Skip to content
1887
Volume 64, Issue 2
  • ISSN: 2056-5135

Abstract

Zinc oxide has emerged as an attractive material for various applications in electronics, optoelectronics, biomedical and sensing. The large excitonic binding energy of 60 meV at room temperature as compared to 25 meV of gallium nitride, an III-V compound makes ZnO an efficient light emitter in the ultraviolet (UV) spectral region and hence favourable for optoelectronic applications. The high conductivity and transparency of ZnO makes it important for applications like transparent conducting oxides (TCO) and thin-film transistors (TFT). In this paper, the optoelectronic, electronic and other properties that make ZnO attractive for a variety of applications are discussed. Various applications of ZnO thin film and its devices such as light-emitting diodes (LED), UV sensors, biosensors, photodetectors and TFT that have been described by various research groups are presented.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15694993568524
2020-01-01
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/2/Vyas_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15694993568524&mimeType=html&fmt=ahah

References

  1. K. L. Chopra, P. D. Paulson, V. Dutta, Prog. Photovoltaics Res. Appl., 2004, 12, (23), 69 LINK https://doi.org/10.1002/pip.541 [Google Scholar]
  2. K. Wasa, M. Kitabatake, H. Adachi, ‘Deposition of Compound Thin Films’, in “Thin Film Materials Technology – Sputtering of Compound Materials”, Ch. 5, William Andrew Inc, Norwich, New York, USA, 2004, pp. 191403 LINK https://doi.org/10.1016/b978-081551483-1.50006-x [Google Scholar]
  3. L. I. Maissel, R. Glang, “Handbook of Thin Film Technology”, eds. McGraw-Hill, New York, USA, 1970 [Google Scholar]
  4. H. J. Choi, W. Jang, B. C. Mohanty, Y. S. Jung, A. Soon, Y. S. Cho, J. Phys. Chem. Lett., 2018, 9, (20), 5934 LINK https://doi.org/10.1021/acs.jpclett.8b02474 [Google Scholar]
  5. Y. Zhou, Li Yang, Y. Huang, “Micro- and Macromechanical Properties of Materials”, CRC Press, Boca Raton, USA, 2013, 620 pp LINK https://doi.org/10.1201/b15525 [Google Scholar]
  6. K. Seshan, ‘Scaling and its Implications for the Integration and Design of Thin Film and Processes’, in “Handbook of Thin Film Deposositions”, 3rd Edn., Ch. 2, Elsevier Inc, Waltham, USA, 2012, pp. 1940 LINK https://doi.org/10.1016/b978-1-4377-7873-1.00002-4 [Google Scholar]
  7. J. Zhu, Int. Org. Sci. Res. J. Eng., 2015, 5, (4), 13 LINK http://iosrjen.org/Papers/vol5_issue4%20(part-2)/B05421417.pdf [Google Scholar]
  8. H. S. Nalwa, “Silicon-Based Materials and Devices – Properties and Devices”, ed. 2, Academic Press, San Diego, USA, 2001 [Google Scholar]
  9. J. Sheu, M. Lee, Y. Lu, K. Shu, IEEE J. Quantum Elect., 2008, 44, (12), 1211 LINK https://doi.org/10.1109/JQE.2008.2002101 [Google Scholar]
  10. H. Hosono, Thin Solid Films, 2007, 515, (15), 6000 LINK https://doi.org/10.1016/j.tsf.2006.12.125 [Google Scholar]
  11. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys., 2005, 98, (4), 041301 LINK https://doi.org/10.1063/1.1992666 [Google Scholar]
  12. G. E. Patil, D. D. Kajale, D. N. Chavan, N. K. Pawar, P. T. Ahire, S. D. Shinde, V. B. Gaikwad, G. H. Jain, Bull. Mater. Sci., 2011, 34, (1), 1 LINK https://doi.org/10.1007/s12034-011-0045-0 [Google Scholar]
  13. R. H. Bari, P. P. Patil, S. B. Patil, A. R. Bari, Bull. Mater. Sci., 2013, 36, (6), 967 LINK https://doi.org/10.1007/s12034-013-0572-y [Google Scholar]
  14. S.-S. Lin, D.-K. Wu, Ceram. Int., 2010, 36, (1), 87 LINK https://doi.org/10.1016/j.ceramint.2009.06.023 [Google Scholar]
  15. Q. Zhou, Z. Ji, B. Hu, C. Chen, L. Zhao, C. Wang, Mater. Lett., 2007, 61, (2), 531 LINK https://doi.org/10.1016/j.matlet.2006.05.004 [Google Scholar]
  16. A. Walsh, J. L. F. Da Silva, S.-H. Wei, C. Körber, A. Klein, L. F. J. Piper, A. DeMasi, K. E. Smith, G. Panaccione, P. Torelli, D. J. Payne, A. Bourlange, R. G. Egdell, Phys. Rev. Lett., 2008, 100, (16), 167402 LINK https://doi.org/10.1103/physrevlett.100.167402 [Google Scholar]
  17. Ü. Özgür, D. Hofstetter, H. Morkoç, Proc. IEEE, 2010, 98, (7), 1255 LINK https://doi.org/10.1109/jproc.2010.2044550 [Google Scholar]
  18. D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, T. Steiner, Mater. Today, 2004, 7, (6), 34 LINK https://doi.org/10.1016/s1369-7021(04)00287-1 [Google Scholar]
  19. Z. L. Wang, Mater. Today, 2004, 7, (6), 26 LINK https://doi.org/10.1016/s1369-7021(04)00286-x [Google Scholar]
  20. L. Schmidt-Mende, J. L. MacManus-Driscoll, Mater. Today, 2007, 10, (5), 40 LINK https://doi.org/10.1016/s1369-7021(07)70078-0 [Google Scholar]
  21. S.-M. Park, T. Ikegami, K. Ebihara, Thin Solid Films, 2006, 513, (1–2), 90 LINK https://doi.org/10.1016/j.tsf.2006.01.051 [Google Scholar]
  22. T. Tynell, H. Yamauchi, M. Karppinen, R. Okazaki, I. Terasaki, J. Vac. Sci. Technol. A, 2013, 31, (1), 01A109 LINK https://doi.org/10.1116/1.4757764 [Google Scholar]
  23. H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong, F. R. Zhu, Sensors Actuators B: Chem., 2006, 115, (1), 247 LINK https://doi.org/10.1016/j.snb.2005.09.008 [Google Scholar]
  24. S. Singh, R. Nunna, C. Periasamy, P. Chakrabarti, Int. J. Contemp. Res. Eng. Tech., 2011, 1, (1), 14 [Google Scholar]
  25. C. Periasamy, P. Chakrabarti, J. Electron. Mater., 2011, 40, (3), 259 LINK https://doi.org/10.1007/s11664-010-1428-5 [Google Scholar]
  26. S. K. Arya, S. Saha, J. E. Ramirez-Vick, V. Gupta, S. Bhansali, S. P. Singh, Anal. Chim. Acta, 2012, 737, 1 LINK https://doi.org/10.1016/j.aca.2012.05.048 [Google Scholar]
  27. H. Ohta, H. Hosono, Mater. Today, 2004, 7, (6), 42 LINK https://doi.org/10.1016/s1369-7021(04)00288-3 [Google Scholar]
  28. Y. Liu, Y. Li, H. Zeng, J. Nanomater., 2013, 196521 LINK https://doi.org/10.1155/2013/196521 [Google Scholar]
  29. D. Basak, G. Amin, B. Mallik, G. K. Paul, S. K. Sen, J. Cryst. Growth, 2003, 256, (1–2), 73 LINK https://doi.org/10.1016/s0022-0248(03)01304-6 [Google Scholar]
  30. P. K. Nayak, J. Jang, C. Lee, Y. Hong, Appl. Phys. Lett., 2009, 95, (19), 193503 LINK https://doi.org/10.1063/1.3262956 [Google Scholar]
  31. A. Janotti, C. G. Van de Walle, Rep. Prog. Phys., 2009, 72, (12), 126501 LINK https://doi.org/10.1088/0034-4885/72/12/126501 [Google Scholar]
  32. H. Morkoç, U. Özgür, “Zinc Oxide – Fundamentals, Materials and Device Technology”, Wiley-VCH Verlag GmbH and Co KGaA, Weinheim, Germany, 2009, 477 pp LINK https://doi.org/10.1002/9783527623945 [Google Scholar]
  33. S.-K. Kim, S.-Y. Jeong, C.-R. Cho, Appl. Phys. Lett., 2003, 82, (4), 562 LINK https://doi.org/10.1063/1.1536253 [Google Scholar]
  34. A. B. M. A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y.-W. Ok, T.-Y. Seong, Appl. Phys. Lett., 2000, 76, (5), 550 LINK https://doi.org/10.1063/1.125851 [Google Scholar]
  35. A. Segura, J. A. Sans, F. J. Manjón, A. Muñoz, M. J. Herrera-Cabrera, Appl. Phys. Lett., 2003, 83, (2), 278 LINK https://doi.org/10.1063/1.1591995 [Google Scholar]
  36. C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, J. Geurts, “Zinc Oxide – From Fundamental Properties Towards Novel Applications”, Springer-Verlag, Berlin, Germany, 2010, 359 pp LINK https://doi.org/10.1007/978-3-642-10577-7 [Google Scholar]
  37. A. Janotti, C. G. Van de Walle, Phys. Rev. B, 2007, 76, (16), 165202 LINK https://doi.org/10.1103/physrevb.76.165202 [Google Scholar]
  38. N. Karak, P. K. Samanta, T. K. Kundu, Optik, 2013, 124, (23), 6227 LINK https://doi.org/10.1016/j.ijleo.2013.05.019 [Google Scholar]
  39. J.-J. Wu, S.-C. Liu, Adv. Mater., 2002, 14, (3), 215 LINK https://doi.org/10.1002/1521-4095(20020205)14:3<215::aid-adma215>3.0.co;2-j [Google Scholar]
  40. P. K. Samanta, S. K. Patra, P. Roy Chaudhuri, Phys. E: Low-dimensional Syst. Nanostructures, 2009, 41, (4), 664 LINK https://doi.org/10.1016/j.physe.2008.11.015 [Google Scholar]
  41. B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett., 2001, 79, (7), 943 LINK https://doi.org/10.1063/1.1394173 [Google Scholar]
  42. P. A. Rodnyi, I. V Khodyuk, Opt. Spectrosc., 2011, 111, (5), 776 LINK https://doi.org/10.1134/s0030400x11120216 [Google Scholar]
  43. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto, Appl. Phys. Lett., 1997, 70, (17), 2230 LINK https://doi.org/10.1063/1.118824 [Google Scholar]
  44. A. Ohtomo, M. Kawasaki, Y. Sakurai, Y. Yoshida, H. Koinuma, P. Yu, Z. K. Tang, G. K. L. Wong, Y. Segawa, Mater. Sci. Eng.: B, 1998, 54, (1–2), 24 LINK https://doi.org/10.1016/s0921-5107(98)00120-2 [Google Scholar]
  45. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, J. Liu, Nature Nanotechnol., 2011, 6, (8), 506 LINK https://doi.org/10.1038/nnano.2011.97 [Google Scholar]
  46. Y. Tian, X. Ma, L. Jin, D. Yang, Appl. Phys. Lett., 2010, 97, (25), 251115 LINK https://doi.org/10.1063/1.3531960 [Google Scholar]
  47. F. Gao, M. M. Morshed, S. B. Bashar, Y. Zheng, Y. Shi, J. Liu, ‘Electrically Pumped Random Lasing Based on Au-ZnO Nanowire Schottky Junction’, Conference on Lasers and Electro-Optics, San Jose, USA, 10th–15th May 2015, Paper SM1F.7, The Optical Society, Washington, DC, USA LINK https://doi.org/10.1364/cleo_si.2015.sm1f.7 [Google Scholar]
  48. F. Torricelli, J. R. Meijboom, E. Smits, A. K. Tripathi, M. Ferroni, S. Federici, G. H. Gelinck, L. Colalongo, Z. M. Kovacs-Vajna, D. de Leeuw, E. Cantatore, IEEE Trans. Electron Devices, 2011, 58, (8), 2610 LINK https://doi.org/10.1109/ted.2011.2155910 [Google Scholar]
  49. Y. Igasaki, H. Saito, J. Appl. Phys., 1991, 70, (7), 3613 LINK https://doi.org/10.1063/1.349258 [Google Scholar]
  50. S. P. Lau, H. Y. Yang, S. F. Yu, H. D. Li, M. Tanemura, T. Okita, H. Hatano, H. H. Hng, Appl. Phys. Lett., 2005, 87, (1), 013104 LINK https://doi.org/10.1063/1.1984106 [Google Scholar]
  51. A. Tsukazaki, A. Ohtomo, S. Yoshida, M. Kawasaki, C. H. Chia, T. Makino, Y. Segawa, T. Koida, S. F. Chichibu, H. Koinuma, Appl. Phys. Lett., 2003, 83, (14), 2784 LINK https://doi.org/10.1063/1.1615834 [Google Scholar]
  52. D. Somvanshi, S. Jit, J. Nanoelectron. Optoelectron., 2014, 9, (1), 21 LINK https://doi.org/10.1166/jno.2014.1543 [Google Scholar]
  53. C. Periasamy, P. Chakrabarti, J. Nanoelectron. Optoelectron., 2010, 5, (1), 38 LINK https://doi.org/10.1166/jno.2010.1060 [Google Scholar]
  54. L. J. Brillson, Y. Lu, J. Appl. Phys., 2011, 109, (12), 121301 LINK https://doi.org/10.1063/1.3581173 [Google Scholar]
  55. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Morkoç, Superlattices Microstruct., 2010, 48, (5), 458 LINK https://doi.org/10.1016/j.spmi.2010.08.011 [Google Scholar]
  56. S.-J. Kim, IEEE Photonics Technol. Lett., 2005, 17, (8), 1617 LINK https://doi.org/10.1109/lpt.2005.851982 [Google Scholar]
  57. A. W. Ott, R. P. H. Chang, Mater. Chem. Phys., 1999, 58, (2), 132 LINK https://doi.org/10.1016/s0254-0584(98)00264-8 [Google Scholar]
  58. T. Minami, Thin Solid Films, 2008, 516, (17), 5822 LINK https://doi.org/10.1016/j.tsf.2007.10.063 [Google Scholar]
  59. H. Agura, A. Suzuki, T. Matsushita, T. Aoki, M. Okuda, Thin Solid Films, 2003, 445, (2), 263 LINK https://doi.org/10.1016/s0040-6090(03)01158-1 [Google Scholar]
  60. M.-C. Jun, S.-U. Park, J.-H. Koh, Nanoscale Res. Lett., 2012, 7, 639 LINK https://doi.org/10.1186/1556-276X-7-639 [Google Scholar]
  61. B.-Z. Dong, G.-J. Fang, J.-F. Wang, W.-J. Guan, X.-Z. Zhao, J. Appl. Phys., 2007, 101, (3), 033713 LINK https://doi.org/10.1063/1.2437572 [Google Scholar]
  62. S. Shirakata, T. Sakemi, K. Awai, T. Yamamoto, Superlattices Microstruct., 2006, 39, (1–4), 218 LINK https://doi.org/10.1016/j.spmi.2005.08.045 [Google Scholar]
  63. S. M. Chou, L. G. Teoh, W. H. Lai, Y. H. Su, M. H. Hon, Sensors, 2006, 6, (10), 1420 LINK https://doi.org/10.3390/s6101420 [Google Scholar]
  64. H. Shokry Hassan, A. B. Kashyout, I. Morsi, A. A. A. Nasser, I. Ali, Beni-Suef Univ. J. Basic Appl. Sci., 2014, 3, (3), 216 LINK https://doi.org/10.1016/j.bjbas.2014.10.007 [Google Scholar]
  65. S. Roy, S. Basu, Bull. Mater. Sci., 2002, 25, (6), 513 LINK https://doi.org/10.1007/bf02710540 [Google Scholar]
  66. S. T. Shishiyanu, T. S. Shishiyanu, O. I. Lupan, Sensors Actuators B: Chem., 2005, 107, (1), 379 LINK https://doi.org/10.1016/j.snb.2004.10.030 [Google Scholar]
  67. P.-S. Cho, K.-W. Kim, J.-H. Lee, J. Electroceramics, 2006, 17, (2–4), 975 LINK https://doi.org/10.1007/s10832-006-8146-7 [Google Scholar]
  68. Q. Al-zaidi, A. Suhail, W. Al-azawi, Appl. Phys. Res., 2011, 3, (1), 89 LINK https://doi.org/10.5539/apr.v3n1p89 [Google Scholar]
  69. A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, K. Kalantar-zadeh, IEEE Sensors J., 2007, 7, (6), 919 LINK https://doi.org/10.1109/jsen.2007.895963 [Google Scholar]
  70. L. N. Balakrishnan, S. Gowrishankar, N. Gopalakrishnan, IEEE Sensors J., 2013, 13, (6), 2055 LINK https://doi.org/10.1109/jsen.2013.2244592 [Google Scholar]
  71. D. J. Rogers, F. H. Teherani, A. Yasan, K. Minder, P. Kung, M. Razeghi, Appl. Phys. Lett., 2006, 88, (14), 141918 LINK https://doi.org/10.1063/1.2195009 [Google Scholar]
  72. Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev, D. M. Bagnall, Appl. Phys. Lett., 2003, 83, (23), 4719 LINK https://doi.org/10.1063/1.1632537 [Google Scholar]
  73. T. P. Yang, H. C. Zhu, J. M. Bian, J. C. Sun, X. Dong, B. L. Zhang, H. W. Liang, X. P. Li, Y. G. Cui, G. T. Du, Mater. Res. Bull., 2008, 43, (12), 3614 LINK https://doi.org/10.1016/j.materresbull.2008.02.020 [Google Scholar]
  74. Y. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V Chukichev, B. M. Ataev, Appl. Phys. Lett., 2003, 83, (14), 2943 LINK https://doi.org/10.1063/1.1615308 [Google Scholar]
  75. T. Ohashi, K. Yamamoto, A. Nakamura, J. Temmyo, Japan. J. Appl. Phys., 2008, 47, (4S), 2961 LINK https://doi.org/10.1143/jjap.47.2961 [Google Scholar]
  76. S. F. Chichibu, T. Ohmori, N. Shibata, T. Koyama, T. Onuma, Appl. Phys. Lett., 2004, 85, (19), 4403 LINK https://doi.org/10.1063/1.1818333 [Google Scholar]
  77. S. F. Chichibu, T. Ohmori, N. Shibata, T. Koyama, T. Onuma, J. Phys. Chem. Solids, 2005, 66, (11), 1868 LINK https://doi.org/10.1016/j.jpcs.2005.09.007 [Google Scholar]
  78. Y.-L. Wang, F. Ren, H. S. Kim, D. P. Norton, S. J. Pearton, IEEE J. Select. Topics Quantum Electron., 2008, 14, (4), 1048 LINK https://doi.org/10.1109/jstqe.2008.919736 [Google Scholar]
  79. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nature Mater., 2005, 4, (1), 42 LINK https://doi.org/10.1038/nmat1284 [Google Scholar]
  80. Y. Ryu, T.-S. Lee, J. A. Lubguban, H. W. White, B.-J. Kim, Y.-S. Park, C.-J. Youn, Appl. Phys. Lett., 2006, 88, (24), 241108 LINK https://doi.org/10.1063/1.2210452 [Google Scholar]
  81. J.-H. Lim, C.-K. Kang, K.-K. Kim, I.-K. Park, D.-K. Hwang, S.-J. Park, Adv. Mater., 2006, 18, (20), 2720 LINK https://doi.org/10.1002/adma.200502633 [Google Scholar]
  82. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett., 1998, 72, (25), 3270 LINK https://doi.org/10.1063/1.121620 [Google Scholar]
  83. Ü. Özgür, A. Teke, C. Liu, S.-J. Cho, H. Morkoç, H. O. Everitt, Appl. Phys. Lett., 2004, 84, (17), 3223 LINK https://doi.org/10.1063/1.1713034 [Google Scholar]
  84. H.-C. Chen, M.-J. Chen, M.-K. Wu, Y.-C. Cheng, F.-Y. Tsai, IEEE J. Select. Topics Quantum Electron., 2008, 14, (4), 1053 LINK https://doi.org/10.1109/jstqe.2008.920042 [Google Scholar]
  85. X. Q. Zhang, Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, J. Crystal Growth, 2003, 259, (3), 286 LINK https://doi.org/10.1016/j.jcrysgro.2003.07.004 [Google Scholar]
  86. Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, J. Crystal Growth, 2006, 287, (1), 169 LINK https://doi.org/10.1016/j.jcrysgro.2005.10.062 [Google Scholar]
  87. L. Miao, S. Tanemura, H. Y. Yang, K. Yoshida, J. Nanosci. Nanotechnol., 2011, 11, (10), 9326 LINK https://doi.org/10.1166/jnn.2011.4317 [Google Scholar]
  88. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, R. P. H. Chang, Appl. Phys. Lett., 1998, 73, (25), 3656 LINK https://doi.org/10.1063/1.122853 [Google Scholar]
  89. A.-S. Gadallah, K. Nomenyo, C. Couteau, D. J. Rogers, G. Lérondel, Appl. Phys. Lett., 2013, 102, (17), 171105 LINK https://doi.org/10.1063/1.4803081 [Google Scholar]
  90. P.-H. Dupont, C. Couteau, D. J. Rogers, F. H. Téhérani, G. Lérondel, Appl. Phys. Lett., 2010, 97, (26), 261109 LINK https://doi.org/10.1063/1.3527087 [Google Scholar]
  91. N. Batra, M. Tomar, V. Gupta, J. Appl. Phys., 2012, 112, (11), 114701 LINK https://doi.org/10.1063/1.4768450 [Google Scholar]
  92. W. Ouyang, F. Teng, J.-H. He, X. Fang, Adv. Funct. Mater., 2019, 29, (9), 1807672 LINK https://doi.org/10.1002/adfm.201807672 [Google Scholar]
  93. E. Mollow, R. G. Breckenridge, Proceedings of the Photoconductivity Conference, 4th–6th November, 1954, Atlantic City, USA, ed. Wiley, New York, USA, p. 509 [Google Scholar]
  94. G. M. Ali, P. Chakrabarti, IEEE Photonics J., 2010, 2, (5), 784 LINK https://doi.org/10.1109/jphot.2010.2054070 [Google Scholar]
  95. Q. A. Xu, J. W. Zhang, K. R. Ju, X. D. Yang, X. Hou, J. Crystal Growth, 2006, 289, (1), 44 LINK https://doi.org/10.1016/j.jcrysgro.2005.11.008 [Google Scholar]
  96. Z. Bi, X. Yang, J. Zhang, X. Bian, D. Wang, X. Zhang, X. Hou, J. Electron. Mater., 2009, 38, (4), 609 LINK https://doi.org/10.1007/s11664-008-0601-6 [Google Scholar]
  97. S. P. Chang, S. J. Chang, Y. Z. Chiou, C. Y. Lu, T. K. Lin, Y. C. Lin, C. F. Kuo, H. M. Chang, Sensors Actuators A: Phys., 2007, 140, (1), 60 LINK https://doi.org/10.1016/j.sna.2007.06.012 [Google Scholar]
  98. S. J. Young, L. W. Ji, S. J. Chang, X. L. Du, J. Electrochem. Soc., 2007, 154, (1), H26 LINK https://doi.org/10.1149/1.2387058 [Google Scholar]
  99. H.-Y. Chen, K.-W. Liu, X. Chen, Z.-Z. Zhang, M.-M. Fan, M.-M. Jiang, X.-H. Xie, H.-F. Zhao, D.-Z. Shen, J. Mater. Chem. C, 2014, 2, (45), 9689 LINK https://doi.org/10.1039/c4tc01839g [Google Scholar]
  100. A. J. Gimenez, J. M. Yáñez-Limón, J. M. Seminario, J. Phys. Chem. C, 2011, 115, (1), 282 LINK https://doi.org/10.1021/jp107812w [Google Scholar]
  101. K. ul Hasan, O. Nur, M. Willander, Appl. Phys. Lett., 2012, 100, (21), 211104 LINK https://doi.org/10.1063/1.4720179 [Google Scholar]
  102. H. Fabricius, T. Skettrup, P. Bisgaard, Appl. Optics, 1986, 25, (16), 2764 LINK https://doi.org/10.1364/ao.25.002764 [Google Scholar]
  103. R. Tang, S. Han, F. Teng, K. Hu, Z. Zhang, M. Hu, X. Fang, Adv. Sci., 2018, 5, (1), 1700334 LINK https://doi.org/10.1002/advs.201700334 [Google Scholar]
  104. L. Su, H. Chen, X. Xu, X. Fang, Laser Photon. Rev., 2017, 11, (6), 1700222 LINK https://doi.org/10.1002/lpor.201700222 [Google Scholar]
  105. H. von Wenckstern, S. Müller, G. Biehne, H. Hochmuth, M. Lorenz, M. Grundmann, J. Electron. Mater., 2010, 39, (5), 559 LINK https://doi.org/10.1007/s11664-009-0974-1 [Google Scholar]
  106. D. C. Oh, T. Suzuki, T. Hanada, T. Yao, H. Makino, H. J. Ko, J. Vac. Sci. Technol. B: Microelectron. Nanom. Struct., 2006, 24, (3), 1595 LINK https://doi.org/10.1116/1.2200378 [Google Scholar]
  107. H. Endo, M. Sugibuchi, K. Takahashi, S. Goto, S. Sugimura, K. Hane, Y. Kashiwaba, Appl. Phys. Lett., 2007, 90, (12), 121906 LINK https://doi.org/10.1063/1.2715100 [Google Scholar]
  108. G. M. Ali, P. Chakrabarti, J. Vac. Sci. Technol. B, 2012, 30, (3), 031206 LINK https://doi.org/10.1116/1.3701945 [Google Scholar]
  109. F. Teng, K. Hu, W. Ouyang, X. Fang, Adv. Mater., 2018, 30, (35), 1706262 LINK https://doi.org/10.1002/adma.201706262 [Google Scholar]
  110. T. C. Zhang, Y. Guo, Z. X. Mei, C. Z. Gu, X. L. Du, Appl. Phys. Lett., 2009, 94, (11), 113508 LINK https://doi.org/10.1063/1.3103272 [Google Scholar]
  111. C.-P. Chen, P.-H. Lin, L.-Y. Chen, M.-Y. Ke, Y.-W. Cheng, J. Huang, Nanotechnology, 2009, 20, (24), 245204 LINK https://doi.org/10.1088/0957-4484/20/24/245204 [Google Scholar]
  112. K. Hu, F. Teng, L. Zheng, P. Yu, Z. Zhang, H. Chen, X. Fang, Laser Photon. Rev., 2017, 11, (1), 1600257 LINK https://doi.org/10.1002/lpor.201600257 [Google Scholar]
  113. W. Ouyang, F. Teng, M. Jiang, X. Fang, Small, 2017, 13, (39), 1702177 LINK https://doi.org/10.1002/smll.201702177 [Google Scholar]
  114. B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su, D. Zhao, X. Fang, Adv. Funct. Mater., 2017, 27, (17), 1700264 LINK https://doi.org/10.1002/adfm.201700264 [Google Scholar]
  115. J. L. Liu, F. X. Xiu, L. J. Mandalapu, Z. Yang, F. H. Teherani, C. W. Litton, ‘P-Type ZnO by Sb Doping for PN-Junction Photodetectors’, Integrated Optoelectronic Devices, San Jose, USA, 21st–26th January, 2006, “Zinc Oxide Materials and Devices”, eds. 6122, SPIE, Bellingham, USA LINK https://doi.org/10.1117/12.649571 [Google Scholar]
  116. T.-H. Moon, M.-C. Jeong, W. Lee, J.-M. Myoung, Appl. Surf. Sci., 2005, 240, (1–4), 280 LINK https://doi.org/10.1016/j.apsusc.2004.06.149 [Google Scholar]
  117. H.-J. Chiu, T.-H. Chen, L.-W. Lai, C.-T. Lee, J.-D. Hong, D.-S. Liu, J. Nanomater., 2015, 284835 LINK https://doi.org/10.1155/2015/284835 [Google Scholar]
  118. E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, R. Martins, Thin Solid Films, 2005, 487, (1–2), 205 LINK https://doi.org/10.1016/j.tsf.2005.01.066 [Google Scholar]
  119. K. Long, A. Z. Kattamis, I.-C. Cheng, H. Gleskova, S. Wagner, J. C. Sturm, IEEE Electron Dev. Lett., 2006, 27, (2), 111 LINK https://doi.org/10.1109/led.2005.863147 [Google Scholar]
  120. K. A. Gupta, D. K. Anvekar, V. Venkateswarlu, Int. J. Model. Optim., 2013, 3, (3), 266 LINK https://doi.org/10.7763/ijmo.2013.v3.279 [Google Scholar]
  121. H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, D. A. Keszler, Appl. Phys. Lett., 2005, 86, (1), 013503 LINK https://doi.org/10.1063/1.1843286 [Google Scholar]
  122. R. E. Presley, D. Hong, H. Q. Chiang, C. M. Hung, R. L. Hoffman, J. F. Wager, Solid-State Electron., 2006, 50, (3), 500 LINK https://doi.org/10.1016/j.sse.2006.02.004 [Google Scholar]
  123. S. Sze, “Physics of Semiconductor Devices”, 2nd Edn., John Wiley and Sons, Hoboken, USA, 1981, 868 pp [Google Scholar]
  124. C.-L. Fan, M.-C. Shang, B.-J. Li, Y.-Z. Lin, S.-J. Wang, W.-D. Lee, B.-R. Hung, Materials, 2015, 8, (4), 1704 LINK https://doi.org/10.3390/ma8041704 [Google Scholar]
  125. P. K. Welmer, Proc. IRC, 1962, 50, 1462 [Google Scholar]
  126. T. P. Brody, J. A. Asars, G. D. Dixon, IEEE Trans. Electron Devices, 1973, 20, (11), 995 LINK https://doi.org/10.1109/t-ed.1973.17780 [Google Scholar]
  127. P. G. le Comber, W. E. Spear, A. Ghaith, Electron. Lett., 1979, 15, (6), 179 LINK https://doi.org/10.1049/el:19790126 [Google Scholar]
  128. P. F. Carcia, R. S. McLean, M. H. Reilly, Appl. Phys. Lett., 2006, 88, (12), 123509 LINK https://doi.org/10.1063/1.2188379 [Google Scholar]
  129. C. Brox-Nilsen, J. Jin, Y. Luo, P. Bao, A. M. Song, IEEE Trans. Electron Devices, 2013, 60, (10), 3424 LINK https://doi.org/10.1109/ted.2013.2279401 [Google Scholar]
  130. G. F. Boesen, J. E. Jacobs, Proc. IEEE, 1968, 56, (11), 2094 LINK https://doi.org/10.1109/proc.1968.6813 [Google Scholar]
  131. R. L. Hoffman, B. J. Norris, J. F. Wager, Appl. Phys. Lett., 2003, 82, (5), 733 LINK https://doi.org/10.1063/1.1542677 [Google Scholar]
  132. P. F. Carcia, R. S. McLean, M. H. Reilly, G. Nunes, Appl. Phys. Lett., 2003, 82, (7), 1117 LINK https://doi.org/10.1063/1.1553997 [Google Scholar]
  133. S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, T. Kawai, J. Appl. Phys., 2003, 93, (3), 1624 LINK https://doi.org/10.1063/1.1534627 [Google Scholar]
  134. T. Hirao, M. Furuta, T. Hiramatsu, T. Matsuda, C. Li, H. Furuta, H. Hokari, M. Yoshida, H. Ishii, M. Kakegawa, IEEE Trans. Electron Devices, 2008, 55, (11), 3136 LINK https://doi.org/10.1109/ted.2008.2003330 [Google Scholar]
  135. S. R. Patil, M. Y. Chougale, T. D. Rane, S. S. Khot, A. A. Patil, O. S. Bagal, S. D. Jadhav, A. D. Sheikh, S. Kim, T. D. Dongale, Electronics, 2018, 7, (12), 445 LINK https://doi.org/10.3390/electronics7120445 [Google Scholar]
  136. F. B. Fauzi, M. H. Ani, S. H. Herman, M. A. Mohamed, IOP Conf. Ser.: Mater. Sci. Eng., 2018, 340, 12006 LINK https://doi.org/10.1088/1757-899x/340/1/012006 [Google Scholar]
  137. B. K. Barnes, Sci. Rep., 2018, 8, 2184 LINK https://doi.org/10.1038/s41598-018-20598-5 [Google Scholar]
  138. Y. P. Santos, E. Valença, R. Machado, M. A. Macêdo, Mater. Sci. Semicond. Process., 2018, 86, 43 LINK https://doi.org/10.1016/j.mssp.2018.06.016 [Google Scholar]
  139. V.-Q. Le, T.-H. Do, J. R. D. Retamal, P.-W. Shao, Y.-H. Lai, W.-W. Wu, J.-H. He, Y.-L. Chueh, Y.-H. Chu, Nano Energy, 2019, 56, 322 LINK https://doi.org/10.1016/j.nanoen.2018.10.042 [Google Scholar]
/content/journals/10.1595/205651320X15694993568524
Loading
/content/journals/10.1595/205651320X15694993568524
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test