Skip to content
1887
Volume 64, Issue 2
  • ISSN: 2056-5135

Abstract

Ceramics are traditionally sintered at high temperatures (~80% melting temperature (T)). There are numerous incentives to reduce processing temperature: the reduction in processing energy; integration of polymeric and non-noble metals; greater control of microstructure and final component geometries. ‘Cold sintering’ has been developed as a novel method of densification which uses a transient liquid phase, pressure and heat to achieve dense ceramics. This review explores the process of cold sintering and its potential to densify various ceramic materials and components at low temperatures (<300°C), primarily describing recent results at The University of Sheffield, UK.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15814150061554
2020-01-01
2024-02-29
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/2/Andrews_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15814150061554&mimeType=html&fmt=ahah

References

  1. German R. M. Powder Metall., 2013, 56, (2), 117 LINK https://doi.org/10.1179/1743290112y.0000000025 [Google Scholar]
  2. Heidary D. S. B., Lanagan M., and Randall C. A. J. Eur. Ceram. Soc., 2018, 38, (4), 1018 LINK https://doi.org/10.1016/j.jeurceramsoc.2017.10.015 [Google Scholar]
  3. Kimura T., Dong Q., Yin S., Hashimoto T., Sasaki A., and Sato T. J. Eur. Ceram. Soc., 2013, 33, (5), 1009 LINK https://doi.org/10.1016/j.jeurceramsoc.2012.11.007 [Google Scholar]
  4. Randall C. A., Wang S. F., Laubscher D., Dougherty J. P., and Huebner W. J. Mater. Res., 1993, 8, (4), 871 LINK https://doi.org/10.1557/jmr.1993.0871 [Google Scholar]
  5. Hsiang H.-I., Hsi C.-S., Huang C.-C., and Fu S.-L. J. Alloys Compd., 2008, 459, (1–2), 307 LINK https://doi.org/10.1016/j.jallcom.2007.04.218 [Google Scholar]
  6. “Sintering of Advanced Ceramics”, eds. Handwerker C. A., Blendell J. E., and Kaisser W. 7, American Ceramic Society, Ohio, USA, 1990, 789 pp [Google Scholar]
  7. Biesuz M., and Sglavo V. M. J. Eur. Ceram. Soc., 2019, 39, (2–3), 115 LINK https://doi.org/10.1016/j.jeurceramsoc.2018.08.048 [Google Scholar]
  8. Downs J. A., and Sglavo V. M. J. Am. Ceram. Soc., 2013, 96, (5), 1342 LINK https://doi.org/10.1111/jace.12281 [Google Scholar]
  9. Minnath M. Al., ‘Metals and Alloys for Biomedical Applications’, in “Fundamental Biomaterials: Metals”, eds. Balakrishnan P., Sreekala M. S., and Thomas S. Elsevier Ltd, Duxford, UK, 2018, pp. 167174 LINK https://doi.org/10.1016/b978-0-08-102205-4.00007-6 [Google Scholar]
  10. Herisson de Beauvoir T., Sangregorio A., Cornu I., Elissalde C., and Josse M. J. Mater. Chem. C, 2018, 6, (9), 2229 LINK https://doi.org/10.1039/c7tc05640k [Google Scholar]
  11. Elissalde C., Chung U.-C., Josse M., Goglio G., Suchomel M. R., Majimel J., Weibel A., Soubie F., Flaureau A., Fregeac A., and Estournès C. Scripta Mater., 2019, 168, 134 LINK https://doi.org/10.1016/j.scriptamat.2019.04.037 [Google Scholar]
  12. Kähäri H., Teirikangas M., Juuti J., and Jantunen H. J. Am. Ceram. Soc., 2014, 97, (11), 3378 LINK https://doi.org/10.1111/jace.13277 [Google Scholar]
  13. Guo J., Guo H., Baker A. L., Lanagan M. T., Kupp E. R., Messing G. L., and Randall C. A. Angew. Chemie, 2016, 128, (38), 11629 LINK https://doi.org/10.1002/ange.201605443 [Google Scholar]
  14. Yamasaki N., Yanagisawa K., Nishioka M., and Kanahara S. J. Mater. Sci. Lett., 1986, 5, (3), 355 LINK https://doi.org/10.1007/bf01748104 [Google Scholar]
  15. Yanagisawa K., Ioku K., and Yamasaki N. J. Am. Ceram. Soc., 2005, 80, (5), 1303 LINK https://doi.org/10.1111/j.1151-2916.1997.tb02982.x [Google Scholar]
  16. Hosoi K., Hashida T., Takahashi H., Yamasaki N., and Korenaga T. J. Am. Ceram. Soc., 1996, 79, (10), 2771 LINK https://doi.org/10.1111/j.1151-2916.1996.tb09048.x [Google Scholar]
  17. Maria J.-P., Kang X., Floyd R. D., Dickey E. C., Guo H., Guo J., Baker A., Funihashi S., and Randall C. A. J. Mater. Res., 2017, 32, (17), 3205 LINK https://doi.org/10.1557/jmr.2017.262 [Google Scholar]
  18. Kähäri H., Teirikangas M., Juuti J., and Jantunen H. J. Am. Ceram. Soc., 2015, 98, (3), 687 LINK https://doi.org/10.1111/jace.13471 [Google Scholar]
  19. Wang D., Zhang S., Zhou D., Song K., Feteira A., Vardaxoglou Y., Whittow W., Cadman D., and Reaney I. M. Materials, 2019, 12, (9), 1370 LINK https://doi.org/10.3390/ma12091370 [Google Scholar]
  20. Wang D., Zhou D., Song K., Feteira A., Randall C. A., and Reaney I. M. Adv. Electron. Mater., 2019, 5, (7), 1900025 LINK https://doi.org/10.1002/aelm.201900025 [Google Scholar]
  21. Faouri S. S., Mostaed A., Dean J. S., Wang D., Sinclair D. C., Zhang S., Whittow W. G., Vardaxoglou Y., and Reaney I. M. Acta Mater., 2019, 166, 202 LINK https://doi.org/10.1016/j.actamat.2018.12.057 [Google Scholar]
  22. Wang D., Zhou D., Zhang S., Vardaxoglou Y., Whittow W. G., Cadman D., and Reaney I. M. ACS Sustain. Chem. Eng., 2018, 6, (2), 2438 LINK https://doi.org/10.1021/acssuschemeng.7b03889 [Google Scholar]
  23. Gupta T. K. J. Am. Ceram. Soc., 1990, 73, (7), 1817 LINK https://doi.org/10.1111/j.1151-2916.1990.tb05232.x [Google Scholar]
  24. Roy T. K., Bhowmick D., Sanyal D., and Chakrabarti A. Ceram. Int., 2008, 34, (1), 81 LINK https://doi.org/10.1016/j.ceramint.2006.08.015 [Google Scholar]
  25. Kang X., Floyd R., Lowum S., Cabral M., Dickey E., and Maria J.P. J. Am. Ceram. Soc., 2019, 102, (8), 4459 LINK https://doi.org/10.1111/jace.16340 [Google Scholar]
  26. Funahashi S., Guo J., Guo H., Wang K., Baker A. L., Shiratsuyu K., and Randall C. A. J. Am. Ceram. Soc., 2016, 100, (2), 546 LINK https://doi.org/10.1111/jace.14617 [Google Scholar]
  27. Gonzalez-Julian J., Neuhaus K., Bernemann M., Pereira da Silva J., Laptev A., Bram M., and Guillon O. Acta Mater., 2018, 144, 116 LINK https://doi.org/10.1016/j.actamat.2017.10.055 [Google Scholar]
  28. Nie J., Zhang Y., Chan J. M., Huang R., and Luo J. Scripta Mater., 2018, 142, 79 LINK https://doi.org/10.1016/j.scriptamat.2017.08.032 [Google Scholar]
  29. Boston R., Guo J., Funahashi S., Baker A. L., Reaney I. M., and Randall C. A. RSC Adv., 2018, 8, (36), 20372 LINK https://doi.org/10.1039/c8ra03072c [Google Scholar]
  30. Guo H., Guo J., Baker A., and Randall C. A. J. Am. Ceram. Soc., 2016, 100, (2), 491 LINK https://doi.org/10.1111/jace.14593 [Google Scholar]
  31. Vakifahmetoglu C., Anger J. F., Atakan V., Quinn S., Gupta S., Li Q., Tang L., and Riman R. E. J. Am. Ceram. Soc., 2016, 99, (12), 3893 LINK https://doi.org/10.1111/jace.14468 [Google Scholar]
  32. Ma J.-P., Chen X.-M., Ouyang W.-Q., Wang J., Li H., and Fang J.-L. Ceram. Int., 2018, 44, (4), 4436 LINK https://doi.org/10.1016/j.ceramint.2017.12.044 [Google Scholar]
  33. Blanco-Lopez M. C., Rand B., and Riley F. L. J. Eur. Ceram. Soc., 1997, 17, (2–3), 281 LINK https://doi.org/10.1016/s0955-2219(96)00116-1 [Google Scholar]
  34. Bäurer M., Kungl H., and Hoffmann M. J. J. Am. Ceram. Soc., 2009, 92, (3), 601 LINK https://doi.org/10.1111/j.1551-2916.2008.02920.x [Google Scholar]
  35. Alford N. M., Penn S. J., Templeton A., Wang X., Gallop J. C., Klein N., Zuccaro C., and Filhol P. ‘Microwave Dielectrics’, IEE Colloquium on Electro-Technical Ceramics – Processing, Properties and Applications, The Institution of Engineering and Technology, London, UK, 14th November, 1997 LINK https://doi.org/10.1049/ic:19971054 [Google Scholar]
  36. Akyildiz I. F., Nie S., Lin S.-C., and Chandrasekaran M. Comput. Networks, 2016, 106, 17 LINK https://doi.org/10.1016/j.comnet.2016.06.010 [Google Scholar]
  37. Hossain E., and Hasan M. IEEE Instrum. Meas. Mag., 2015, 18, (3), 11 LINK https://doi.org/10.1109/mim.2015.7108393 [Google Scholar]
  38. Ancans G., Bobrovs V., Ancans A., and Kalibatiene D. Procedia Comput. Sci., 2017, 104, 509 LINK https://doi.org/10.1016/j.procs.2017.01.166 [Google Scholar]
  39. Wang P., Li Y., Song L., and Vucetic B. IEEE Commun. Mag., 2015, 53, (1), 168 LINK https://doi.org/10.1109/mcom.2015.7010531 [Google Scholar]
  40. Zhou D., Randall C. A., Pang L.-X., Wang H., Guo J., Zhang G.-Q., Wu Y., Guo K.-T., Shui L., and Yao X. Mater. Chem. Phys., 2011, 129, (3), 688 LINK https://doi.org/10.1016/j.matchemphys.2011.05.040 [Google Scholar]
  41. Guo J., Berbano S. S., Guo H., Baker A. L., Lanagan M. T., and Randall C. A. Adv. Funct. Mater., 2016, 26, (39), 7115 LINK https://doi.org/10.1002/adfm.201602489 [Google Scholar]
  42. Zhou D., Randall C. A., Wang H., Pang L.-X., and Yao X. J. Am. Ceram. Soc., 2010, 93, (4), 1096 LINK https://doi.org/10.1111/j.1551-2916.2009.03526.x [Google Scholar]
  43. Zhang S., Arya R. K., Pandey S., Vardaxoglou Y., Whittow W., and Mittra R. IET Microwaves Antennas Propag., 2016, 10, (13), 1411 LINK https://doi.org/10.1049/iet-map.2016.0013 [Google Scholar]
  44. Blake L. V., and Long M. W. “Antennas: Fundamentals, Design, Measurement”, 3rd Edn., SciTech Publishing, Raleigh, USA, 2009, 503 pp LINK https://doi.org/10.1049/sbew040e [Google Scholar]
  45. Wang D., Zhang S., Wang G., Vardaxoglou Y., Whittow W., Cadman D., Zhou D., Song K., and Reaney I. M. Appl. Mater. Today, 2020, 18, 100519 LINK https://doi.org/10.1016/j.apmt.2019.100519 [Google Scholar]
  46. Reaney I. M., and Iddles D. J. Am. Ceram. Soc., 2006, 89, (7), 2063 LINK https://doi.org/10.1111/j.1551-2916.2006.01025.x [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651320X15814150061554
Loading
/content/journals/10.1595/205651320X15814150061554
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error