Skip to content
1887
Volume 64, Issue 2
  • ISSN: 2056-5135

Abstract

Ceramics are traditionally sintered at high temperatures (~80% melting temperature (T)). There are numerous incentives to reduce processing temperature: the reduction in processing energy; integration of polymeric and non-noble metals; greater control of microstructure and final component geometries. ‘Cold sintering’ has been developed as a novel method of densification which uses a transient liquid phase, pressure and heat to achieve dense ceramics. This review explores the process of cold sintering and its potential to densify various ceramic materials and components at low temperatures (<300°C), primarily describing recent results at The University of Sheffield, UK.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15814150061554
2020-01-01
2024-11-24
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/2/Andrews_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15814150061554&mimeType=html&fmt=ahah

References

  1. R. M. German, Powder Metall., 2013, 56, (2), 117 LINK https://doi.org/10.1179/1743290112y.0000000025 [Google Scholar]
  2. D. S. B. Heidary, M. Lanagan, C. A. Randall, J. Eur. Ceram. Soc., 2018, 38, (4), 1018 LINK https://doi.org/10.1016/j.jeurceramsoc.2017.10.015 [Google Scholar]
  3. T. Kimura, Q. Dong, S. Yin, T. Hashimoto, A. Sasaki, T. Sato, J. Eur. Ceram. Soc., 2013, 33, (5), 1009 LINK https://doi.org/10.1016/j.jeurceramsoc.2012.11.007 [Google Scholar]
  4. C. A. Randall, S. F. Wang, D. Laubscher, J. P. Dougherty, W. Huebner, J. Mater. Res., 1993, 8, (4), 871 LINK https://doi.org/10.1557/jmr.1993.0871 [Google Scholar]
  5. H.-I. Hsiang, C.-S. Hsi, C.-C. Huang, S.-L. Fu, J. Alloys Compd., 2008, 459, (1–2), 307 LINK https://doi.org/10.1016/j.jallcom.2007.04.218 [Google Scholar]
  6. “Sintering of Advanced Ceramics”, eds. C. A. Handwerker, J. E. Blendell, W. Kaisser, 7, American Ceramic Society, Ohio, USA, 1990, 789 pp [Google Scholar]
  7. M. Biesuz, V. M. Sglavo, J. Eur. Ceram. Soc., 2019, 39, (2–3), 115 LINK https://doi.org/10.1016/j.jeurceramsoc.2018.08.048 [Google Scholar]
  8. J. A. Downs, V. M. Sglavo, J. Am. Ceram. Soc., 2013, 96, (5), 1342 LINK https://doi.org/10.1111/jace.12281 [Google Scholar]
  9. M. Al. Minnath, ‘Metals and Alloys for Biomedical Applications’, in “Fundamental Biomaterials: Metals”, eds. P. Balakrishnan, M. S. Sreekala, S. Thomas, Elsevier Ltd, Duxford, UK, 2018, pp. 167174 LINK https://doi.org/10.1016/b978-0-08-102205-4.00007-6 [Google Scholar]
  10. T. Herisson de Beauvoir, A. Sangregorio, I. Cornu, C. Elissalde, M. Josse, J. Mater. Chem. C, 2018, 6, (9), 2229 LINK https://doi.org/10.1039/c7tc05640k [Google Scholar]
  11. C. Elissalde, U.-C. Chung, M. Josse, G. Goglio, M. R. Suchomel, J. Majimel, A. Weibel, F. Soubie, A. Flaureau, A. Fregeac, C. Estournès, Scripta Mater., 2019, 168, 134 LINK https://doi.org/10.1016/j.scriptamat.2019.04.037 [Google Scholar]
  12. H. Kähäri, M. Teirikangas, J. Juuti, H. Jantunen, J. Am. Ceram. Soc., 2014, 97, (11), 3378 LINK https://doi.org/10.1111/jace.13277 [Google Scholar]
  13. J. Guo, H. Guo, A. L. Baker, M. T. Lanagan, E. R. Kupp, G. L. Messing, C. A. Randall, Angew. Chemie, 2016, 128, (38), 11629 LINK https://doi.org/10.1002/ange.201605443 [Google Scholar]
  14. N. Yamasaki, K. Yanagisawa, M. Nishioka, S. Kanahara, J. Mater. Sci. Lett., 1986, 5, (3), 355 LINK https://doi.org/10.1007/bf01748104 [Google Scholar]
  15. K. Yanagisawa, K. Ioku, N. Yamasaki, J. Am. Ceram. Soc., 2005, 80, (5), 1303 LINK https://doi.org/10.1111/j.1151-2916.1997.tb02982.x [Google Scholar]
  16. K. Hosoi, T. Hashida, H. Takahashi, N. Yamasaki, T. Korenaga, J. Am. Ceram. Soc., 1996, 79, (10), 2771 LINK https://doi.org/10.1111/j.1151-2916.1996.tb09048.x [Google Scholar]
  17. J.-P. Maria, X. Kang, R. D. Floyd, E. C. Dickey, H. Guo, J. Guo, A. Baker, S. Funihashi, C. A. Randall, J. Mater. Res., 2017, 32, (17), 3205 LINK https://doi.org/10.1557/jmr.2017.262 [Google Scholar]
  18. H. Kähäri, M. Teirikangas, J. Juuti, H. Jantunen, J. Am. Ceram. Soc., 2015, 98, (3), 687 LINK https://doi.org/10.1111/jace.13471 [Google Scholar]
  19. D. Wang, S. Zhang, D. Zhou, K. Song, A. Feteira, Y. Vardaxoglou, W. Whittow, D. Cadman, I. M. Reaney, Materials, 2019, 12, (9), 1370 LINK https://doi.org/10.3390/ma12091370 [Google Scholar]
  20. D. Wang, D. Zhou, K. Song, A. Feteira, C. A. Randall, I. M. Reaney, Adv. Electron. Mater., 2019, 5, (7), 1900025 LINK https://doi.org/10.1002/aelm.201900025 [Google Scholar]
  21. S. S. Faouri, A. Mostaed, J. S. Dean, D. Wang, D. C. Sinclair, S. Zhang, W. G. Whittow, Y. Vardaxoglou, I. M. Reaney, Acta Mater., 2019, 166, 202 LINK https://doi.org/10.1016/j.actamat.2018.12.057 [Google Scholar]
  22. D. Wang, D. Zhou, S. Zhang, Y. Vardaxoglou, W. G. Whittow, D. Cadman, I. M. Reaney, ACS Sustain. Chem. Eng., 2018, 6, (2), 2438 LINK https://doi.org/10.1021/acssuschemeng.7b03889 [Google Scholar]
  23. T. K. Gupta, J. Am. Ceram. Soc., 1990, 73, (7), 1817 LINK https://doi.org/10.1111/j.1151-2916.1990.tb05232.x [Google Scholar]
  24. T. K. Roy, D. Bhowmick, D. Sanyal, A. Chakrabarti, Ceram. Int., 2008, 34, (1), 81 LINK https://doi.org/10.1016/j.ceramint.2006.08.015 [Google Scholar]
  25. X. Kang, R. Floyd, S. Lowum, M. Cabral, E. Dickey, J.P. Maria, J. Am. Ceram. Soc., 2019, 102, (8), 4459 LINK https://doi.org/10.1111/jace.16340 [Google Scholar]
  26. S. Funahashi, J. Guo, H. Guo, K. Wang, A. L. Baker, K. Shiratsuyu, C. A. Randall, J. Am. Ceram. Soc., 2016, 100, (2), 546 LINK https://doi.org/10.1111/jace.14617 [Google Scholar]
  27. J. Gonzalez-Julian, K. Neuhaus, M. Bernemann, J. Pereira da Silva, A. Laptev, M. Bram, O. Guillon, Acta Mater., 2018, 144, 116 LINK https://doi.org/10.1016/j.actamat.2017.10.055 [Google Scholar]
  28. J. Nie, Y. Zhang, J. M. Chan, R. Huang, J. Luo, Scripta Mater., 2018, 142, 79 LINK https://doi.org/10.1016/j.scriptamat.2017.08.032 [Google Scholar]
  29. R. Boston, J. Guo, S. Funahashi, A. L. Baker, I. M. Reaney, C. A. Randall, RSC Adv., 2018, 8, (36), 20372 LINK https://doi.org/10.1039/c8ra03072c [Google Scholar]
  30. H. Guo, J. Guo, A. Baker, C. A. Randall, J. Am. Ceram. Soc., 2016, 100, (2), 491 LINK https://doi.org/10.1111/jace.14593 [Google Scholar]
  31. C. Vakifahmetoglu, J. F. Anger, V. Atakan, S. Quinn, S. Gupta, Q. Li, L. Tang, R. E. Riman, J. Am. Ceram. Soc., 2016, 99, (12), 3893 LINK https://doi.org/10.1111/jace.14468 [Google Scholar]
  32. J.-P. Ma, X.-M. Chen, W.-Q. Ouyang, J. Wang, H. Li, J.-L. Fang, Ceram. Int., 2018, 44, (4), 4436 LINK https://doi.org/10.1016/j.ceramint.2017.12.044 [Google Scholar]
  33. M. C. Blanco-Lopez, B. Rand, F. L. Riley, J. Eur. Ceram. Soc., 1997, 17, (2–3), 281 LINK https://doi.org/10.1016/s0955-2219(96)00116-1 [Google Scholar]
  34. M. Bäurer, H. Kungl, M. J. Hoffmann, J. Am. Ceram. Soc., 2009, 92, (3), 601 LINK https://doi.org/10.1111/j.1551-2916.2008.02920.x [Google Scholar]
  35. N. M. Alford, S. J. Penn, A. Templeton, X. Wang, J. C. Gallop, N. Klein, C. Zuccaro, P. Filhol, ‘Microwave Dielectrics’, IEE Colloquium on Electro-Technical Ceramics – Processing, Properties and Applications, The Institution of Engineering and Technology, London, UK, 14th November, 1997 LINK https://doi.org/10.1049/ic:19971054 [Google Scholar]
  36. I. F. Akyildiz, S. Nie, S.-C. Lin, M. Chandrasekaran, Comput. Networks, 2016, 106, 17 LINK https://doi.org/10.1016/j.comnet.2016.06.010 [Google Scholar]
  37. E. Hossain, M. Hasan, IEEE Instrum. Meas. Mag., 2015, 18, (3), 11 LINK https://doi.org/10.1109/mim.2015.7108393 [Google Scholar]
  38. G. Ancans, V. Bobrovs, A. Ancans, D. Kalibatiene, Procedia Comput. Sci., 2017, 104, 509 LINK https://doi.org/10.1016/j.procs.2017.01.166 [Google Scholar]
  39. P. Wang, Y. Li, L. Song, B. Vucetic, IEEE Commun. Mag., 2015, 53, (1), 168 LINK https://doi.org/10.1109/mcom.2015.7010531 [Google Scholar]
  40. D. Zhou, C. A. Randall, L.-X. Pang, H. Wang, J. Guo, G.-Q. Zhang, Y. Wu, K.-T. Guo, L. Shui, X. Yao, Mater. Chem. Phys., 2011, 129, (3), 688 LINK https://doi.org/10.1016/j.matchemphys.2011.05.040 [Google Scholar]
  41. J. Guo, S. S. Berbano, H. Guo, A. L. Baker, M. T. Lanagan, C. A. Randall, Adv. Funct. Mater., 2016, 26, (39), 7115 LINK https://doi.org/10.1002/adfm.201602489 [Google Scholar]
  42. D. Zhou, C. A. Randall, H. Wang, L.-X. Pang, X. Yao, J. Am. Ceram. Soc., 2010, 93, (4), 1096 LINK https://doi.org/10.1111/j.1551-2916.2009.03526.x [Google Scholar]
  43. S. Zhang, R. K. Arya, S. Pandey, Y. Vardaxoglou, W. Whittow, R. Mittra, IET Microwaves Antennas Propag., 2016, 10, (13), 1411 LINK https://doi.org/10.1049/iet-map.2016.0013 [Google Scholar]
  44. L. V. Blake, M. W. Long, “Antennas: Fundamentals, Design, Measurement”, 3rd Edn., SciTech Publishing, Raleigh, USA, 2009, 503 pp LINK https://doi.org/10.1049/sbew040e [Google Scholar]
  45. D. Wang, S. Zhang, G. Wang, Y. Vardaxoglou, W. Whittow, D. Cadman, D. Zhou, K. Song, I. M. Reaney, Appl. Mater. Today, 2020, 18, 100519 LINK https://doi.org/10.1016/j.apmt.2019.100519 [Google Scholar]
  46. I. M. Reaney, D. Iddles, J. Am. Ceram. Soc., 2006, 89, (7), 2063 LINK https://doi.org/10.1111/j.1551-2916.2006.01025.x [Google Scholar]
/content/journals/10.1595/205651320X15814150061554
Loading
/content/journals/10.1595/205651320X15814150061554
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test