Skip to content
1887
Volume 63, Issue 4
  • ISSN: 2056-5135

Abstract

Interfaces are a type of extended defect which govern the properties of materials. As the nanostructuring of materials becomes more prevalent the impact of interfaces such as grain boundaries (GBs) becomes more important. Computational modelling of GBs is vital to the improvement of our understanding of these defects as it allows us to isolate specific structures and understand resulting properties. The first step to accurately modelling GBs is to generate accurate descriptions of the structures. In this paper, we present low angle mirror tilt GB structures for fluorite structured materials (calcium fluoride and ceria). We compare specific GB structures which are generated computationally to experimentally known structures, wherein we see excellent agreement. The high accuracy of the method which we present for predicting these structures can be used in the future to predict interfaces which have not already been experimentally identified and can also be applied to heterointerfaces.

Loading

Article metrics loading...

/content/journals/10.1595/205651319X15598975874659
2019-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/63/4/Lucid_16a_Imp.html?itemId=/content/journals/10.1595/205651319X15598975874659&mimeType=html&fmt=ahah

References

  1. Lucid A. K., Keating P. R. L., Allen J. P., and Watson G. W. J. Phys. Chem. C, 2016, 120, (41), 23430 LINK https://doi.org/10.1021/acs.jpcc.6b08118 [Google Scholar]
  2. Burbano M., Nadin S., Marrocchelli D., Salanne M., and Watson G. W. Phys. Chem. Chem. Phys., 2014, 16, (18), 8320 LINK https://doi.org/10.1039/C4CP00856A [Google Scholar]
  3. Burbano M., Norberg S. T., Hull S., Eriksson S. G., Marrocchelli D., Madden P. A., and Watson G. W. Chem. Mater., 2012, 24, (1), 222 LINK https://doi.org/10.1021/cm2031152 [Google Scholar]
  4. Saiful Islam M. J. Mater. Chem., 2000, 10, (4), 1027 LINK https://doi.org/10.1039/a908425h [Google Scholar]
  5. Chroneos A., Yildiz B., Tarancón A., Parfitt D., and Kilner J. A. Energy Environ. Sci., 2011, 4, (8), 2774 LINK https://doi.org/10.1039/c0ee00717j [Google Scholar]
  6. Jacobson A. J. Chem. Mater., 2010, 22, (3), 660 LINK https://doi.org/10.1021/cm902640j [Google Scholar]
  7. Guo X., and Waser R. Prog. Mater. Sci., 2006, 51, (2), 151 LINK https://doi.org/10.1016/j.pmatsci.2005.07.001 [Google Scholar]
  8. Gregori G., Merkle R., and Maier J. Prog. Mater. Sci., 2017, 89, 252 LINK https://doi.org/10.1016/j.pmatsci.2017.04.009 [Google Scholar]
  9. Watanabe T. J. Mater. Sci., 2011, 46, (12), 4095 LINK https://doi.org/10.1007/s10853-011-5393-z [Google Scholar]
  10. Feng B., Lugg N. R., Kumamoto A., Ikuhara Y., and Shibata N. ACS Nano, 2017, 11, (11), 11376 LINK https://doi.org/10.1021/acsnano.7b05943 [Google Scholar]
  11. Aidhy D. S., Zhang Y., and Weber W. J. J. Mater. Chem. A, 2014, 2, (6), 1704 LINK https://doi.org/10.1039/C3TA14128D [Google Scholar]
  12. Feng B., Yokoi T., Kumamoto A., Yoshiya M., Ikuhara Y., and Shibata N. Nature Commun., 2016, 7, 11079 LINK https://doi.org/10.1038/ncomms11079 [Google Scholar]
  13. Sánchez-Santolino G., Salafranca J., Pantelides S. T., Pennycook S. J., León C., and Varela M. Phys. Status Solidi Appl. Mater. Sci., 2018, 215, (19), 1 LINK https://doi.org/10.1002/pssa.201800349 [Google Scholar]
  14. Tuller H. L. Solid State Ionics, 2000, 131, (1–2), 143 LINK https://doi.org/10.1016/S0167-2738(00)00629-9 [Google Scholar]
  15. Deng W., Carpenter C., Yi N., and Flytzani-Stephanopoulos M. Top. Catal., 2007, 44, (1–2), 199 LINK https://doi.org/10.1007/s11244-007-0293-9 [Google Scholar]
  16. Khodadadi A., Mohajerzadeh S. S., Mortazavi Y., and Miri A. M. Sensors Actuators B: Chem., 2001, 80, (3), 267 LINK https://doi.org/10.1016/S0925-4005(01)00915-7 [Google Scholar]
  17. Leach C. A., Tanev P., and Steele B. C. H. J. Mater. Sci. Lett., 1986, 5, (9), 893 LINK https://doi.org/10.1007/BF01729264 [Google Scholar]
  18. Aoki M., Chiang Y.-M., Kosacki I., Lee L. J.-R., Tuller H., and Liu Y. J. Am. Ceram. Soc., 1996, 79, (5), 1169 LINK https://doi.org/10.1111/j.1151-2916.1996.tb08569.x [Google Scholar]
  19. Guo X., and Maier J. J. Electrochem. Soc., 2001, 148, (3), E121 LINK https://doi.org/10.1149/1.1348267 [Google Scholar]
  20. Lee J.-S., and Kim D.-Y. J. Mater. Res., 2001, 16, (9), 2739 LINK https://doi.org/10.1557/JMR.2001.0374 [Google Scholar]
  21. Lee W., Jung H. J., Lee M. H., Kim Y.-B., Park J. S., Sinclair R., and Prinz F. B. Adv. Funct. Mater., 2012, 22, (5), 965 LINK https://doi.org/10.1002/adfm.201101996 [Google Scholar]
  22. Tschöpe A. Solid State Ionics, 2001, 139, (3–4), 267 LINK https://doi.org/10.1016/S0167-2738(01)00677-4 [Google Scholar]
  23. Tschöpe A. J. Electroceram., 2005, 14, (1), 5 LINK https://doi.org/10.1007/s10832-005-6580-6 [Google Scholar]
  24. Kim S., and Maier J. J. Electrochem. Soc., 2002, 149, (10), J73 LINK https://doi.org/10.1149/1.1507597 [Google Scholar]
  25. Guo X., and Ding Y. J. Electrochem. Soc., 2004, 151, (1), J1 LINK https://doi.org/10.1149/1.1625948 [Google Scholar]
  26. Bayliss R. D., Cook S. N., Kotsantonis S., Chater R. J., and Kilner J. A. Adv. Energy Mater., 2014, 4, (10), 1301575 LINK https://doi.org/10.1002/aenm.201301575 [Google Scholar]
  27. Knöner G., Reimann K., Röwer R., Södervall U., and Schaefer H.-E. Proc. Natl. Acad. Sci., 2003, 100, (7), 3870 LINK https://doi.org/10.1073/pnas.0730783100 [Google Scholar]
  28. Brossmann U., Knoener G., Schaefer H.-E., and Wuerschum R. ChemInform, 2004, 35, (42) LINK https://doi.org/10.1002/chin.200442249 [Google Scholar]
  29. Chadwick A. V. Phys. Status Solidi Appl. Mater. Sci., 2007, 204, (3), 631 LINK https://doi.org/10.1002/pssa.200673780 [Google Scholar]
  30. Inaba H., and Tagawa H. Solid State Ionics, 1996, 83, (1–2), 1 LINK https://doi.org/10.1016/0167-2738(95)00229-4 [Google Scholar]
  31. Yoshiya M., and Oyama T. J. Mater. Sci., 2011, 46, (12), 4176 LINK https://doi.org/10.1007/s10853-011-5352-8 [Google Scholar]
  32. Nerikar P. V., Rudman K., Desai T. G., Byler D., Unal C., McClellan K. J., Phillpot S. R., Sinnott S. B., Peralta P., Uberuaga B. P., and Stanek C. R. J. Am. Ceram. Soc., 2011, 94, (6), 1893 LINK https://doi.org/10.1111/j.1551-2916.2010.04295.x [Google Scholar]
  33. Voronin B. M., and Volkov S. V. J. Phys. Chem. Solids, 2001, 62, (7), 1349 LINK https://doi.org/10.1016/S0022-3697(01)00036-1 [Google Scholar]
  34. Watson G. W., Kelsey E. T., de Leeuw N. H., Harris D. J., and Parker S. C. J. Chem. Soc. Faraday Trans., 1996, 92, (3), 433 LINK https://doi.org/10.1039/ft9969200433 [Google Scholar]
  35. Kronberg M. L., and Wilson F. H. J. Miner. Metals Mater. Soc., 1949, 1, (8), 501 LINK https://doi.org/10.1007/BF03398387 [Google Scholar]
  36. Lejcek P., Jagadish C., Osgood R. M., Parisi J., Wang Z., and Warlimont H. “Grain Boundary Segregation in Metals”, eds. Hull R., Springer Series in Materials Science, Vol. 136, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2010 LINK https://doi.org/10.1007/978-3-642-12505-8 [Google Scholar]
  37. Watson G. W. ‘Atomistic Simulation of Minerals’, PhD Thesis, Bath University, Bath, UK, 1994, 345 pp [Google Scholar]
  38. Watson G. W., Parker S. C., and Wall A. J. Phys.: Condens. Matter, 1992, 4, (8), 2097 LINK https://doi.org/10.1088/0953-8984/4/8/023 [Google Scholar]
  39. Balducci G., Islam M. S., Kašpar J., Fornasiero P., and Graziani M. Chem. Mater., 2003, 15, (20), 3781 LINK https://doi.org/10.1021/cm021289h [Google Scholar]
  40. Castiglione M. J., Wilson M., and Madden P. A. J. Phys.: Condens. Matter, 1999, 11, (46), 9009 LINK https://doi.org/10.1088/0953-8984/11/46/304 [Google Scholar]
  41. Madden P. A., and Wilson M. Chem. Soc. Rev., 1996, 25, (5), 339 LINK https://doi.org/10.1039/CS9962500339 [Google Scholar]
  42. Wilson N. T., Wilson M., Madden P. A., and Pyper N. C. J. Chem. Phys., 1996, 105, (24), 11209 LINK https://doi.org/10.1063/1.472982 [Google Scholar]
  43. Pyper N. C. J. Phys.: Condens. Matter, 1995, 7, (48), 9127 LINK https://doi.org/10.1088/0953-8984/7/48/005 [Google Scholar]
  44. Burbano M., Marrocchelli D., and Watson G. W. J. Electroceram., 2014, 32, (1), 28 LINK https://doi.org/10.1007/s10832-013-9868-y [Google Scholar]
  45. Feng B., Hojo H., Mizoguchi T., Ohta H., Findlay S. D., Sato Y., Shibata N., Yamamoto T., and Ikuhara Y. Appl. Phys. Lett., 2012, 100, (7), 073109 LINK https://doi.org/10.1063/1.3682310 [Google Scholar]
  46. Feng B., Sugiyama I., Hojo H., Ohta H., Shibata N., and Ikuhara Y. Sci. Rep., 2016, 6, 20288 LINK https://doi.org/10.1038/srep20288 [Google Scholar]
  47. Shibata N., Oba F., Yamamoto T., and Ikuhara Y. Philos. Mag., 2004, 84, (23), 2381 LINK https://doi.org/10.1080/14786430410001693463 [Google Scholar]
  48. Williams N. R., Molinari M., Parker S. C., and Storr M. T. J. Nucl. Mater., 2015, 458, 45 LINK https://doi.org/10.1016/j.jnucmat.2014.11.120 [Google Scholar]
  49. Dholabhai P. P., Aguiar J. A., Wu L., Holesinger T. G., Aoki T., Castro R. H. R., and Uberuaga B. P. Phys. Chem. Chem. Phys., 2015, 17, (23), 15375 LINK https://doi.org/10.1039/C5CP02200B [Google Scholar]
  50. Hojo H., Mizoguchi T., Ohta H., Findlay S. D., Shibata N., Yamamoto T., and Ikuhara Y. Nano Lett., 2010, 10, (11), 4668 LINK https://doi.org/10.1021/nl1029336 [Google Scholar]
  51. Ikuhara Y. J. Electron Microsc., 2011, 60, (suppl_1), s173 LINK https://doi.org/10.1093/jmicro/dfr049 [Google Scholar]
  52. Tong W., Yang H., Moeck P., Nandasiri M. I., and Browning N. D. Acta Mater., 2013, 61, (9), 3392 LINK https://doi.org/10.1016/j.actamat.2013.02.029 [Google Scholar]
  53. Fisher C. A. J., and Matsubara H. Solid State Ionics, 1998, 113–115, 311 LINK https://doi.org/10.1016/S0167-2738(98)00380-4 [Google Scholar]
  54. Fisher C. A. J., and Matsubara H. J. Eur. Ceram. Soc., 1999, 19, (6–7), 703 LINK https://doi.org/10.1016/S0955-2219(98)00300-8 [Google Scholar]
  55. Lee H. B., Prinz F. B., and Cai W. Acta Mater., 2010, 58, (6), 2197 LINK https://doi.org/10.1016/j.actamat.2009.12.005 [Google Scholar]
  56. Li X., Sun J., Shahi P., Gao M., MacDonald A. H., Uwatoko Y., Xiang T., Goodenough J. B., Cheng J., and Zhou J. Proc. Natl. Acad. Sci., 2018, 115, (40), 9935 LINK https://doi.org/10.1073/pnas.1810726115 [Google Scholar]
  57. Dickey E. C., Fan X., and Pennycook S. J. J. Am. Ceram. Soc., 2004, 84, (6), 1361 LINK https://doi.org/10.1111/j.1151-2916.2001.tb00842.x [Google Scholar]
  58. An J., Park J. S., Koh A. L., Lee H. B., Jung H. J., Schoonman J., Sinclair R., Gür T. M., and Prinz F. B. Sci. Rep., 2013, 3, 2680 LINK https://doi.org/10.1038/srep02680 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651319X15598975874659
Loading
/content/journals/10.1595/205651319X15598975874659
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error