Skip to content
Volume 64, Issue 2
  • ISSN: 2056-5135


Waste biomass, a renewable resource, is a reasonable choice for green clean power generation using advanced thermal treatment technologies such as gasification. In this research, dried-densified olive pomace residues from olive oil production have been applied as biomass feedstock in a new gasification process for synthesis gas (syngas) generation using a 500 kg h−1 throughput capacity autothermal modified updraft gasifier system. The product syngas generation rate is found to be approximately 2.5 Nm3 kg−1 of olive pomace, with a calorific value (CV) between 5.0 MJ Nm−3 and 7.0 MJ Nm−3. More than 85% of carbon in pomace is converted to produced syngas by the gasification system. The gasification reactor generates syngas which passes through a specially designed swirl hot gas burner and is then burned directly in a thermal oil boiler retrofitted to an organic Rankine cycle (ORC) turbine generator. As a result, the produced syngas at around 350°C is directly combusted with tars so that a great deal of chemical energy loss is prevented. The thermal oil heater has a thermal energy capacity of 1.77 MWh. The generated 1.6 MWh thermal energy from the thermal oil heater is transferred to the ORC turbine to generate 240 kW electrical power.


Article metrics loading...

Loading full text...

Full text loading...



  1. De Vos R., van Breevoort P., Höhne N., Winkel T., and Sachweh C. “Assessing the EU 2030 Climate and Energy Targets – A Briefing Paper”, Project No. DESNL14683, ECOFYS, Utrecht, The Netherlands, 17th March, 2014, 23 pp LINK [Google Scholar]
  2. Overend R. P., ‘Biomass Energy Heat Provision for Cooking and Heating in Developing Countries’, in “Energy from Organic Materials (Biomass)”, ed. and Kaltschmitt M. 2, Springer Science and Business Media LLC, New York, USA, pp. 513531 LINK [Google Scholar]
  3. International Olive Council,Madrid, Spain, 2018 LINK
  4. Vera D., Jurado F., and Carpio J. Fuel Process. Technol., 2011, 92, (10), 1970 LINK [Google Scholar]
  5. García-Maraver A., Terron L. C., Ramos-Ridao A., and Zamorano M. Biosys. Eng., 2014, 118, 167 LINK [Google Scholar]
  6. Bridgwater A. V. Fuel, 1995, 74, (5), 631 LINK [Google Scholar]
  7. Bridgwater A. V., Double J. M., and Earp D. M. “Technical and Market Assessment of Biomass Gasification in the UK”, Report No. ETSU–B–1167, UKAEA Atomic Energy Research Establishment, Harwell, UK, 1st January, 1986, 140 pp LINK [Google Scholar]
  8. Dogru M. ‘Fixed-Bed Gasification of Biomass’, PhD Thesis, University of Newcastle upon Tyne, United Kingdom, 2000, 342 pp [Google Scholar]
  9. Dornburg V., and Faaji A. P. C. Biomass Bioenerg., 2001, 21, (2), 91 LINK [Google Scholar]
  10. Bunt J. R., and Waanders F. B. Fuel, 2008, 87, (10–11), 1814 LINK [Google Scholar]
  11. Pérez J. F., Melgar A., and Benjumea P. N. Fuel, 2012, 96, 487 LINK [Google Scholar]
  12. Dogru M., Beltran M. R., Mitra S., Erdem A., Park E. S., ‘Updraft Gasification of Waste and Produced Syngas Treatment’, in “Waste Management and Resource Efficiency”, ed. and Ghosh S. K. Springer Nature Singapore Pte Ltd, Singapore, 2019, pp. 741752 LINK [Google Scholar]
  13. McKendry P. Biores. Technol., 2002, 83, (1), 55 LINK [Google Scholar]
  14. Priyadarsan S., Annamalai K., Sweeten J. M., Mukhtar S., and Holtzapple M. T. Trans. ASAE, 2004, 47, (5), 1689 LINK [Google Scholar]
  15. Taupe N. C., Lynch D., Wnetrzak R., Kwapinska M., Kwapinski W., and Leahy J. J. Waste Manage., 2016, 50, 324 LINK [Google Scholar]
  16. Kihedu J. H., Yoshiie R., and Naruse I. Fuel Process. Technol., 2016, 141, (1), 93 LINK [Google Scholar]
  17. Puig-Arnavat M., Bruno J. C., and Coronas A. Appl. Energy, 2014, 114, 845 LINK [Google Scholar]
  18. de Mena B., Vera D., Jurado F., and Ortega M. Fuel Process. Technol., 2017, 156, 394 LINK [Google Scholar]
  19. Boyaghchi F. A., Chavoshi M., and Sabeti V. Energy, 2018, 145, 38 LINK [Google Scholar]
  20. Uris M., Linares J. I., and Arenas E. Renew. Energy, 2014, 66, 707 LINK [Google Scholar]
  21. Oberbernger I. Biomass Bioenergy, 1998, 14, (1), 33 LINK [Google Scholar]
  22. Vera D., Jurado F., Carpio J., and Kamel S. Energy, 2018, 144, 41 LINK [Google Scholar]
  23. Cotana F., Messineo A., Petrozzi A., Coccia V., Cavalaglio G., and Aquino A. Sustainability, 2014, 6, (9), 5714 LINK [Google Scholar]
  24. Reed T. B., and Das A. “Handbook on Biomass Downdraft Gasifier Engine Systems”, Report No. SERI/SP-271-3022 and DE88001135, US Department of Energy, Washington, DC, USA, March, 1988, 148 pp LINK [Google Scholar]
  25. Dogru M., Midilli A., and Howarth C. R. Fuel Process. Technol., 2002, 75, (1), 55 LINK [Google Scholar]
  26. ‘Therminol 66 Heat Transfer Fluid – Product Description’, Eastman Chemical Company, Kingsport, USA: (Accessed on 7th January, 2020) [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error