Skip to content
Volume 64, Issue 2
  • ISSN: 2056-5135


Zinc oxide has emerged as an attractive material for various applications in electronics, optoelectronics, biomedical and sensing. The large excitonic binding energy of 60 meV at room temperature as compared to 25 meV of gallium nitride, an III-V compound makes ZnO an efficient light emitter in the ultraviolet (UV) spectral region and hence favourable for optoelectronic applications. The high conductivity and transparency of ZnO makes it important for applications like transparent conducting oxides (TCO) and thin-film transistors (TFT). In this paper, the optoelectronic, electronic and other properties that make ZnO attractive for a variety of applications are discussed. Various applications of ZnO thin film and its devices such as light-emitting diodes (LED), UV sensors, biosensors, photodetectors and TFT that have been described by various research groups are presented.


Article metrics loading...

Loading full text...

Full text loading...



  1. Chopra K. L., Paulson P. D., and Dutta V. Prog. Photovoltaics Res. Appl., 2004, 12, (23), 69 LINK [Google Scholar]
  2. Wasa K., Kitabatake M., and Adachi H. ‘Deposition of Compound Thin Films’, in “Thin Film Materials Technology – Sputtering of Compound Materials”, Ch. 5, William Andrew Inc, Norwich, New York, USA, 2004, pp. 191403 LINK [Google Scholar]
  3. Maissel L. I., and Glang R. “Handbook of Thin Film Technology”, eds. McGraw-Hill, New York, USA, 1970 [Google Scholar]
  4. Choi H. J., Jang W., Mohanty B. C., Jung Y. S., Soon A., and Cho Y. S. J. Phys. Chem. Lett., 2018, 9, (20), 5934 LINK [Google Scholar]
  5. Zhou Y., Yang Li, and Huang Y. “Micro- and Macromechanical Properties of Materials”, CRC Press, Boca Raton, USA, 2013, 620 pp LINK [Google Scholar]
  6. Seshan K. ‘Scaling and its Implications for the Integration and Design of Thin Film and Processes’, in “Handbook of Thin Film Deposositions”, 3rd Edn., Ch. 2, Elsevier Inc, Waltham, USA, 2012, pp. 1940 LINK [Google Scholar]
  7. Zhu J. Int. Org. Sci. Res. J. Eng., 2015, 5, (4), 13 LINK [Google Scholar]
  8. Nalwa H. S. “Silicon-Based Materials and Devices – Properties and Devices”, ed. 2, Academic Press, San Diego, USA, 2001 [Google Scholar]
  9. Sheu J., Lee M., Lu Y., and Shu K. IEEE J. Quantum Elect., 2008, 44, (12), 1211 LINK [Google Scholar]
  10. Hosono H. Thin Solid Films, 2007, 515, (15), 6000 LINK [Google Scholar]
  11. Özgür Ü., Alivov Y. I., Liu C., Teke A., Reshchikov M. A., Doğan S., Avrutin V., Cho S.-J., and Morkoç H. J. Appl. Phys., 2005, 98, (4), 041301 LINK [Google Scholar]
  12. Patil G. E., Kajale D. D., Chavan D. N., Pawar N. K., Ahire P. T., Shinde S. D., Gaikwad V. B., and Jain G. H. Bull. Mater. Sci., 2011, 34, (1), 1 LINK [Google Scholar]
  13. Bari R. H., Patil P. P., Patil S. B., and Bari A. R. Bull. Mater. Sci., 2013, 36, (6), 967 LINK [Google Scholar]
  14. Lin S.-S., and Wu D.-K. Ceram. Int., 2010, 36, (1), 87 LINK [Google Scholar]
  15. Zhou Q., Ji Z., Hu B., Chen C., Zhao L., and Wang C. Mater. Lett., 2007, 61, (2), 531 LINK [Google Scholar]
  16. Walsh A., Da Silva J. L. F., Wei S.-H., Körber C., Klein A., Piper L. F. J., DeMasi A., Smith K. E., Panaccione G., Torelli P., Payne D. J., Bourlange A., and Egdell R. G. Phys. Rev. Lett., 2008, 100, (16), 167402 LINK [Google Scholar]
  17. Özgür Ü., Hofstetter D., and Morkoç H. Proc. IEEE, 2010, 98, (7), 1255 LINK [Google Scholar]
  18. Norton D. P., Heo Y. W., Ivill M. P., Ip K., Pearton S. J., Chisholm M. F., and Steiner T. Mater. Today, 2004, 7, (6), 34 LINK [Google Scholar]
  19. Wang Z. L. Mater. Today, 2004, 7, (6), 26 LINK [Google Scholar]
  20. Schmidt-Mende L., and MacManus-Driscoll J. L. Mater. Today, 2007, 10, (5), 40 LINK [Google Scholar]
  21. Park S.-M., Ikegami T., and Ebihara K. Thin Solid Films, 2006, 513, (1–2), 90 LINK [Google Scholar]
  22. Tynell T., Yamauchi H., Karppinen M., Okazaki R., and Terasaki I. J. Vac. Sci. Technol. A, 2013, 31, (1), 01A109 LINK [Google Scholar]
  23. Gong H., Hu J. Q., Wang J. H., Ong C. H., and Zhu F. R. Sensors Actuators B: Chem., 2006, 115, (1), 247 LINK [Google Scholar]
  24. Singh S., Nunna R., Periasamy C., and Chakrabarti P. Int. J. Contemp. Res. Eng. Tech., 2011, 1, (1), 14 [Google Scholar]
  25. Periasamy C., and Chakrabarti P. J. Electron. Mater., 2011, 40, (3), 259 LINK [Google Scholar]
  26. Arya S. K., Saha S., Ramirez-Vick J. E., Gupta V., Bhansali S., and Singh S. P. Anal. Chim. Acta, 2012, 737, 1 LINK [Google Scholar]
  27. Ohta H., and Hosono H. Mater. Today, 2004, 7, (6), 42 LINK [Google Scholar]
  28. Liu Y., Li Y., and Zeng H. J. Nanomater., 2013, 196521 LINK [Google Scholar]
  29. Basak D., Amin G., Mallik B., Paul G. K., and Sen S. K. J. Cryst. Growth, 2003, 256, (1–2), 73 LINK [Google Scholar]
  30. Nayak P. K., Jang J., Lee C., and Hong Y. Appl. Phys. Lett., 2009, 95, (19), 193503 LINK [Google Scholar]
  31. Janotti A., and Van de Walle C. G. Rep. Prog. Phys., 2009, 72, (12), 126501 LINK [Google Scholar]
  32. Morkoç H., and Özgür U. “Zinc Oxide – Fundamentals, Materials and Device Technology”, Wiley-VCH Verlag GmbH and Co KGaA, Weinheim, Germany, 2009, 477 pp LINK [Google Scholar]
  33. Kim S.-K., Jeong S.-Y., and Cho C.-R. Appl. Phys. Lett., 2003, 82, (4), 562 LINK [Google Scholar]
  34. Ashrafi A. B. M. A., Ueta A., Avramescu A., Kumano H., Suemune I., Ok Y.-W., and Seong T.-Y. Appl. Phys. Lett., 2000, 76, (5), 550 LINK [Google Scholar]
  35. Segura A., Sans J. A., Manjón F. J., Muñoz A., and Herrera-Cabrera M. J. Appl. Phys. Lett., 2003, 83, (2), 278 LINK [Google Scholar]
  36. Klingshirn C. F., Meyer B. K., Waag A., Hoffmann A., and Geurts J. “Zinc Oxide – From Fundamental Properties Towards Novel Applications”, Springer-Verlag, Berlin, Germany, 2010, 359 pp LINK [Google Scholar]
  37. Janotti A., and Van de Walle C. G. Phys. Rev. B, 2007, 76, (16), 165202 LINK [Google Scholar]
  38. Karak N., Samanta P. K., and Kundu T. K. Optik, 2013, 124, (23), 6227 LINK [Google Scholar]
  39. Wu J.-J., and Liu S.-C. Adv. Mater., 2002, 14, (3), 215 LINK<215::aid-adma215>;2-j [Google Scholar]
  40. Samanta P. K., Patra S. K., and Roy Chaudhuri P. Phys. E: Low-dimensional Syst. Nanostructures, 2009, 41, (4), 664 LINK [Google Scholar]
  41. Lin B., Fu Z., and Jia Y. Appl. Phys. Lett., 2001, 79, (7), 943 LINK [Google Scholar]
  42. Rodnyi P. A., and Khodyuk I. V Opt. Spectrosc., 2011, 111, (5), 776 LINK [Google Scholar]
  43. Bagnall D. M., Chen Y. F., Zhu Z., Yao T., Koyama S., Shen M. Y., and Goto T. Appl. Phys. Lett., 1997, 70, (17), 2230 LINK [Google Scholar]
  44. Ohtomo A., Kawasaki M., Sakurai Y., Yoshida Y., Koinuma H., Yu P., Tang Z. K., Wong G. K. L., and Segawa Y. Mater. Sci. Eng.: B, 1998, 54, (1–2), 24 LINK [Google Scholar]
  45. Chu S., Wang G., Zhou W., Lin Y., Chernyak L., Zhao J., Kong J., Li L., Ren J., and Liu J. Nature Nanotechnol., 2011, 6, (8), 506 LINK [Google Scholar]
  46. Tian Y., Ma X., Jin L., and Yang D. Appl. Phys. Lett., 2010, 97, (25), 251115 LINK [Google Scholar]
  47. Gao F., Morshed M. M., Bashar S. B., Zheng Y., Shi Y., and Liu J. ‘Electrically Pumped Random Lasing Based on Au-ZnO Nanowire Schottky Junction’, Conference on Lasers and Electro-Optics, San Jose, USA, 10th–15th May 2015, Paper SM1F.7, The Optical Society, Washington, DC, USA LINK [Google Scholar]
  48. Torricelli F., Meijboom J. R., Smits E., Tripathi A. K., Ferroni M., Federici S., Gelinck G. H., Colalongo L., Kovacs-Vajna Z. M., de Leeuw D., and Cantatore E. IEEE Trans. Electron Devices, 2011, 58, (8), 2610 LINK [Google Scholar]
  49. Igasaki Y., and Saito H. J. Appl. Phys., 1991, 70, (7), 3613 LINK [Google Scholar]
  50. Lau S. P., Yang H. Y., Yu S. F., Li H. D., Tanemura M., Okita T., Hatano H., and Hng H. H. Appl. Phys. Lett., 2005, 87, (1), 013104 LINK [Google Scholar]
  51. Tsukazaki A., Ohtomo A., Yoshida S., Kawasaki M., Chia C. H., Makino T., Segawa Y., Koida T., Chichibu S. F., and Koinuma H. Appl. Phys. Lett., 2003, 83, (14), 2784 LINK [Google Scholar]
  52. Somvanshi D., and Jit S. J. Nanoelectron. Optoelectron., 2014, 9, (1), 21 LINK [Google Scholar]
  53. Periasamy C., and Chakrabarti P. J. Nanoelectron. Optoelectron., 2010, 5, (1), 38 LINK [Google Scholar]
  54. Brillson L. J., and Lu Y. J. Appl. Phys., 2011, 109, (12), 121301 LINK [Google Scholar]
  55. Liu H., Avrutin V., Izyumskaya N., Özgür Ü., and Morkoç H. Superlattices Microstruct., 2010, 48, (5), 458 LINK [Google Scholar]
  56. Kim S.-J. IEEE Photonics Technol. Lett., 2005, 17, (8), 1617 LINK [Google Scholar]
  57. Ott A. W., and Chang R. P. H. Mater. Chem. Phys., 1999, 58, (2), 132 LINK [Google Scholar]
  58. Minami T. Thin Solid Films, 2008, 516, (17), 5822 LINK [Google Scholar]
  59. Agura H., Suzuki A., Matsushita T., Aoki T., and Okuda M. Thin Solid Films, 2003, 445, (2), 263 LINK [Google Scholar]
  60. Jun M.-C., Park S.-U., and Koh J.-H. Nanoscale Res. Lett., 2012, 7, 639 LINK [Google Scholar]
  61. Dong B.-Z., Fang G.-J., Wang J.-F., Guan W.-J., and Zhao X.-Z. J. Appl. Phys., 2007, 101, (3), 033713 LINK [Google Scholar]
  62. Shirakata S., Sakemi T., Awai K., and Yamamoto T. Superlattices Microstruct., 2006, 39, (1–4), 218 LINK [Google Scholar]
  63. Chou S. M., Teoh L. G., Lai W. H., Su Y. H., and Hon M. H. Sensors, 2006, 6, (10), 1420 LINK [Google Scholar]
  64. Shokry Hassan H., Kashyout A. B., Morsi I., Nasser A. A. A., and Ali I. Beni-Suef Univ. J. Basic Appl. Sci., 2014, 3, (3), 216 LINK [Google Scholar]
  65. Roy S., and Basu S. Bull. Mater. Sci., 2002, 25, (6), 513 LINK [Google Scholar]
  66. Shishiyanu S. T., Shishiyanu T. S., and Lupan O. I. Sensors Actuators B: Chem., 2005, 107, (1), 379 LINK [Google Scholar]
  67. Cho P.-S., Kim K.-W., and Lee J.-H. J. Electroceramics, 2006, 17, (2–4), 975 LINK [Google Scholar]
  68. Al-zaidi Q., Suhail A., and Al-azawi W. Appl. Phys. Res., 2011, 3, (1), 89 LINK [Google Scholar]
  69. Sadek A. Z., Choopun S., Wlodarski W., Ippolito S. J., and Kalantar-zadeh K. IEEE Sensors J., 2007, 7, (6), 919 LINK [Google Scholar]
  70. Balakrishnan L. N., Gowrishankar S., and Gopalakrishnan N. IEEE Sensors J., 2013, 13, (6), 2055 LINK [Google Scholar]
  71. Rogers D. J., Teherani F. H., Yasan A., Minder K., Kung P., and Razeghi M. Appl. Phys. Lett., 2006, 88, (14), 141918 LINK [Google Scholar]
  72. Alivov Y. I., Kalinina E. V., Cherenkov A. E., Look D. C., Ataev B. M., Omaev A. K., Chukichev M. V., and Bagnall D. M. Appl. Phys. Lett., 2003, 83, (23), 4719 LINK [Google Scholar]
  73. Yang T. P., Zhu H. C., Bian J. M., Sun J. C., Dong X., Zhang B. L., Liang H. W., Li X. P., Cui Y. G., and Du G. T. Mater. Res. Bull., 2008, 43, (12), 3614 LINK [Google Scholar]
  74. Alivov Y. I., Van Nostrand J. E., Look D. C., Chukichev M. V, and Ataev B. M. Appl. Phys. Lett., 2003, 83, (14), 2943 LINK [Google Scholar]
  75. Ohashi T., Yamamoto K., Nakamura A., and Temmyo J. Japan. J. Appl. Phys., 2008, 47, (4S), 2961 LINK [Google Scholar]
  76. Chichibu S. F., Ohmori T., Shibata N., Koyama T., and Onuma T. Appl. Phys. Lett., 2004, 85, (19), 4403 LINK [Google Scholar]
  77. Chichibu S. F., Ohmori T., Shibata N., Koyama T., and Onuma T. J. Phys. Chem. Solids, 2005, 66, (11), 1868 LINK [Google Scholar]
  78. Wang Y.-L., Ren F., Kim H. S., Norton D. P., and Pearton S. J. IEEE J. Select. Topics Quantum Electron., 2008, 14, (4), 1048 LINK [Google Scholar]
  79. Tsukazaki A., Ohtomo A., Onuma T., Ohtani M., Makino T., Sumiya M., Ohtani K., Chichibu S. F., Fuke S., Segawa Y., Ohno H., Koinuma H., and Kawasaki M. Nature Mater., 2005, 4, (1), 42 LINK [Google Scholar]
  80. Ryu Y., Lee T.-S., Lubguban J. A., White H. W., Kim B.-J., Park Y.-S., and Youn C.-J. Appl. Phys. Lett., 2006, 88, (24), 241108 LINK [Google Scholar]
  81. Lim J.-H., Kang C.-K., Kim K.-K., Park I.-K., Hwang D.-K., and Park S.-J. Adv. Mater., 2006, 18, (20), 2720 LINK [Google Scholar]
  82. Tang Z. K., Wong G. K. L., Yu P., Kawasaki M., Ohtomo A., Koinuma H., and Segawa Y. Appl. Phys. Lett., 1998, 72, (25), 3270 LINK [Google Scholar]
  83. Özgür Ü., Teke A., Liu C., Cho S.-J., Morkoç H., and Everitt H. O. Appl. Phys. Lett., 2004, 84, (17), 3223 LINK [Google Scholar]
  84. Chen H.-C., Chen M.-J., Wu M.-K., Cheng Y.-C., and Tsai F.-Y. IEEE J. Select. Topics Quantum Electron., 2008, 14, (4), 1053 LINK [Google Scholar]
  85. Zhang X. Q., Tang Z. K., Kawasaki M., Ohtomo A., and Koinuma H. J. Crystal Growth, 2003, 259, (3), 286 LINK [Google Scholar]
  86. Tang Z. K., Kawasaki M., Ohtomo A., Koinuma H., and Segawa Y. J. Crystal Growth, 2006, 287, (1), 169 LINK [Google Scholar]
  87. Miao L., Tanemura S., Yang H. Y., and Yoshida K. J. Nanosci. Nanotechnol., 2011, 11, (10), 9326 LINK [Google Scholar]
  88. Cao H., Zhao Y. G., Ong H. C., Ho S. T., Dai J. Y., Wu J. Y., and Chang R. P. H. Appl. Phys. Lett., 1998, 73, (25), 3656 LINK [Google Scholar]
  89. Gadallah A.-S., Nomenyo K., Couteau C., Rogers D. J., and Lérondel G. Appl. Phys. Lett., 2013, 102, (17), 171105 LINK [Google Scholar]
  90. Dupont P.-H., Couteau C., Rogers D. J., Téhérani F. H., and Lérondel G. Appl. Phys. Lett., 2010, 97, (26), 261109 LINK [Google Scholar]
  91. Batra N., Tomar M., and Gupta V. J. Appl. Phys., 2012, 112, (11), 114701 LINK [Google Scholar]
  92. Ouyang W., Teng F., He J.-H., and Fang X. Adv. Funct. Mater., 2019, 29, (9), 1807672 LINK [Google Scholar]
  93. Mollow E., and Breckenridge R. G. Proceedings of the Photoconductivity Conference, 4th–6th November, 1954, Atlantic City, USA, ed. Wiley, New York, USA, p. 509 [Google Scholar]
  94. Ali G. M., and Chakrabarti P. IEEE Photonics J., 2010, 2, (5), 784 LINK [Google Scholar]
  95. Xu Q. A., Zhang J. W., Ju K. R., Yang X. D., and Hou X. J. Crystal Growth, 2006, 289, (1), 44 LINK [Google Scholar]
  96. Bi Z., Yang X., Zhang J., Bian X., Wang D., Zhang X., and Hou X. J. Electron. Mater., 2009, 38, (4), 609 LINK [Google Scholar]
  97. Chang S. P., Chang S. J., Chiou Y. Z., Lu C. Y., Lin T. K., Lin Y. C., Kuo C. F., and Chang H. M. Sensors Actuators A: Phys., 2007, 140, (1), 60 LINK [Google Scholar]
  98. Young S. J., Ji L. W., Chang S. J., and Du X. L. J. Electrochem. Soc., 2007, 154, (1), H26 LINK [Google Scholar]
  99. Chen H.-Y., Liu K.-W., Chen X., Zhang Z.-Z., Fan M.-M., Jiang M.-M., Xie X.-H., Zhao H.-F., and Shen D.-Z. J. Mater. Chem. C, 2014, 2, (45), 9689 LINK [Google Scholar]
  100. Gimenez A. J., Yáñez-Limón J. M., and Seminario J. M. J. Phys. Chem. C, 2011, 115, (1), 282 LINK [Google Scholar]
  101. ul Hasan K., Nur O., and Willander M. Appl. Phys. Lett., 2012, 100, (21), 211104 LINK [Google Scholar]
  102. Fabricius H., Skettrup T., and Bisgaard P. Appl. Optics, 1986, 25, (16), 2764 LINK [Google Scholar]
  103. Tang R., Han S., Teng F., Hu K., Zhang Z., Hu M., and Fang X. Adv. Sci., 2018, 5, (1), 1700334 LINK [Google Scholar]
  104. Su L., Chen H., Xu X., and Fang X. Laser Photon. Rev., 2017, 11, (6), 1700222 LINK [Google Scholar]
  105. von Wenckstern H., Müller S., Biehne G., Hochmuth H., Lorenz M., and Grundmann M. J. Electron. Mater., 2010, 39, (5), 559 LINK [Google Scholar]
  106. Oh D. C., Suzuki T., Hanada T., Yao T., Makino H., and Ko H. J. J. Vac. Sci. Technol. B: Microelectron. Nanom. Struct., 2006, 24, (3), 1595 LINK [Google Scholar]
  107. Endo H., Sugibuchi M., Takahashi K., Goto S., Sugimura S., Hane K., and Kashiwaba Y. Appl. Phys. Lett., 2007, 90, (12), 121906 LINK [Google Scholar]
  108. Ali G. M., and Chakrabarti P. J. Vac. Sci. Technol. B, 2012, 30, (3), 031206 LINK [Google Scholar]
  109. Teng F., Hu K., Ouyang W., and Fang X. Adv. Mater., 2018, 30, (35), 1706262 LINK [Google Scholar]
  110. Zhang T. C., Guo Y., Mei Z. X., Gu C. Z., and Du X. L. Appl. Phys. Lett., 2009, 94, (11), 113508 LINK [Google Scholar]
  111. Chen C.-P., Lin P.-H., Chen L.-Y., Ke M.-Y., Cheng Y.-W., and Huang J. Nanotechnology, 2009, 20, (24), 245204 LINK [Google Scholar]
  112. Hu K., Teng F., Zheng L., Yu P., Zhang Z., Chen H., and Fang X. Laser Photon. Rev., 2017, 11, (1), 1600257 LINK [Google Scholar]
  113. Ouyang W., Teng F., Jiang M., and Fang X. Small, 2017, 13, (39), 1702177 LINK [Google Scholar]
  114. Zhao B., Wang F., Chen H., Zheng L., Su L., Zhao D., and Fang X. Adv. Funct. Mater., 2017, 27, (17), 1700264 LINK [Google Scholar]
  115. Liu J. L., Xiu F. X., Mandalapu L. J., Yang Z., Teherani F. H., and Litton C. W. ‘P-Type ZnO by Sb Doping for PN-Junction Photodetectors’, Integrated Optoelectronic Devices, San Jose, USA, 21st–26th January, 2006, “Zinc Oxide Materials and Devices”, eds. 6122, SPIE, Bellingham, USA LINK [Google Scholar]
  116. Moon T.-H., Jeong M.-C., Lee W., and Myoung J.-M. Appl. Surf. Sci., 2005, 240, (1–4), 280 LINK [Google Scholar]
  117. Chiu H.-J., Chen T.-H., Lai L.-W., Lee C.-T., Hong J.-D., and Liu D.-S. J. Nanomater., 2015, 284835 LINK [Google Scholar]
  118. Fortunato E., Barquinha P., Pimentel A., Gonçalves A., Marques A., Pereira L., and Martins R. Thin Solid Films, 2005, 487, (1–2), 205 LINK [Google Scholar]
  119. Long K., Kattamis A. Z., Cheng I.-C., Gleskova H., Wagner S., and Sturm J. C. IEEE Electron Dev. Lett., 2006, 27, (2), 111 LINK [Google Scholar]
  120. Gupta K. A., Anvekar D. K., and Venkateswarlu V. Int. J. Model. Optim., 2013, 3, (3), 266 LINK [Google Scholar]
  121. Chiang H. Q., Wager J. F., Hoffman R. L., Jeong J., and Keszler D. A. Appl. Phys. Lett., 2005, 86, (1), 013503 LINK [Google Scholar]
  122. Presley R. E., Hong D., Chiang H. Q., Hung C. M., Hoffman R. L., and Wager J. F. Solid-State Electron., 2006, 50, (3), 500 LINK [Google Scholar]
  123. Sze S. “Physics of Semiconductor Devices”, 2nd Edn., John Wiley and Sons, Hoboken, USA, 1981, 868 pp [Google Scholar]
  124. Fan C.-L., Shang M.-C., Li B.-J., Lin Y.-Z., Wang S.-J., Lee W.-D., and Hung B.-R. Materials, 2015, 8, (4), 1704 LINK [Google Scholar]
  125. Welmer P. K. Proc. IRC, 1962, 50, 1462 [Google Scholar]
  126. Brody T. P., Asars J. A., and Dixon G. D. IEEE Trans. Electron Devices, 1973, 20, (11), 995 LINK [Google Scholar]
  127. le Comber P. G., Spear W. E., and Ghaith A. Electron. Lett., 1979, 15, (6), 179 LINK [Google Scholar]
  128. Carcia P. F., McLean R. S., and Reilly M. H. Appl. Phys. Lett., 2006, 88, (12), 123509 LINK [Google Scholar]
  129. Brox-Nilsen C., Jin J., Luo Y., Bao P., and Song A. M. IEEE Trans. Electron Devices, 2013, 60, (10), 3424 LINK [Google Scholar]
  130. Boesen G. F., and Jacobs J. E. Proc. IEEE, 1968, 56, (11), 2094 LINK [Google Scholar]
  131. Hoffman R. L., Norris B. J., and Wager J. F. Appl. Phys. Lett., 2003, 82, (5), 733 LINK [Google Scholar]
  132. Carcia P. F., McLean R. S., Reilly M. H., and Nunes G. Appl. Phys. Lett., 2003, 82, (7), 1117 LINK [Google Scholar]
  133. Masuda S., Kitamura K., Okumura Y., Miyatake S., Tabata H., and Kawai T. J. Appl. Phys., 2003, 93, (3), 1624 LINK [Google Scholar]
  134. Hirao T., Furuta M., Hiramatsu T., Matsuda T., Li C., Furuta H., Hokari H., Yoshida M., Ishii H., and Kakegawa M. IEEE Trans. Electron Devices, 2008, 55, (11), 3136 LINK [Google Scholar]
  135. Patil S. R., Chougale M. Y., Rane T. D., Khot S. S., Patil A. A., Bagal O. S., Jadhav S. D., Sheikh A. D., Kim S., and Dongale T. D. Electronics, 2018, 7, (12), 445 LINK [Google Scholar]
  136. Fauzi F. B., Ani M. H., Herman S. H., and Mohamed M. A. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 340, 12006 LINK [Google Scholar]
  137. Barnes B. K. Sci. Rep., 2018, 8, 2184 LINK [Google Scholar]
  138. Santos Y. P., Valença E., Machado R., and Macêdo M. A. Mater. Sci. Semicond. Process., 2018, 86, 43 LINK [Google Scholar]
  139. Le V.-Q., Do T.-H., Retamal J. R. D., Shao P.-W., Lai Y.-H., Wu W.-W., He J.-H., Chueh Y.-L., and Chu Y.-H. Nano Energy, 2019, 56, 322 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error