Skip to content
Volume 63, Issue 4
  • ISSN: 2056-5135


Platinum-rhodium gauzes are frequently used to catalyse the high temperature ammonia oxidation step for production of synthetic nitrogen-based fertilisers. The gauzes suffer from Pt loss in the form of platinum dioxide (PtO), due to the highly exothermic nature of the oxidation reaction. Industrially this is mitigated by installing one or more palladium-nickel catchment gauzes directly downstream of the combustion gauzes, to capture the lost Pt. The Pd-Ni catchment gauzes undergo severe structural modification during operation. In this study, we undertake a systematic study in a laboratory-scale furnace system to determine the role of each of the constituent gases O, HO and PtO on the structural changes of the Pd-Ni gauzes. In addition, some samples are exposed to real industrial conditions in an ammonia combustion pilot plant reactor. Fresh and spent catchment gauzes are analysed by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA) and inductively coupled plasma mass spectroscopy/optical emission spectroscopy (ICP-MS/OES). By combining analysis of samples from furnace and pilot scale experiments, the main findings are that Pd-Ni gauzes undergo internal oxidation to nickel(II) oxide (NiO); which in the presence of steam results in Ni depletion and that PtO vapour causes severe grain reconstruction. Furthermore, in laboratory-scale experiments no significant Pd loss is observed, which is in contrast to observations from the pilot plant where the samples are exposed to real post-ammonia oxidation conditions. Pd loss is likely attributed to some gas species contained in the real post-ammonia oxidation gas stream.


Article metrics loading...

Loading full text...

Full text loading...



  1. Warner M. ‘The Kinetics of Industrial Ammonia Combustion’, PhD Thesis, School of Chemical and Biomolecular Engineering, University of Sydney, Australia, May, 2013, 231 pp LINK [Google Scholar]
  2. Nilsen O., Kjekshus A., and Fjellvåg H. Appl. Catal. A: Gen., 2001, 207, (1–2), 43 LINK [Google Scholar]
  3. Rdzawski Z. M., and Stobrawa J. P. J. Mater. Process. Technol., 2004, 153–154, 681 LINK [Google Scholar]
  4. Rayner-Canham G., and Overton T. “Descriptive Inorganic Chemistry”, 5th Edn., 2010, W. H. Freeman and Co, New York, USA, 723 pp [Google Scholar]
  5. Holzmann H. Chemie Ing. Tech., 1968, 40, (24), 1229 LINK [Google Scholar]
  6. Heywood A. E. Platinum Metals Rev., 1973, 17, (4), 118 LINK [Google Scholar]
  7. Beshty B. S., Hatfield W. R., Lee H. C., Heck R. M., and Hsiung T. H. Engelhard Corporation, ‘Method for Recovering Platinum in a Nitric Acid Plant’, US Patent 4,526,614; 1985 [Google Scholar]
  8. Ning Y., Yang Z., and Zhao H. Platinum Metals Rev., 1995, 39, (1), 19 LINK [Google Scholar]
  9. Fierro J. L. G., Palacios J. M., and Tomás F. Surf. Interface Anal., 1989, 14, (9), 529 LINK [Google Scholar]
  10. Ning Y., Yang Z., and Zhao H. Platinum Metals Rev., 1996, 40, (2), 80 LINK [Google Scholar]
  11. Pura J., Kwaśniak P., Jakubowska D., Jaroszewicz J., Zdunek J., Garbacz H., Mizera J., Gierej M., and Laskowski Z. Catal. Today, 2013, 208, 48 LINK [Google Scholar]
  12. Ning Y., and Yang Z. Platinum Metals Rev., 1999, 43, (2), 62 LINK [Google Scholar]
  13. Yang Z., Ning Y., and Zhao H. J. Alloys Compd., 1995, 218, (1), 51 LINK [Google Scholar]
  14. Heywood A. E. Platinum Metals Rev., 1982, 26, (1), 28 LINK [Google Scholar]
  15. Holzmann H. Platinum Metals Rev., 1969, 13, (1), 2 LINK [Google Scholar]
  16. Rdzawski Z., Ciura L., and Nikiel B. J. Mater. Proc. Tech., 1995, 53, (1–2), 319 LINK [Google Scholar]
  17. Han F., and Liu X. Guijinshu, 2017, 38, (1), 31 LINK [Google Scholar]
  18. Pura J., Wieciński P., Kwaśniak P., Zwolińska M., Garbacz H., Zdunek J., Laskowski Z., and Gierej M. Appl. Surf. Sci., 2016, 388, (Part B), 670 LINK [Google Scholar]
  19. Gegner J., Hörz G., and Kirchheim R. J. Mater. Sci., 2009, 44, (9), 2198 LINK [Google Scholar]
  20. Opila E. J. Materials Science and Engineering, University of Virginia, USA, private communication, 1st August, 2016
  21. Jehn H. J. Less Common Metals, 1984, 100, 321 LINK [Google Scholar]
  22. Bale C. W., Bélisle E., Chartrand P., Decterov S. A., Eriksson G., Gheribi A. E., Hack K., Jung I.-H., Kang Y.-B., Melançon J., Pelton A. D., Petersen S., Robelin C., Sangster J., Spencer P., and Van Ende M.-A. Calphad, 2016, 54, 35 LINK [Google Scholar]
  23. Cubicciotti D. J. Nucl. Mater., 1988, 154, (1), 53 LINK [Google Scholar]
  24. Chen G., Guan G., Kasai Y., and Abudula A. Int. J. Hydrogen Energy, 2012, 37, (1), 477 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error