Skip to content
1887
Volume 64, Issue 2
  • ISSN: 2056-5135

Abstract

Zinc oxide has emerged as an attractive material for various applications in electronics, optoelectronics, biomedical and sensing. The large excitonic binding energy of 60 meV at room temperature as compared to 25 meV of gallium nitride, an III-V compound makes ZnO an efficient light emitter in the ultraviolet (UV) spectral region and hence favourable for optoelectronic applications. The high conductivity and transparency of ZnO makes it important for applications like transparent conducting oxides (TCO) and thin-film transistors (TFT). In this paper, the optoelectronic, electronic and other properties that make ZnO attractive for a variety of applications are discussed. Various applications of ZnO thin film and its devices such as light-emitting diodes (LED), UV sensors, biosensors, photodetectors and TFT that have been described by various research groups are presented.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15694993568524
2020-01-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/2/Vyas_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15694993568524&mimeType=html&fmt=ahah

References

  1. Chopra K. L., Paulson P. D., and Dutta V. Prog. Photovoltaics Res. Appl., 2004, 12, (23), 69 LINK https://doi.org/10.1002/pip.541 [Google Scholar]
  2. Wasa K., Kitabatake M., and Adachi H. ‘Deposition of Compound Thin Films’, in “Thin Film Materials Technology – Sputtering of Compound Materials”, Ch. 5, William Andrew Inc, Norwich, New York, USA, 2004, pp. 191403 LINK https://doi.org/10.1016/b978-081551483-1.50006-x [Google Scholar]
  3. Maissel L. I., and Glang R. “Handbook of Thin Film Technology”, eds. McGraw-Hill, New York, USA, 1970 [Google Scholar]
  4. Choi H. J., Jang W., Mohanty B. C., Jung Y. S., Soon A., and Cho Y. S. J. Phys. Chem. Lett., 2018, 9, (20), 5934 LINK https://doi.org/10.1021/acs.jpclett.8b02474 [Google Scholar]
  5. Zhou Y., Yang Li, and Huang Y. “Micro- and Macromechanical Properties of Materials”, CRC Press, Boca Raton, USA, 2013, 620 pp LINK https://doi.org/10.1201/b15525 [Google Scholar]
  6. Seshan K. ‘Scaling and its Implications for the Integration and Design of Thin Film and Processes’, in “Handbook of Thin Film Deposositions”, 3rd Edn., Ch. 2, Elsevier Inc, Waltham, USA, 2012, pp. 1940 LINK https://doi.org/10.1016/b978-1-4377-7873-1.00002-4 [Google Scholar]
  7. Zhu J. Int. Org. Sci. Res. J. Eng., 2015, 5, (4), 13 LINK http://iosrjen.org/Papers/vol5_issue4%20(part-2)/B05421417.pdf [Google Scholar]
  8. Nalwa H. S. “Silicon-Based Materials and Devices – Properties and Devices”, ed. 2, Academic Press, San Diego, USA, 2001 [Google Scholar]
  9. Sheu J., Lee M., Lu Y., and Shu K. IEEE J. Quantum Elect., 2008, 44, (12), 1211 LINK https://doi.org/10.1109/JQE.2008.2002101 [Google Scholar]
  10. Hosono H. Thin Solid Films, 2007, 515, (15), 6000 LINK https://doi.org/10.1016/j.tsf.2006.12.125 [Google Scholar]
  11. Özgür Ü., Alivov Y. I., Liu C., Teke A., Reshchikov M. A., Doğan S., Avrutin V., Cho S.-J., and Morkoç H. J. Appl. Phys., 2005, 98, (4), 041301 LINK https://doi.org/10.1063/1.1992666 [Google Scholar]
  12. Patil G. E., Kajale D. D., Chavan D. N., Pawar N. K., Ahire P. T., Shinde S. D., Gaikwad V. B., and Jain G. H. Bull. Mater. Sci., 2011, 34, (1), 1 LINK https://doi.org/10.1007/s12034-011-0045-0 [Google Scholar]
  13. Bari R. H., Patil P. P., Patil S. B., and Bari A. R. Bull. Mater. Sci., 2013, 36, (6), 967 LINK https://doi.org/10.1007/s12034-013-0572-y [Google Scholar]
  14. Lin S.-S., and Wu D.-K. Ceram. Int., 2010, 36, (1), 87 LINK https://doi.org/10.1016/j.ceramint.2009.06.023 [Google Scholar]
  15. Zhou Q., Ji Z., Hu B., Chen C., Zhao L., and Wang C. Mater. Lett., 2007, 61, (2), 531 LINK https://doi.org/10.1016/j.matlet.2006.05.004 [Google Scholar]
  16. Walsh A., Da Silva J. L. F., Wei S.-H., Körber C., Klein A., Piper L. F. J., DeMasi A., Smith K. E., Panaccione G., Torelli P., Payne D. J., Bourlange A., and Egdell R. G. Phys. Rev. Lett., 2008, 100, (16), 167402 LINK https://doi.org/10.1103/physrevlett.100.167402 [Google Scholar]
  17. Özgür Ü., Hofstetter D., and Morkoç H. Proc. IEEE, 2010, 98, (7), 1255 LINK https://doi.org/10.1109/jproc.2010.2044550 [Google Scholar]
  18. Norton D. P., Heo Y. W., Ivill M. P., Ip K., Pearton S. J., Chisholm M. F., and Steiner T. Mater. Today, 2004, 7, (6), 34 LINK https://doi.org/10.1016/s1369-7021(04)00287-1 [Google Scholar]
  19. Wang Z. L. Mater. Today, 2004, 7, (6), 26 LINK https://doi.org/10.1016/s1369-7021(04)00286-x [Google Scholar]
  20. Schmidt-Mende L., and MacManus-Driscoll J. L. Mater. Today, 2007, 10, (5), 40 LINK https://doi.org/10.1016/s1369-7021(07)70078-0 [Google Scholar]
  21. Park S.-M., Ikegami T., and Ebihara K. Thin Solid Films, 2006, 513, (1–2), 90 LINK https://doi.org/10.1016/j.tsf.2006.01.051 [Google Scholar]
  22. Tynell T., Yamauchi H., Karppinen M., Okazaki R., and Terasaki I. J. Vac. Sci. Technol. A, 2013, 31, (1), 01A109 LINK https://doi.org/10.1116/1.4757764 [Google Scholar]
  23. Gong H., Hu J. Q., Wang J. H., Ong C. H., and Zhu F. R. Sensors Actuators B: Chem., 2006, 115, (1), 247 LINK https://doi.org/10.1016/j.snb.2005.09.008 [Google Scholar]
  24. Singh S., Nunna R., Periasamy C., and Chakrabarti P. Int. J. Contemp. Res. Eng. Tech., 2011, 1, (1), 14 [Google Scholar]
  25. Periasamy C., and Chakrabarti P. J. Electron. Mater., 2011, 40, (3), 259 LINK https://doi.org/10.1007/s11664-010-1428-5 [Google Scholar]
  26. Arya S. K., Saha S., Ramirez-Vick J. E., Gupta V., Bhansali S., and Singh S. P. Anal. Chim. Acta, 2012, 737, 1 LINK https://doi.org/10.1016/j.aca.2012.05.048 [Google Scholar]
  27. Ohta H., and Hosono H. Mater. Today, 2004, 7, (6), 42 LINK https://doi.org/10.1016/s1369-7021(04)00288-3 [Google Scholar]
  28. Liu Y., Li Y., and Zeng H. J. Nanomater., 2013, 196521 LINK https://doi.org/10.1155/2013/196521 [Google Scholar]
  29. Basak D., Amin G., Mallik B., Paul G. K., and Sen S. K. J. Cryst. Growth, 2003, 256, (1–2), 73 LINK https://doi.org/10.1016/s0022-0248(03)01304-6 [Google Scholar]
  30. Nayak P. K., Jang J., Lee C., and Hong Y. Appl. Phys. Lett., 2009, 95, (19), 193503 LINK https://doi.org/10.1063/1.3262956 [Google Scholar]
  31. Janotti A., and Van de Walle C. G. Rep. Prog. Phys., 2009, 72, (12), 126501 LINK https://doi.org/10.1088/0034-4885/72/12/126501 [Google Scholar]
  32. Morkoç H., and Özgür U. “Zinc Oxide – Fundamentals, Materials and Device Technology”, Wiley-VCH Verlag GmbH and Co KGaA, Weinheim, Germany, 2009, 477 pp LINK https://doi.org/10.1002/9783527623945 [Google Scholar]
  33. Kim S.-K., Jeong S.-Y., and Cho C.-R. Appl. Phys. Lett., 2003, 82, (4), 562 LINK https://doi.org/10.1063/1.1536253 [Google Scholar]
  34. Ashrafi A. B. M. A., Ueta A., Avramescu A., Kumano H., Suemune I., Ok Y.-W., and Seong T.-Y. Appl. Phys. Lett., 2000, 76, (5), 550 LINK https://doi.org/10.1063/1.125851 [Google Scholar]
  35. Segura A., Sans J. A., Manjón F. J., Muñoz A., and Herrera-Cabrera M. J. Appl. Phys. Lett., 2003, 83, (2), 278 LINK https://doi.org/10.1063/1.1591995 [Google Scholar]
  36. Klingshirn C. F., Meyer B. K., Waag A., Hoffmann A., and Geurts J. “Zinc Oxide – From Fundamental Properties Towards Novel Applications”, Springer-Verlag, Berlin, Germany, 2010, 359 pp LINK https://doi.org/10.1007/978-3-642-10577-7 [Google Scholar]
  37. Janotti A., and Van de Walle C. G. Phys. Rev. B, 2007, 76, (16), 165202 LINK https://doi.org/10.1103/physrevb.76.165202 [Google Scholar]
  38. Karak N., Samanta P. K., and Kundu T. K. Optik, 2013, 124, (23), 6227 LINK https://doi.org/10.1016/j.ijleo.2013.05.019 [Google Scholar]
  39. Wu J.-J., and Liu S.-C. Adv. Mater., 2002, 14, (3), 215 LINK https://doi.org/10.1002/1521-4095(20020205)14:3<215::aid-adma215>3.0.co;2-j [Google Scholar]
  40. Samanta P. K., Patra S. K., and Roy Chaudhuri P. Phys. E: Low-dimensional Syst. Nanostructures, 2009, 41, (4), 664 LINK https://doi.org/10.1016/j.physe.2008.11.015 [Google Scholar]
  41. Lin B., Fu Z., and Jia Y. Appl. Phys. Lett., 2001, 79, (7), 943 LINK https://doi.org/10.1063/1.1394173 [Google Scholar]
  42. Rodnyi P. A., and Khodyuk I. V Opt. Spectrosc., 2011, 111, (5), 776 LINK https://doi.org/10.1134/s0030400x11120216 [Google Scholar]
  43. Bagnall D. M., Chen Y. F., Zhu Z., Yao T., Koyama S., Shen M. Y., and Goto T. Appl. Phys. Lett., 1997, 70, (17), 2230 LINK https://doi.org/10.1063/1.118824 [Google Scholar]
  44. Ohtomo A., Kawasaki M., Sakurai Y., Yoshida Y., Koinuma H., Yu P., Tang Z. K., Wong G. K. L., and Segawa Y. Mater. Sci. Eng.: B, 1998, 54, (1–2), 24 LINK https://doi.org/10.1016/s0921-5107(98)00120-2 [Google Scholar]
  45. Chu S., Wang G., Zhou W., Lin Y., Chernyak L., Zhao J., Kong J., Li L., Ren J., and Liu J. Nature Nanotechnol., 2011, 6, (8), 506 LINK https://doi.org/10.1038/nnano.2011.97 [Google Scholar]
  46. Tian Y., Ma X., Jin L., and Yang D. Appl. Phys. Lett., 2010, 97, (25), 251115 LINK https://doi.org/10.1063/1.3531960 [Google Scholar]
  47. Gao F., Morshed M. M., Bashar S. B., Zheng Y., Shi Y., and Liu J. ‘Electrically Pumped Random Lasing Based on Au-ZnO Nanowire Schottky Junction’, Conference on Lasers and Electro-Optics, San Jose, USA, 10th–15th May 2015, Paper SM1F.7, The Optical Society, Washington, DC, USA LINK https://doi.org/10.1364/cleo_si.2015.sm1f.7 [Google Scholar]
  48. Torricelli F., Meijboom J. R., Smits E., Tripathi A. K., Ferroni M., Federici S., Gelinck G. H., Colalongo L., Kovacs-Vajna Z. M., de Leeuw D., and Cantatore E. IEEE Trans. Electron Devices, 2011, 58, (8), 2610 LINK https://doi.org/10.1109/ted.2011.2155910 [Google Scholar]
  49. Igasaki Y., and Saito H. J. Appl. Phys., 1991, 70, (7), 3613 LINK https://doi.org/10.1063/1.349258 [Google Scholar]
  50. Lau S. P., Yang H. Y., Yu S. F., Li H. D., Tanemura M., Okita T., Hatano H., and Hng H. H. Appl. Phys. Lett., 2005, 87, (1), 013104 LINK https://doi.org/10.1063/1.1984106 [Google Scholar]
  51. Tsukazaki A., Ohtomo A., Yoshida S., Kawasaki M., Chia C. H., Makino T., Segawa Y., Koida T., Chichibu S. F., and Koinuma H. Appl. Phys. Lett., 2003, 83, (14), 2784 LINK https://doi.org/10.1063/1.1615834 [Google Scholar]
  52. Somvanshi D., and Jit S. J. Nanoelectron. Optoelectron., 2014, 9, (1), 21 LINK https://doi.org/10.1166/jno.2014.1543 [Google Scholar]
  53. Periasamy C., and Chakrabarti P. J. Nanoelectron. Optoelectron., 2010, 5, (1), 38 LINK https://doi.org/10.1166/jno.2010.1060 [Google Scholar]
  54. Brillson L. J., and Lu Y. J. Appl. Phys., 2011, 109, (12), 121301 LINK https://doi.org/10.1063/1.3581173 [Google Scholar]
  55. Liu H., Avrutin V., Izyumskaya N., Özgür Ü., and Morkoç H. Superlattices Microstruct., 2010, 48, (5), 458 LINK https://doi.org/10.1016/j.spmi.2010.08.011 [Google Scholar]
  56. Kim S.-J. IEEE Photonics Technol. Lett., 2005, 17, (8), 1617 LINK https://doi.org/10.1109/lpt.2005.851982 [Google Scholar]
  57. Ott A. W., and Chang R. P. H. Mater. Chem. Phys., 1999, 58, (2), 132 LINK https://doi.org/10.1016/s0254-0584(98)00264-8 [Google Scholar]
  58. Minami T. Thin Solid Films, 2008, 516, (17), 5822 LINK https://doi.org/10.1016/j.tsf.2007.10.063 [Google Scholar]
  59. Agura H., Suzuki A., Matsushita T., Aoki T., and Okuda M. Thin Solid Films, 2003, 445, (2), 263 LINK https://doi.org/10.1016/s0040-6090(03)01158-1 [Google Scholar]
  60. Jun M.-C., Park S.-U., and Koh J.-H. Nanoscale Res. Lett., 2012, 7, 639 LINK https://doi.org/10.1186/1556-276X-7-639 [Google Scholar]
  61. Dong B.-Z., Fang G.-J., Wang J.-F., Guan W.-J., and Zhao X.-Z. J. Appl. Phys., 2007, 101, (3), 033713 LINK https://doi.org/10.1063/1.2437572 [Google Scholar]
  62. Shirakata S., Sakemi T., Awai K., and Yamamoto T. Superlattices Microstruct., 2006, 39, (1–4), 218 LINK https://doi.org/10.1016/j.spmi.2005.08.045 [Google Scholar]
  63. Chou S. M., Teoh L. G., Lai W. H., Su Y. H., and Hon M. H. Sensors, 2006, 6, (10), 1420 LINK https://doi.org/10.3390/s6101420 [Google Scholar]
  64. Shokry Hassan H., Kashyout A. B., Morsi I., Nasser A. A. A., and Ali I. Beni-Suef Univ. J. Basic Appl. Sci., 2014, 3, (3), 216 LINK https://doi.org/10.1016/j.bjbas.2014.10.007 [Google Scholar]
  65. Roy S., and Basu S. Bull. Mater. Sci., 2002, 25, (6), 513 LINK https://doi.org/10.1007/bf02710540 [Google Scholar]
  66. Shishiyanu S. T., Shishiyanu T. S., and Lupan O. I. Sensors Actuators B: Chem., 2005, 107, (1), 379 LINK https://doi.org/10.1016/j.snb.2004.10.030 [Google Scholar]
  67. Cho P.-S., Kim K.-W., and Lee J.-H. J. Electroceramics, 2006, 17, (2–4), 975 LINK https://doi.org/10.1007/s10832-006-8146-7 [Google Scholar]
  68. Al-zaidi Q., Suhail A., and Al-azawi W. Appl. Phys. Res., 2011, 3, (1), 89 LINK https://doi.org/10.5539/apr.v3n1p89 [Google Scholar]
  69. Sadek A. Z., Choopun S., Wlodarski W., Ippolito S. J., and Kalantar-zadeh K. IEEE Sensors J., 2007, 7, (6), 919 LINK https://doi.org/10.1109/jsen.2007.895963 [Google Scholar]
  70. Balakrishnan L. N., Gowrishankar S., and Gopalakrishnan N. IEEE Sensors J., 2013, 13, (6), 2055 LINK https://doi.org/10.1109/jsen.2013.2244592 [Google Scholar]
  71. Rogers D. J., Teherani F. H., Yasan A., Minder K., Kung P., and Razeghi M. Appl. Phys. Lett., 2006, 88, (14), 141918 LINK https://doi.org/10.1063/1.2195009 [Google Scholar]
  72. Alivov Y. I., Kalinina E. V., Cherenkov A. E., Look D. C., Ataev B. M., Omaev A. K., Chukichev M. V., and Bagnall D. M. Appl. Phys. Lett., 2003, 83, (23), 4719 LINK https://doi.org/10.1063/1.1632537 [Google Scholar]
  73. Yang T. P., Zhu H. C., Bian J. M., Sun J. C., Dong X., Zhang B. L., Liang H. W., Li X. P., Cui Y. G., and Du G. T. Mater. Res. Bull., 2008, 43, (12), 3614 LINK https://doi.org/10.1016/j.materresbull.2008.02.020 [Google Scholar]
  74. Alivov Y. I., Van Nostrand J. E., Look D. C., Chukichev M. V, and Ataev B. M. Appl. Phys. Lett., 2003, 83, (14), 2943 LINK https://doi.org/10.1063/1.1615308 [Google Scholar]
  75. Ohashi T., Yamamoto K., Nakamura A., and Temmyo J. Japan. J. Appl. Phys., 2008, 47, (4S), 2961 LINK https://doi.org/10.1143/jjap.47.2961 [Google Scholar]
  76. Chichibu S. F., Ohmori T., Shibata N., Koyama T., and Onuma T. Appl. Phys. Lett., 2004, 85, (19), 4403 LINK https://doi.org/10.1063/1.1818333 [Google Scholar]
  77. Chichibu S. F., Ohmori T., Shibata N., Koyama T., and Onuma T. J. Phys. Chem. Solids, 2005, 66, (11), 1868 LINK https://doi.org/10.1016/j.jpcs.2005.09.007 [Google Scholar]
  78. Wang Y.-L., Ren F., Kim H. S., Norton D. P., and Pearton S. J. IEEE J. Select. Topics Quantum Electron., 2008, 14, (4), 1048 LINK https://doi.org/10.1109/jstqe.2008.919736 [Google Scholar]
  79. Tsukazaki A., Ohtomo A., Onuma T., Ohtani M., Makino T., Sumiya M., Ohtani K., Chichibu S. F., Fuke S., Segawa Y., Ohno H., Koinuma H., and Kawasaki M. Nature Mater., 2005, 4, (1), 42 LINK https://doi.org/10.1038/nmat1284 [Google Scholar]
  80. Ryu Y., Lee T.-S., Lubguban J. A., White H. W., Kim B.-J., Park Y.-S., and Youn C.-J. Appl. Phys. Lett., 2006, 88, (24), 241108 LINK https://doi.org/10.1063/1.2210452 [Google Scholar]
  81. Lim J.-H., Kang C.-K., Kim K.-K., Park I.-K., Hwang D.-K., and Park S.-J. Adv. Mater., 2006, 18, (20), 2720 LINK https://doi.org/10.1002/adma.200502633 [Google Scholar]
  82. Tang Z. K., Wong G. K. L., Yu P., Kawasaki M., Ohtomo A., Koinuma H., and Segawa Y. Appl. Phys. Lett., 1998, 72, (25), 3270 LINK https://doi.org/10.1063/1.121620 [Google Scholar]
  83. Özgür Ü., Teke A., Liu C., Cho S.-J., Morkoç H., and Everitt H. O. Appl. Phys. Lett., 2004, 84, (17), 3223 LINK https://doi.org/10.1063/1.1713034 [Google Scholar]
  84. Chen H.-C., Chen M.-J., Wu M.-K., Cheng Y.-C., and Tsai F.-Y. IEEE J. Select. Topics Quantum Electron., 2008, 14, (4), 1053 LINK https://doi.org/10.1109/jstqe.2008.920042 [Google Scholar]
  85. Zhang X. Q., Tang Z. K., Kawasaki M., Ohtomo A., and Koinuma H. J. Crystal Growth, 2003, 259, (3), 286 LINK https://doi.org/10.1016/j.jcrysgro.2003.07.004 [Google Scholar]
  86. Tang Z. K., Kawasaki M., Ohtomo A., Koinuma H., and Segawa Y. J. Crystal Growth, 2006, 287, (1), 169 LINK https://doi.org/10.1016/j.jcrysgro.2005.10.062 [Google Scholar]
  87. Miao L., Tanemura S., Yang H. Y., and Yoshida K. J. Nanosci. Nanotechnol., 2011, 11, (10), 9326 LINK https://doi.org/10.1166/jnn.2011.4317 [Google Scholar]
  88. Cao H., Zhao Y. G., Ong H. C., Ho S. T., Dai J. Y., Wu J. Y., and Chang R. P. H. Appl. Phys. Lett., 1998, 73, (25), 3656 LINK https://doi.org/10.1063/1.122853 [Google Scholar]
  89. Gadallah A.-S., Nomenyo K., Couteau C., Rogers D. J., and Lérondel G. Appl. Phys. Lett., 2013, 102, (17), 171105 LINK https://doi.org/10.1063/1.4803081 [Google Scholar]
  90. Dupont P.-H., Couteau C., Rogers D. J., Téhérani F. H., and Lérondel G. Appl. Phys. Lett., 2010, 97, (26), 261109 LINK https://doi.org/10.1063/1.3527087 [Google Scholar]
  91. Batra N., Tomar M., and Gupta V. J. Appl. Phys., 2012, 112, (11), 114701 LINK https://doi.org/10.1063/1.4768450 [Google Scholar]
  92. Ouyang W., Teng F., He J.-H., and Fang X. Adv. Funct. Mater., 2019, 29, (9), 1807672 LINK https://doi.org/10.1002/adfm.201807672 [Google Scholar]
  93. Mollow E., and Breckenridge R. G. Proceedings of the Photoconductivity Conference, 4th–6th November, 1954, Atlantic City, USA, ed. Wiley, New York, USA, p. 509 [Google Scholar]
  94. Ali G. M., and Chakrabarti P. IEEE Photonics J., 2010, 2, (5), 784 LINK https://doi.org/10.1109/jphot.2010.2054070 [Google Scholar]
  95. Xu Q. A., Zhang J. W., Ju K. R., Yang X. D., and Hou X. J. Crystal Growth, 2006, 289, (1), 44 LINK https://doi.org/10.1016/j.jcrysgro.2005.11.008 [Google Scholar]
  96. Bi Z., Yang X., Zhang J., Bian X., Wang D., Zhang X., and Hou X. J. Electron. Mater., 2009, 38, (4), 609 LINK https://doi.org/10.1007/s11664-008-0601-6 [Google Scholar]
  97. Chang S. P., Chang S. J., Chiou Y. Z., Lu C. Y., Lin T. K., Lin Y. C., Kuo C. F., and Chang H. M. Sensors Actuators A: Phys., 2007, 140, (1), 60 LINK https://doi.org/10.1016/j.sna.2007.06.012 [Google Scholar]
  98. Young S. J., Ji L. W., Chang S. J., and Du X. L. J. Electrochem. Soc., 2007, 154, (1), H26 LINK https://doi.org/10.1149/1.2387058 [Google Scholar]
  99. Chen H.-Y., Liu K.-W., Chen X., Zhang Z.-Z., Fan M.-M., Jiang M.-M., Xie X.-H., Zhao H.-F., and Shen D.-Z. J. Mater. Chem. C, 2014, 2, (45), 9689 LINK https://doi.org/10.1039/c4tc01839g [Google Scholar]
  100. Gimenez A. J., Yáñez-Limón J. M., and Seminario J. M. J. Phys. Chem. C, 2011, 115, (1), 282 LINK https://doi.org/10.1021/jp107812w [Google Scholar]
  101. ul Hasan K., Nur O., and Willander M. Appl. Phys. Lett., 2012, 100, (21), 211104 LINK https://doi.org/10.1063/1.4720179 [Google Scholar]
  102. Fabricius H., Skettrup T., and Bisgaard P. Appl. Optics, 1986, 25, (16), 2764 LINK https://doi.org/10.1364/ao.25.002764 [Google Scholar]
  103. Tang R., Han S., Teng F., Hu K., Zhang Z., Hu M., and Fang X. Adv. Sci., 2018, 5, (1), 1700334 LINK https://doi.org/10.1002/advs.201700334 [Google Scholar]
  104. Su L., Chen H., Xu X., and Fang X. Laser Photon. Rev., 2017, 11, (6), 1700222 LINK https://doi.org/10.1002/lpor.201700222 [Google Scholar]
  105. von Wenckstern H., Müller S., Biehne G., Hochmuth H., Lorenz M., and Grundmann M. J. Electron. Mater., 2010, 39, (5), 559 LINK https://doi.org/10.1007/s11664-009-0974-1 [Google Scholar]
  106. Oh D. C., Suzuki T., Hanada T., Yao T., Makino H., and Ko H. J. J. Vac. Sci. Technol. B: Microelectron. Nanom. Struct., 2006, 24, (3), 1595 LINK https://doi.org/10.1116/1.2200378 [Google Scholar]
  107. Endo H., Sugibuchi M., Takahashi K., Goto S., Sugimura S., Hane K., and Kashiwaba Y. Appl. Phys. Lett., 2007, 90, (12), 121906 LINK https://doi.org/10.1063/1.2715100 [Google Scholar]
  108. Ali G. M., and Chakrabarti P. J. Vac. Sci. Technol. B, 2012, 30, (3), 031206 LINK https://doi.org/10.1116/1.3701945 [Google Scholar]
  109. Teng F., Hu K., Ouyang W., and Fang X. Adv. Mater., 2018, 30, (35), 1706262 LINK https://doi.org/10.1002/adma.201706262 [Google Scholar]
  110. Zhang T. C., Guo Y., Mei Z. X., Gu C. Z., and Du X. L. Appl. Phys. Lett., 2009, 94, (11), 113508 LINK https://doi.org/10.1063/1.3103272 [Google Scholar]
  111. Chen C.-P., Lin P.-H., Chen L.-Y., Ke M.-Y., Cheng Y.-W., and Huang J. Nanotechnology, 2009, 20, (24), 245204 LINK https://doi.org/10.1088/0957-4484/20/24/245204 [Google Scholar]
  112. Hu K., Teng F., Zheng L., Yu P., Zhang Z., Chen H., and Fang X. Laser Photon. Rev., 2017, 11, (1), 1600257 LINK https://doi.org/10.1002/lpor.201600257 [Google Scholar]
  113. Ouyang W., Teng F., Jiang M., and Fang X. Small, 2017, 13, (39), 1702177 LINK https://doi.org/10.1002/smll.201702177 [Google Scholar]
  114. Zhao B., Wang F., Chen H., Zheng L., Su L., Zhao D., and Fang X. Adv. Funct. Mater., 2017, 27, (17), 1700264 LINK https://doi.org/10.1002/adfm.201700264 [Google Scholar]
  115. Liu J. L., Xiu F. X., Mandalapu L. J., Yang Z., Teherani F. H., and Litton C. W. ‘P-Type ZnO by Sb Doping for PN-Junction Photodetectors’, Integrated Optoelectronic Devices, San Jose, USA, 21st–26th January, 2006, “Zinc Oxide Materials and Devices”, eds. 6122, SPIE, Bellingham, USA LINK https://doi.org/10.1117/12.649571 [Google Scholar]
  116. Moon T.-H., Jeong M.-C., Lee W., and Myoung J.-M. Appl. Surf. Sci., 2005, 240, (1–4), 280 LINK https://doi.org/10.1016/j.apsusc.2004.06.149 [Google Scholar]
  117. Chiu H.-J., Chen T.-H., Lai L.-W., Lee C.-T., Hong J.-D., and Liu D.-S. J. Nanomater., 2015, 284835 LINK https://doi.org/10.1155/2015/284835 [Google Scholar]
  118. Fortunato E., Barquinha P., Pimentel A., Gonçalves A., Marques A., Pereira L., and Martins R. Thin Solid Films, 2005, 487, (1–2), 205 LINK https://doi.org/10.1016/j.tsf.2005.01.066 [Google Scholar]
  119. Long K., Kattamis A. Z., Cheng I.-C., Gleskova H., Wagner S., and Sturm J. C. IEEE Electron Dev. Lett., 2006, 27, (2), 111 LINK https://doi.org/10.1109/led.2005.863147 [Google Scholar]
  120. Gupta K. A., Anvekar D. K., and Venkateswarlu V. Int. J. Model. Optim., 2013, 3, (3), 266 LINK https://doi.org/10.7763/ijmo.2013.v3.279 [Google Scholar]
  121. Chiang H. Q., Wager J. F., Hoffman R. L., Jeong J., and Keszler D. A. Appl. Phys. Lett., 2005, 86, (1), 013503 LINK https://doi.org/10.1063/1.1843286 [Google Scholar]
  122. Presley R. E., Hong D., Chiang H. Q., Hung C. M., Hoffman R. L., and Wager J. F. Solid-State Electron., 2006, 50, (3), 500 LINK https://doi.org/10.1016/j.sse.2006.02.004 [Google Scholar]
  123. Sze S. “Physics of Semiconductor Devices”, 2nd Edn., John Wiley and Sons, Hoboken, USA, 1981, 868 pp [Google Scholar]
  124. Fan C.-L., Shang M.-C., Li B.-J., Lin Y.-Z., Wang S.-J., Lee W.-D., and Hung B.-R. Materials, 2015, 8, (4), 1704 LINK https://doi.org/10.3390/ma8041704 [Google Scholar]
  125. Welmer P. K. Proc. IRC, 1962, 50, 1462 [Google Scholar]
  126. Brody T. P., Asars J. A., and Dixon G. D. IEEE Trans. Electron Devices, 1973, 20, (11), 995 LINK https://doi.org/10.1109/t-ed.1973.17780 [Google Scholar]
  127. le Comber P. G., Spear W. E., and Ghaith A. Electron. Lett., 1979, 15, (6), 179 LINK https://doi.org/10.1049/el:19790126 [Google Scholar]
  128. Carcia P. F., McLean R. S., and Reilly M. H. Appl. Phys. Lett., 2006, 88, (12), 123509 LINK https://doi.org/10.1063/1.2188379 [Google Scholar]
  129. Brox-Nilsen C., Jin J., Luo Y., Bao P., and Song A. M. IEEE Trans. Electron Devices, 2013, 60, (10), 3424 LINK https://doi.org/10.1109/ted.2013.2279401 [Google Scholar]
  130. Boesen G. F., and Jacobs J. E. Proc. IEEE, 1968, 56, (11), 2094 LINK https://doi.org/10.1109/proc.1968.6813 [Google Scholar]
  131. Hoffman R. L., Norris B. J., and Wager J. F. Appl. Phys. Lett., 2003, 82, (5), 733 LINK https://doi.org/10.1063/1.1542677 [Google Scholar]
  132. Carcia P. F., McLean R. S., Reilly M. H., and Nunes G. Appl. Phys. Lett., 2003, 82, (7), 1117 LINK https://doi.org/10.1063/1.1553997 [Google Scholar]
  133. Masuda S., Kitamura K., Okumura Y., Miyatake S., Tabata H., and Kawai T. J. Appl. Phys., 2003, 93, (3), 1624 LINK https://doi.org/10.1063/1.1534627 [Google Scholar]
  134. Hirao T., Furuta M., Hiramatsu T., Matsuda T., Li C., Furuta H., Hokari H., Yoshida M., Ishii H., and Kakegawa M. IEEE Trans. Electron Devices, 2008, 55, (11), 3136 LINK https://doi.org/10.1109/ted.2008.2003330 [Google Scholar]
  135. Patil S. R., Chougale M. Y., Rane T. D., Khot S. S., Patil A. A., Bagal O. S., Jadhav S. D., Sheikh A. D., Kim S., and Dongale T. D. Electronics, 2018, 7, (12), 445 LINK https://doi.org/10.3390/electronics7120445 [Google Scholar]
  136. Fauzi F. B., Ani M. H., Herman S. H., and Mohamed M. A. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 340, 12006 LINK https://doi.org/10.1088/1757-899x/340/1/012006 [Google Scholar]
  137. Barnes B. K. Sci. Rep., 2018, 8, 2184 LINK https://doi.org/10.1038/s41598-018-20598-5 [Google Scholar]
  138. Santos Y. P., Valença E., Machado R., and Macêdo M. A. Mater. Sci. Semicond. Process., 2018, 86, 43 LINK https://doi.org/10.1016/j.mssp.2018.06.016 [Google Scholar]
  139. Le V.-Q., Do T.-H., Retamal J. R. D., Shao P.-W., Lai Y.-H., Wu W.-W., He J.-H., Chueh Y.-L., and Chu Y.-H. Nano Energy, 2019, 56, 322 LINK https://doi.org/10.1016/j.nanoen.2018.10.042 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651320X15694993568524
Loading
/content/journals/10.1595/205651320X15694993568524
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error