdmd.cnki.com.cn/Article/CDMD-10288-1012319267.htm [Google Scholar]
  73. X. Zhang, X. Gong, Canadian J. Chem., 2016, 94, (1), 28 LINK https://doi.org/10.1139/cjc-2015-0346 [Google Scholar]
  74. J.-L. Feng, J.-G. Zhang, K. Wang, T.-L. Zhang, Chem. J. Chinese Univ., 2011, 32, (7), 1519 LINK http://www.cjcu.jlu.edu.cn/EN/abstract/abstract13537.shtml [Google Scholar]
  75. J. Kerth, S. Löbbecke, Propel. Explos. Pyrotech., 2002, 27, (3), 111 LINK https://doi.org/10.1002/1521-4087(200206)27:3<111::AID-PREP111>3.0.CO;2-O [Google Scholar]
  76. H. Zhang, S. Jia, B. Wang, X. Wang, C. Zhou, W. Lai, J. Li, Chin. J. Explos. Propel., 2014, 37, (2), 23 LINK http://www.hzyxb.cn/oa/DArticle.aspx?type=view&id=20140205 [Google Scholar]
  77. V. P. Sinditskii, V. Yu. Egorshev, G. F. Rudakov, A. V. Burzhava, S. A. Filatov, L. D. Sang, Thermochim. Acta, 2012, 535, 48 LINK https://doi.org/10.1016/j.tca.2012.02.014 [Google Scholar]
  78. P. S. Khandhadia, S. P. Burns, G. K. Williams, ‘High Gas Yield Non-Azide Gas Generants, US Patent, 6,210,505; 2001 [Google Scholar]
  79. S. Fallis, R. Reed, Y.-C. Lu, P. H. Wierenga, G. F. Holland, ‘Advanced Propellant/Additive Development for Fire Suppressing Gas Generators’, Tenth Annual Halon Options Technical Working Conference, Albuquerque, USA, May, 2000, pp. 361370 [Google Scholar]
  80. D. E. Chavez, M. A. Hiskey, B. Berger, ‘The Utility of 3,6-Dihydrazino-1,2,4,5-Tetrazine(DHT) in Indoor Pyrotechnics’, 24th International Pyrotechnics Seminar, Monterey, USA, 27th–31st July, 1998, pp. 161178 [Google Scholar]
  81. M. A. Hiskey, D. E. Chavez, D. Naud, ‘Propellant Containing 3,6-BIS(1H-1,2,3,4-Tetrazol-5-Ylamino)-1,2,4,5-Tetrazine or Salts Thereof’, US Patent 6,458,227; 2002 [Google Scholar]
  82. M. A. Hiskey, D. E. Chavez, D. Naud, ‘3,6-BIS(1H-1,2,3,4-Tetrazol-5-Ylamino)-1,2,4,5-Tetrazine or Salt Thereof’, US Patent, 6,657,059; 2003 [Google Scholar]
  83. B. Wang, W. Lai, Q. Liu, P. Lian, Y. Xue, Front. Chem. China, 2009, 4, (1), 69 LINK https://doi.org/10.1007/s11458-009-0001-3 [Google Scholar]
  84. S. Yue, S. Yang, Energ. Mater., 2004, 12, (3), 155 LINK http://www.energetic-materials.org.cn/hncl/ch/reader/view_abstract.aspx?file_no=20040307&flag=1 [Google Scholar]
  85. Y. Xiong, Y. Shu, X. Wang, H. Zong, Y. Zhou, M. Yin, J. Explos. Propel., 2008, 31, (1), 1 LINK http://www.hzyxb.cn/oa/DArticle.aspx?type=view&id=080101 [Google Scholar]
  86. A. Saikia, R. Sivabalan, B. G. Polke, G. M. Gore, A. Singh, A. S. Rao, A. K. Sikder, J. Haz. Mater., 2009, 170, (1), 306 LINK https://doi.org/10.1016/j.jhazmat.2009.04.095 [Google Scholar]
  87. X. Zhang, H. Zhu, S. Yang, W. Zhang, F. Zhao, Z. Liu, P. Qing, J. Prop. Technol., 2007, 28, (3), 322 LINK http://en.cnki.com.cn/Article_en/CJFDTotal-TJJS200703021.htm [Google Scholar]
  88. W. Li, Y.-H. Ren, F.-Q. Zhao, X.-B. Zhang, H.-X. Ma, K.-Z. Xu, B.-Z. Wang, J.-H. Yi, J.-R. Song, R.-Z. Hu, Acta Phys.-Chim. Sin., 2013, 29, (10), 2087 LINK https://doi.org/10.3866/PKU.WHXB201308301 [Google Scholar]
  89. Y. Lei, S. Xu, S. Yang, Chem. Propellants Polym. Mater., 2007, 5, (3), 1 LINK http://en.cnki.com.cn/Article_en/CJFDTotal-HXTJ200703000.htm [Google Scholar]
  90. J.-H. Yi, F.-Q. Zhao, B.-Z. Wang, Q. Liu, C. Zhou, R.-Z. Hu, Y.-H. Ren, S.-Y. Xu, K.-Z. Xu, X.-N. Ren, J. Haz. Mater., 2010, 181, (1–3), 432 LINK https://doi.org/10.1016/j.jhazmat.2010.05.029 [Google Scholar]
  91. J.-H. Yi, F.-Q. Zhao, Y.-H. Ren, B.-Z. Wang, C. Zhou, X.-N. Ren, S.-Y. Xu, H.-X. Hao, R.-Z. Hu, J. Therm. Anal. Calorim., 2011, 104, (3), 1029 LINK https://doi.org/10.1007/s10973-010-1258-y [Google Scholar]
  92. J. Yi, S. Xu, F. Zhao, Y. Wang, T. An, Q. Pei, Chem. Propellants Polym. Mater., 2013, 11, (6), 59 LINK http://en.cnki.com.cn/Article_en/CJFDTotal-HXTJ201306019.htm [Google Scholar]
  93. J. Yi, F. Zhao, B. Wang, Y. Ren, S. Xu, Z. Wang, S. Li, J. Propul. Technol., 2012, 33, (4), 609 LINK http://caod.oriprobe.com/articles/30862471/Properties_of_CMDB_Propellant_Containing_High_Nitrogen_Compound_BTATz.htm [Google Scholar]
  94. Y. Ren, W. Li, X. Zhang, F. Zhao, J. Yi, H. Ma, K. Xu, J. Song, Chinese J. Appl. Chem., 2013, 30, (9), 1036 LINK https://doi.org/10.3724/SP.J.1095.2013.20555 [Google Scholar]
  95. W. Li, Y. Ren, F. Zhao, X. Zhang, H. Ma, K. Xu, B. Wang, J. Funct. Mater., 2013, 44, (22), 3326 LINK http://caod.oriprobe.com/articles/41173049/Nitrogen_rich_energtic_zinc_salt_on_BTATz_syntheses_and_thermodynamic.htm [Google Scholar]
  96. J. Yang, Q. Liu, Y. Ren, X. Zhang, H. Ma, K. Xu, F. Zhao, R. Hu, Chinese J. Appl. Chem., 2017, 34, (8), 928 LINK https://doi.org/10.11944/j.issn.1000-0518.2017.08.160466 [Google Scholar]
  97. M. A. Hiskey, D. E. Chavez, D. Naud, ‘Preparation of 3,3′-Azobis(6-Amino-1,2,4,5-Tetrazine)’, US Patent 6,342,589; 2002 [Google Scholar]
  98. S.-Y. Yue, ‘Synthesis and Application Correlation of High Nitrogen Energetic Compounds’, National University of Defense Technology, Changsha, China, 2003 LINK http://www.oalib.com/references/18618189 [Google Scholar]
  99. S. L. Xu, ‘Synthesis and Amplification of High Nitrogen Energetic Compounds and their Explosive Properties’, National University of Defense Technology, Changsha, China, 4th November, 2005 LINK http://cdmd.cnki.com.cn/Article/CDMD-90002-2006127617.htm [Google Scholar]
  100. S. Xu, S. Yang, S. Yue, C. Xin, Chinese J. Synth. Chem., 2005, 13, (6), 584 LINK http://caod.oriprobe.com/articles/9445669/Synthesis_and_Characterization_of_3_3%E2%80%B2_Azobis_6_amino_1_2_4_5_tetrazin.htm [Google Scholar]
  101. B. Wang, P. Lian, Q. Liu, X. Wang, Z. Zhang, X. Huang, Chin. J. Explos. Propel., 2006, 29, (2), 15 LINK http://www.hzyxb.cn/OA/pdfdow.aspx?Sid=205 [Google Scholar]
  102. S. L. Xu, S. Q. Yang, W. Zhang, X. G. Zhang, Chem. Bull., 2006, (9), 685 LINK http://www.cnki.com.cn/Article/CJFDTotal-HXTB200609008.htm [Google Scholar]
  103. B. Wang, W. Lai, P. Lian, S. Jia, Chinese J. Org. Chem., 2009, 29, (8), 1243 LINK http://sioc-journal.cn/Jwk_yjhx/EN/Y2009/V29/I08/1243 [Google Scholar]
  104. Y. Xiong, ‘Theoretical Study on Thermal Decomposition Mechanism of Tetrazine-Based High Nitrogen Compounds’, Dissertation of Chinese Academy of Engineering Physics, Sichuan, China, 25th April, 2007, 70 pp LINK http://cdmd.cnki.com.cn/Article/CDMD-82818-2008032601.htm [Google Scholar]
  105. S. Loebbecke, H. Schuppler, W. Schweikert, J. Therm. Anal. Calorim., 2003, 72, (2), 453 LINK https://doi.org/10.1023/A:1024500926996 [Google Scholar]
  106. S. Yang, S. T. Yue, Chinese J. Energ. Mater., 2003, 11, (4), 231 LINK http://en.cnki.com.cn/Article_en/CJFDTotal-HNCL200304016.htm [Google Scholar]
  107. R. T. Paine, W. Koestle, T. T. Borek, G. L. Wood, E. A. Pruss, E. N. Duesler, M. A. Hiskey, Inorg. Chem., 1999, 38, (16), 3738 LINK https://doi.org/10.1021/ic990316b [Google Scholar]
  108. M. A. Hiskey, D. Chavez, D. L. Naud, S. F. Son, H. L. Berghout, C. A. Bolme, ‘Progress in High-Nitrogen Chemistry in Explosives’, 27th International Pyrotechnics Seminar, Grand Junction, USA, 16th–21st July, 2000, pp. 314 [Google Scholar]
  109. S. Xu, S. Yang, W. Zhang, X. Zhang, J. Nat. Uni. Def. Technol., 2006, 28, (6), 17 LINK http://journal.nudt.edu.cn/gfkjdxxb/ch/reader/view_abstract.aspx?file_no=200606004&flag=1 [Google Scholar]
/content/journals/10.1595/205651319X15421043166627
Loading
/content/journals/10.1595/205651319X15421043166627
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test