Skip to content
1887
Volume 64, Issue 2
  • ISSN: 2056-5135
  • oa Structure Prediction Methods for Battery Materials

    A review of recent computational efforts to predict the atomic level structure and bonding in materials for rechargeable batteries

  • Authors: Angela F. Harper1, Matthew L. Evans1, James P. Darby1, Bora Karasulu1, Can P. Koçer1, Joseph R. Nelson2,3 and Andrew J. Morris4
  • Affiliations: 1 Department of Physics, Cavendish Laboratory, University of CambridgeJ. J. Thomson Avenue, Cambridge, CB3 0HEUK 2 Department of Materials Science and Metallurgy, University of Cambridge27 Charles Babbage Road, Cambridge, CB3 0FSUK 3 Advanced Institute for Materials Research, Tohoku University2-1-1 Katahira, Aoba, Sendai 980-8577Japan 4 School of Metallurgy and Materials, University of BirminghamEdgbaston, Birmingham, B15 2TTUK
  • Source: Johnson Matthey Technology Review, Volume 64, Issue 2, Apr 2020, p. 103 - 118
  • DOI: https://doi.org/10.1595/205651320X15742491027978
    • Published online: 01 Jan 2020

Abstract

Portable electronic devices, electric vehicles and stationary energy storage applications, which encourage carbon-neutral energy alternatives, are driving demand for batteries that have concurrently higher energy densities, faster charging rates, safer operation and lower prices. These demands can no longer be met by incrementally improving existing technologies but require the discovery of new materials with exceptional properties. Experimental materials discovery is both expensive and time consuming: before the efficacy of a new battery material can be assessed, its synthesis and stability must be well-understood. Computational materials modelling can expedite this process by predicting novel materials, both in stand-alone theoretical calculations and in tandem with experiments. In this review, we describe a materials discovery framework based on density functional theory (DFT) to predict the properties of electrode and solid-electrolyte materials and validate these predictions experimentally. First, we discuss crystal structure prediction using the random structure searching (AIRSS) method. Next, we describe how DFT results allow us to predict which phases form during electrode cycling, as well as the electrode voltage profile and maximum theoretical capacity. We go on to explain how DFT can be used to simulate experimentally measurable properties such as nuclear magnetic resonance (NMR) spectra and ionic conductivities. We illustrate the described workflow with multiple experimentally validated examples: materials for lithium-ion and sodium-ion anodes and lithium-ion solid electrolytes. These examples highlight the power of combining computation with experiment to advance battery materials research.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15742491027978
2020-01-01
2024-12-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/2/Harper_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15742491027978&mimeType=html&fmt=ahah

References

  1. P. Hohenberg, W. Kohn, Phys. Rev., 1964, 136, (3B), B864 LINK https://doi.org/10.1103/PhysRev.136.B864 [Google Scholar]
  2. L. J. Sham, W. Kohn, Phys. Rev., 1966, 145, (2), 561 LINK https://doi.org/10.1103/PhysRev.145.561 [Google Scholar]
  3. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, (18), 3865 LINK https://doi.org/10.1103/PhysRevLett.77.3865 [Google Scholar]
  4. P. J. Stephens, F. J. Devlin, C. F. N. Chabalowski, M. J. Frisch, J. Phys. Chem., 1994, 98, (45), 11623 LINK https://doi.org/10.1080/00268976.2017.1333644 [Google Scholar]
  5. N. Mardirossian, M. Head-Gordon, Mol. Phys., 2017, 115, (19), 2315 LINK https://doi.org/10.1080/00268976.2017.1333644 [Google Scholar]
  6. S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W. Doak, M. Aykol, S. Rühl, C. Wolverton, npj Comput. Mater., 2015, 1, 15010 LINK https://doi.org/10.1038/npjcompumats.2015.10 [Google Scholar]
  7. S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. J. Mehl, H. T. Stokes, D. O. Demchenko, D. Morgan, Comput. Mater. Sci., 2012, 58, 218 LINK https://doi.org/10.1016/j.commatsci.2012.02.005 [Google Scholar]
  8. A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, APL Mater., 2013, 1, (1), 011002 LINK https://doi.org/10.1063/1.4812323 [Google Scholar]
  9. M. Hellenbrandt, Crystallogr. Rev., 2004, 10, (1), 17 LINK https://doi.org/10.1080/08893110410001664882 [Google Scholar]
  10. S. Gražulis, A. Daškevič, A. Merkys, D. Chateigner, L. Lutterotti, M. Quirós, N. R. Serebryanaya, P. Moeck, R. T. Downs, A. Le Bail, Nucleic Acids Res., 2012, 40, (D1), D420 LINK https://doi.org/10.1093/nar/gkr900 [Google Scholar]
  11. C. Y. Lau, M. T. Dunstan, W. Hu, C. P. Grey, S. A. Scott, Energy Environ. Sci., 2017, 10, (3), 818 LINK https://doi.org/10.1039/C6EE02763F [Google Scholar]
  12. A. D. Sendek, Q. Yang, E. D. Cubuk, K.-A. N. Duerloo, Y. Cui, E. J. Reed, Energy Environ. Sci., 2017, 10, (1), 306 LINK https://doi.org/10.1039/C6EE02697D [Google Scholar]
  13. J. C. Kim, X. Li, C. J. Moore, S.-H. Bo, P. G. Khalifah, C. P. Grey, G. Ceder, Chem. Mater., 2014, 26, (14), 4200 LINK https://doi.org/10.1021/cm5014174 [Google Scholar]
  14. R. Oganov, C. J. Pickard, Q. Zhu, R. J. Needs, Nat. Rev. Mater., 2019, 4, (5), 331 LINK https://doi.org/10.1038/s41578-019-0101-8 [Google Scholar]
  15. C. W. Glass, A. R. Oganov, N. Hansen, Comput. Phys. Commun., 2006, 175, (11–12), 713 LINK https://doi.org/10.1016/j.cpc.2006.07.020 [Google Scholar]
  16. Y. Wang, J. Lv, L. Zhu, Y. Ma, Phys. Rev. B, 2010, 82, (9), 094116 LINK https://doi.org/10.1103/PhysRevB.82.094116 [Google Scholar]
  17. Y. Wang, J. Lv, L. Zhu, Y. Ma, Comput. Phys. Commun., 2012, 183, (10), 2063 LINK https://doi.org/10.1016/j.cpc.2012.05.008 [Google Scholar]
  18. S. T. Call, D. Y. Zubarev, A. I. Boldyrev, J. Comput. Chem., 2007, 28, (7), 1177 LINK https://doi.org/10.1002/jcc.20621 [Google Scholar]
  19. C. J. Pickard, R. J. Needs, J. Phys.: Condens. Matter, 2011, 23, (5), 053201 LINK https://doi.org/10.1088/0953-8984/23/5/053201 [Google Scholar]
  20. Y. Li, L. Wang, H. Liu, Y. Zhang, J. Hao, C. J. Pickard, J. R. Nelson, R. J. Needs, W. Li, Y. Huang, I. Errea, M. Calandra, F. Mauri, Y. Ma, Phys. Rev. B, 2016, 93, (2), 20103 LINK https://doi.org/10.1103/PhysRevB.93.020103 [Google Scholar]
  21. J. R. Nelson, R. J. Needs, C. J. Pickard, Phys. Rev. B, 2018, 98, (22), 224105 LINK https://doi.org/10.1103/PhysRevB.98.224105 [Google Scholar]
  22. M. Mayo, K. J. Griffith, C. J. Pickard, A. J. Morris, Chem. Mater., 2016, 28, (7), 2011 LINK https://doi.org/10.1021/acs.chemmater.5b04208 [Google Scholar]
  23. M. Mayo, A. J. Morris, Chem. Mater., 2017, 29, (14), 5787 LINK https://doi.org/10.1021/acs.chemmater.6b04914 [Google Scholar]
  24. J. M. Stratford, M. Mayo, P. K. Allan, O. Pecher, O. J. Borkiewicz, K. M. Wiaderek, K. W. Chapman, C. J. Pickard, A. J. Morris, C. P. Grey, J. Am. Chem. Soc., 2017, 139, (21), 7273 LINK https://doi.org/10.1021/jacs.7b01398 [Google Scholar]
  25. L. E. Marbella, M. L. Evans, M. F. Groh, J. Nelson, K. J. Griffith, A. J. Morris, C. P. Grey, J. Am. Chem. Soc., 2018, 140, (25), 7994 LINK https://doi.org/10.1021/jacs.8b04183 [Google Scholar]
  26. J. M. McMahon, Phys. Rev. B, 2011, 84, (22), 220104 LINK https://doi.org/10.1103/PhysRevB.84.220104 [Google Scholar]
  27. P. V. C. Medeiros, S. Marks, J. M. Wynn, A. Vasylenko, Q. M. Ramasse, D. Quigley, J. Sloan, A. J. Morris, ACS Nano, 2017, 11, (6), 6178 LINK https://doi.org/10.1021/acsnano.7b02225 [Google Scholar]
  28. J. P. Darby, M. Arhangelskis, A. D. Katsenis, J. Marrett, T. Friscic, A. J. Morris, ChemRXiv Prepr., 2019 LINK https://doi.org/10.26434/chemrxiv.8204159.v2 [Google Scholar]
  29. G. Schusteritsch, C. J. Pickard, Phys. Rev. B, 2014, 90, (3), 35424 LINK https://doi.org/10.1103/PhysRevB.90.035424 [Google Scholar]
  30. A. J. Morris, C. J. Pickard, R. J. Needs, Phys. Rev. B, 2008, 78, (18), 184102 LINK https://doi.org/10.1103/PhysRevB.78.184102 [Google Scholar]
  31. E. W. Tait, L. E. Ratcliff, M. C. Payne, P. D. Haynes, N. D. M. Hine, J. Phys.: Condens. Matter, 2016, 28, (19), 195202 LINK https://doi.org/10.1088/0953-8984/28/19/195202 [Google Scholar]
  32. S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys., 2001, 73, (2), 515 LINK https://doi.org/10.1103/RevModPhys.73.515 [Google Scholar]
  33. O. Pecher, J. Carretero-González, K. J. Griffith, C. P. Grey, Chem. Mater., 2017, 29, (1), 213 LINK https://doi.org/10.1021/acs.chemmater.6b03183 [Google Scholar]
  34. S. E. Ashbrook, D. McKay, Chem. Commun., 2016, 52, (45), 7186 LINK https://doi.org/10.1039/C6CC02542K [Google Scholar]
  35. R. M. Stevens, R. M. Pitzer, W. N. Lipscomb, J. Chem. Phys., 1963, 38, (2), 550 LINK https://doi.org/10.1063/1.1733693 [Google Scholar]
  36. F. Mauri, B. G. Pfrommer, S. G. Louie, Phys. Rev. Lett., 1996, 77, (26), 5300 LINK https://doi.org/10.1103/PhysRevLett.77.5300 [Google Scholar]
  37. C. J. Pickard, F. Mauri, Phys. Rev. B, 2001, 63, (24), 245101 LINK https://doi.org/10.1103/PhysRevB.63.245101 [Google Scholar]
  38. C. Bonhomme, C. Gervais, F. Babonneau, C. Coelho, F. Pourpoint, T. Azaïs, S. E. Ashbrook, J. M. Griffin, J. R. Yates, F. Mauri, C. J. Pickard, Chem. Rev., 2012, 112, (11), 5733 LINK https://doi.org/10.1021/cr300108a [Google Scholar]
  39. J. R. Yates, C. J. Pickard, F. Mauri, Phys. Rev. B, 2007, 76, (2), 024401 LINK https://doi.org/10.1103/PhysRevB.76.024401 [Google Scholar]
  40. M. Bak, J. T. Rasmussen, N. C. Nielsen, J. Magn. Reson., 2000, 147, (2), 296 LINK https://doi.org/10.1006/jmre.2000.2179 [Google Scholar]
  41. S. A. Joyce, J. R. Yates, C. J. Pickard, F. Mauri, J. Chem. Phys., 2007, 127, (20), 204107 LINK https://doi.org/10.1063/1.2801984 [Google Scholar]
  42. C. P. Koçer, K. J. Griffith, C. P. Grey, A. J. Morris, Phys. Rev. B, 2019, 99, (7), 075151 LINK https://doi.org/10.1103/PhysRevB.99.075151 [Google Scholar]
  43. C. P. Koçer, K. J. Griffith, C. P. Grey, A. J. Morris, J. Am. Chem. Soc., 2019, 141, (38), 15121 LINK https://doi.org/10.1021/jacs.9b06316 [Google Scholar]
  44. G. K. H. Madsen, D. J. Singh, Comput. Phys. Commun., 2006, 175, (1), 67 LINK https://doi.org/10.1016/J.CPC.2006.03.007 [Google Scholar]
  45. G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys., 2000, 113, (22), 9901 LINK https://doi.org/10.1063/1.1329672 [Google Scholar]
  46. R. J. Friauf, J. Appl. Phys., 1962, 33, (1), 494 LINK https://doi.org/10.1063/1.1777148 [Google Scholar]
  47. N. J. J. de Klerk, M. Wagemaker, Chem. Mater., 2016, 28, (9), 3122 LINK https://doi.org/10.1021/acs.chemmater.6b00698 [Google Scholar]
  48. N. J. J. de Klerk, I. Rosłoń, M. Wagemaker, Chem. Mater., 2016, 28, (21), 7955 LINK https://doi.org/10.1021/acs.chemmater.6b03630 [Google Scholar]
  49. H. Hu, H.-F. Ji, Y. Sun, Phys. Chem. Chem. Phys., 2013, 15, (39), 16557 LINK https://doi.org/10.1039/c3cp51848e [Google Scholar]
  50. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun., 2005, 167, (2), 103 LINK https://doi.org/10.1016/j.cpc.2004.12.014 [Google Scholar]
  51. H. van Beijeren, K. W. Kehr, J. Phys. C: Solid State Phys., 1986, 19, (9), 1319 LINK https://doi.org/10.1088/0022-3719/19/9/005 [Google Scholar]
  52. K. Ghosh, C. V. Krishnamurthy, Phys. Rev. E, 2018, 98, (5), 052115 LINK https://doi.org/10.1103/PhysRevE.98.052115 [Google Scholar]
  53. Z. Deng, Z. Zhu, I.-H. Chu, S. P. Ong, Chem. Mater., 2017, 29, (1), 281 LINK https://doi.org/10.1021/acs.chemmater.6b02648 [Google Scholar]
  54. L. Van Hove, Phys. Rev., 1954, 95, (1), 249 LINK https://doi.org/10.1103/PhysRev.95.249 [Google Scholar]
  55. A. Van der Ven, H.-C. Yu, G. Ceder, K. Thornton, Prog. Mater. Sci., 2010, 55, (2), 61 LINK https://doi.org/10.1016/j.pmatsci.2009.08.001 [Google Scholar]
  56. R. Gomer, Rep. Prog. Phys., 1990, 53, (7), 917 LINK https://doi.org/10.1088/0034-4885/53/7/002 [Google Scholar]
  57. Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, G. Ceder, Nature Mater., 2015, 14, (10), 1026 LINK https://doi.org/10.1038/nmat4369 [Google Scholar]
  58. A. Vasileiadis, B. Carlsen, N. J. J. de Klerk, M. Wagemaker, Chem. Mater., 2018, 30, (19), 6646 LINK https://doi.org/10.1021/acs.chemmater.8b01634 [Google Scholar]
  59. G. Henkelman, H. Jónsson, J. Chem. Phys., 1999, 111, (15), 7010 LINK https://doi.org/10.1063/1.480097 [Google Scholar]
  60. R. Malek, N. Mousseau, Phys. Rev. E, 2000, 62, (6), 7723 LINK https://doi.org/10.1103/PhysRevE.62.7723 [Google Scholar]
  61. L. J. Munro, D. J. Wales, Phys. Rev. B, 1999, 59, (6), 3969 LINK https://doi.org/10.1103/PhysRevB.59.3969 [Google Scholar]
  62. A. Heyden, A. T. Bell, F. J. Keil, J. Chem. Phys., 2005, 123, (22), 224101 LINK https://doi.org/10.1063/1.2104507 [Google Scholar]
  63. R. A. Olsen, G. J. Kroes, G. Henkelman, A. Arnaldsson, H. Jónsson, J. Chem. Phys., 2004, 121, (20), 9776 LINK https://doi.org/10.1063/1.1809574 [Google Scholar]
  64. G. Henkelman, H. Jónsson, J. Chem. Phys., 2000, 113, (22), 9978 LINK https://doi.org/10.1063/1.1323224 [Google Scholar]
  65. R. Kutner, Phys. Lett. A, 1981, 81, (4), 239 LINK https://doi.org/10.1016/0375-9601(81)90251-6 [Google Scholar]
  66. A. Urban, D.-H. Seo, G. Ceder, npj Comput. Mater., 2016, 2, 16002 LINK https://doi.org/10.1038/npjcompumats.2016.2 [Google Scholar]
  67. A. Van Der Ven, J. C. Thomas, Q. Xu, B. Swoboda, D. Morgan, Phys. Rev. B, 2008, 78, (10), 104306 LINK https://doi.org/10.1103/PhysRevB.78.104306 [Google Scholar]
  68. A. Van der Ven, G. Ceder, M. Asta, P. D. Tepesch, Phys. Rev. B, 2001, 64, (18), 184307 LINK https://doi.org/10.1103/PhysRevB.64.184307 [Google Scholar]
  69. J. Kang, H. Chung, C. Doh, B. Kang, B. Han, J. Power Sources, 2015, 293, 11 LINK https://doi.org/10.1016/j.jpowsour.2015.05.060 [Google Scholar]
  70. X. He, Y. Mo, Phys. Chem. Chem. Phys., 2015, 17, (27), 18035 LINK https://doi.org/10.1039/C5CP02181B [Google Scholar]
  71. X. He, Y. Zhu, Y. Mo, Nature Commun., 2017, 8, 15893 LINK https://doi.org/10.1038/ncomms15893 [Google Scholar]
  72. K. J. Griffith, I. D. Seymour, M. A. Hope, M. M. Butala, L. K. Lamontagne, M. B. Preefer, C. P. Koçer, G. Henkelman, A. J. Morris, M. J. Cliffe, S. E. Dutton, C. P. Grey, J. Am. Chem. Soc., 2019, 141, (42), 16706 LINK https://doi.org/10.1021/jacs.9b06669 [Google Scholar]
  73. M. Evans, ‘Matador’, Rev. 063ab7ba, 2016: LINK https://github.com/ml-evs/matador (Accessed on 19th February 2020) [Google Scholar]
  74. J. M. Sanchez, F. Ducastelle, D. Gratias, Phys. A: Stat. Mech. Appl., 1984, 128, (1–2), 334 LINK https://doi.org/10.1016/0378-4371(84)90096-7 [Google Scholar]
  75. B. Puchala, A. Van der Ven, Phys. Rev. B, 2013, 88, (9), 094108 LINK https://doi.org/10.1103/PhysRevB.88.094108 [Google Scholar]
  76. Y. Liu, Y. Zhu, Y. Cui, Nature Energy, 2019, 4, (7), 540 LINK https://doi.org/10.1038/s41560-019-0405-3 [Google Scholar]
  77. N. Loeffler, D. Bresser, S. Passerini, M. Copley, Johnson Matthey Technol. Rev., 2015, 59, (1), 34 LINK https://www.technology.matthey.com/article/59/1/34-44/ [Google Scholar]
  78. M. Mayo, J. P. Darby, M. L. Evans, J. R. Nelson, A. J. Morris, Chem. Mater., 2018, 30, (15), 5516 LINK https://doi.org/10.1021/acs.chemmater.8b02803 [Google Scholar]
  79. J. Wang, I. D. Raistrick, R. A. Huggins, J. Electrochem. Soc., 1986, 133, (3), 457 LINK https://doi.org/10.1149/1.2108601 [Google Scholar]
  80. J.-M. Tarascon, M. Armand, Nature, 2001, 414, (6861), 359 LINK https://doi.org/10.1038/35104644 [Google Scholar]
  81. B. Kang, G. Ceder, Nature, 2009, 458, (7235), 190 LINK https://doi.org/10.1038/nature07853 [Google Scholar]
  82. C. Arbizzani, G. Gabrielli, M. Mastragostino, J. Power Sources, 2011, 196, (10), 4801 LINK https://doi.org/10.1016/J.JPOWSOUR.2011.01.068 [Google Scholar]
  83. E. Eweka, J. R. Owen, A. Ritchie, J. Power Sources, 1997, 65, (1–2), 247 LINK https://doi.org/10.1016/S0378-7753(97)02482-8 [Google Scholar]
  84. K. J. Harry, D. T. Hallinan, D. Y. Parkinson, A. A. MacDowell, N. P. Balsara, Nature Mater., 2014, 13, (1), 69 LINK https://doi.org/10.1038/nmat3793 [Google Scholar]
  85. S. Yu, R. D. Schmidt, R. Garcia-Mendez, E. Herbert, N. J. Dudney, J. B. Wolfenstine, J. Sakamoto, D. J. Siegel, Chem. Mater., 2016, 28, (1), 197 LINK https://doi.org/10.1021/acs.chemmater.5b03854 [Google Scholar]
  86. C. Monroe, J. Newman, J. Electrochem. Soc., 2005, 152, (2), A396 LINK https://doi.org/10.1149/1.1850854 [Google Scholar]
  87. Z. Ahmad, T. Xie, C. Maheshwari, J. C. Grossman, V. Viswanathan, ACS Cent. Sci., 2018, 4, (8), 996 LINK https://doi.org/10.1021/acscentsci.8b00229 [Google Scholar]
  88. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nature Mater., 2011, 10, (9), 682 LINK https://doi.org/10.1038/nmat3066 [Google Scholar]
  89. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Nature Energy, 2016, 1, (4), 16030 LINK https://doi.org/10.1038/nenergy.2016.30 [Google Scholar]
  90. Y. Zhu, X. He, Y. Mo, ACS Appl. Mater. Interfaces, 2015, 7, (42), 23685 LINK https://doi.org/10.1021/acsami.5b07517 [Google Scholar]
  91. R. Chen, W. Qu, X. Guo, L. Li, F. Wu, Mater. Horiz., 2016, 3, (6), 487 LINK https://doi.org/10.1039/C6MH00218H [Google Scholar]
  92. V. Thangadurai, S. Narayanan, D. Pinzaru, Chem. Soc. Rev., 2014, 43, (13), 4714 LINK https://doi.org/10.1039/c4cs00020j [Google Scholar]
  93. Z. Zhu, I.-H. Chu, S. P. Ong, Chem. Mater., 2017, 29, (6), 2474 LINK https://doi.org/10.1021/acs.chemmater.6b04049 [Google Scholar]
  94. X. Wang, R. Xiao, H. Li, L. Chen, Phys. Rev. Lett., 2017, 118, (19), 195901 LINK https://doi.org/10.1103/PhysRevLett.118.195901 [Google Scholar]
  95. S. P. Ong, Y. Mo, W. D. Richards, L. Miara, H. S. Lee, G. Ceder, Energy Environ. Sci., 2013, 6, (1), 148 LINK https://doi.org/10.1039/C2EE23355J [Google Scholar]
  96. P. Bron, S. Johansson, K. Zick, J. Schmedt auf der Günne, S. Dehnen, B. Roling, J. Am. Chem. Soc., 2013, 135, (42), 15694 LINK https://doi.org/10.1021/ja407393y [Google Scholar]
  97. A. Kuhn, O. Gerbig, C. Zhu, F. Falkenberg, J. Maier, B. V. Lotsch, Phys. Chem. Chem. Phys., 2014, 16, (28), 14669 LINK https://doi.org/10.1039/C4CP02046D [Google Scholar]
  98. K. Fujimura, A. Seko, Y. Koyama, A. Kuwabara, I. Kishida, K. Shitara, C. A. J. Fisher, H. Moriwake, I. Tanaka, Adv. Energy Mater., 2013, 3, (8), 980 LINK https://doi.org/10.1002/aenm.201300060 [Google Scholar]
  99. I. H. Chu, H. Nguyen, S. Hy, Y. C. Lin, Z. Wang, Z. Xu, Z. Deng, Y. S. Meng, S. P. Ong, ACS Appl. Mater. Interfaces, 2016, 8, (12), 7843 LINK https://doi.org/10.1021/acsami.6b00833 [Google Scholar]
  100. Y. Mo, S. P. Ong, G. Ceder, Chem. Mater., 2012, 24, (1), 15 LINK https://doi.org/10.1021/cm203303y [Google Scholar]
  101. A. Al-Qawasmeh, J. Howard, N. A. W. Holzwarth, J. Electrochem. Soc., 2017, 164, (1), A6386 LINK https://doi.org/10.1149/2.0581701jes [Google Scholar]
  102. J. A. Brant, D. M. Massi, N. A. W. Holzwarth, J. H. Macneil, A. P. Douvalis, T. Bakas, S. W. Martin, M. D. Gross, J. A. Aitken, Chem. Mater., 2015, 27, (1), 189 LINK https://doi.org/10.1021/cm5037524 [Google Scholar]
  103. A. Al-Qawasmeh, N. A. W. Holzwarth, J. Electrochem. Soc., 2016, 163, (9), A2079 LINK https://doi.org/10.1149/2.1131609jes [Google Scholar]
  104. N. D. Lepley, N. A. W. Holzwarth, Y. A. Du, Phys. Rev. B, 2013, 88, (10), 104103 LINK https://doi.org/10.1103/PhysRevB.88.104103 [Google Scholar]
  105. N. J. J. De Klerk, E. Van Der Maas, M. Wagemaker, ACS Appl. Energy Mater., 2018, 1, (7), 3230 LINK https://doi.org/10.1021/acsaem.8b00457 [Google Scholar]
  106. K. Meier, T. Laino, A. Curioni, J. Phys. Chem. C, 2014, 118, (13), 6668 LINK https://doi.org/10.1021/jp5002463 [Google Scholar]
  107. R. Jalem, Y. Yamamoto, H. Shiiba, M. Nakayama, H. Munakata, T. Kasuga, K. Kanamura, Chem. Mater., 2013, 25, (3), 425 LINK https://doi.org/10.1021/cm303542x [Google Scholar]
  108. F. A. García Daza, M. R. Bonilla, A. Llordés, J. Carrasco, E. Akhmatskaya, ACS Appl. Mater. Interfaces, 2019, 11, (1), 753 LINK https://doi.org/10.1021/acsami.8b17217 [Google Scholar]
  109. Y. Deng, C. Eames, J.-N. Chotard, F. Lalère, V. Seznec, S. Emge, O. Pecher, C. P. Grey, C. Masquelier, M. S. Islam, J. Am. Chem. Soc., 2015, 137, (28), 9136 LINK https://doi.org/10.1021/jacs.5b04444 [Google Scholar]
  110. M. A. Reddy, M. Helen, A. Groß, M. Fichtner, H. Euchner, ACS Energy Lett., 2018, 3, (12), 2851 LINK https://doi.org/10.1021/acsenergylett.8b01761 [Google Scholar]
  111. M. A. Hope, A. C. Forse, K. J. Griffith, M. R. Lukatskaya, M. Ghidiu, Y. Gogotsi, C. P. Grey, Phys. Chem. Chem. Phys., 2016, 18, (7), 5099 LINK https://doi.org/10.1039/c6cp00330c [Google Scholar]
  112. S. M. Beladi-Mousavi, M. Pumera, Chem. Soc. Rev., 2018, 47, (18), 6964 LINK https://doi.org/10.1039/c8cs00425k [Google Scholar]
  113. P. Bhauriyal, A. Mahata, B. Pathak, J. Phys. Chem. C, 2018, 122, (5), 2481 LINK https://doi.org/10.1021/acs.jpcc.7b09433 [Google Scholar]
  114. L. Shi, T. S. Zhao, A. Xu, J. B. Xu, J. Mater. Chem. A, 2016, 4, (42), 16377 LINK https://doi.org/10.1039/c6ta06976b [Google Scholar]
  115. S. Kirklin, B. Meredig, C. Wolverton, Adv. Energy Mater., 2013, 3, (2), 252 LINK https://doi.org/10.1002/aenm.201200593 [Google Scholar]
/content/journals/10.1595/205651320X15742491027978
Loading
/content/journals/10.1595/205651320X15742491027978
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test