Skip to content
Volume 64, Issue 2
  • ISSN: 2056-5135


Ceramics are traditionally sintered at high temperatures (~80% melting temperature (T)). There are numerous incentives to reduce processing temperature: the reduction in processing energy; integration of polymeric and non-noble metals; greater control of microstructure and final component geometries. ‘Cold sintering’ has been developed as a novel method of densification which uses a transient liquid phase, pressure and heat to achieve dense ceramics. This review explores the process of cold sintering and its potential to densify various ceramic materials and components at low temperatures (<300°C), primarily describing recent results at The University of Sheffield, UK.


Article metrics loading...

Loading full text...

Full text loading...



  1. German R. M. Powder Metall., 2013, 56, (2), 117 LINK [Google Scholar]
  2. Heidary D. S. B., Lanagan M., and Randall C. A. J. Eur. Ceram. Soc., 2018, 38, (4), 1018 LINK [Google Scholar]
  3. Kimura T., Dong Q., Yin S., Hashimoto T., Sasaki A., and Sato T. J. Eur. Ceram. Soc., 2013, 33, (5), 1009 LINK [Google Scholar]
  4. Randall C. A., Wang S. F., Laubscher D., Dougherty J. P., and Huebner W. J. Mater. Res., 1993, 8, (4), 871 LINK [Google Scholar]
  5. Hsiang H.-I., Hsi C.-S., Huang C.-C., and Fu S.-L. J. Alloys Compd., 2008, 459, (1–2), 307 LINK [Google Scholar]
  6. “Sintering of Advanced Ceramics”, eds. Handwerker C. A., Blendell J. E., and Kaisser W. 7, American Ceramic Society, Ohio, USA, 1990, 789 pp [Google Scholar]
  7. Biesuz M., and Sglavo V. M. J. Eur. Ceram. Soc., 2019, 39, (2–3), 115 LINK [Google Scholar]
  8. Downs J. A., and Sglavo V. M. J. Am. Ceram. Soc., 2013, 96, (5), 1342 LINK [Google Scholar]
  9. Minnath M. Al., ‘Metals and Alloys for Biomedical Applications’, in “Fundamental Biomaterials: Metals”, eds. Balakrishnan P., Sreekala M. S., and Thomas S. Elsevier Ltd, Duxford, UK, 2018, pp. 167174 LINK [Google Scholar]
  10. Herisson de Beauvoir T., Sangregorio A., Cornu I., Elissalde C., and Josse M. J. Mater. Chem. C, 2018, 6, (9), 2229 LINK [Google Scholar]
  11. Elissalde C., Chung U.-C., Josse M., Goglio G., Suchomel M. R., Majimel J., Weibel A., Soubie F., Flaureau A., Fregeac A., and Estournès C. Scripta Mater., 2019, 168, 134 LINK [Google Scholar]
  12. Kähäri H., Teirikangas M., Juuti J., and Jantunen H. J. Am. Ceram. Soc., 2014, 97, (11), 3378 LINK [Google Scholar]
  13. Guo J., Guo H., Baker A. L., Lanagan M. T., Kupp E. R., Messing G. L., and Randall C. A. Angew. Chemie, 2016, 128, (38), 11629 LINK [Google Scholar]
  14. Yamasaki N., Yanagisawa K., Nishioka M., and Kanahara S. J. Mater. Sci. Lett., 1986, 5, (3), 355 LINK [Google Scholar]
  15. Yanagisawa K., Ioku K., and Yamasaki N. J. Am. Ceram. Soc., 2005, 80, (5), 1303 LINK [Google Scholar]
  16. Hosoi K., Hashida T., Takahashi H., Yamasaki N., and Korenaga T. J. Am. Ceram. Soc., 1996, 79, (10), 2771 LINK [Google Scholar]
  17. Maria J.-P., Kang X., Floyd R. D., Dickey E. C., Guo H., Guo J., Baker A., Funihashi S., and Randall C. A. J. Mater. Res., 2017, 32, (17), 3205 LINK [Google Scholar]
  18. Kähäri H., Teirikangas M., Juuti J., and Jantunen H. J. Am. Ceram. Soc., 2015, 98, (3), 687 LINK [Google Scholar]
  19. Wang D., Zhang S., Zhou D., Song K., Feteira A., Vardaxoglou Y., Whittow W., Cadman D., and Reaney I. M. Materials, 2019, 12, (9), 1370 LINK [Google Scholar]
  20. Wang D., Zhou D., Song K., Feteira A., Randall C. A., and Reaney I. M. Adv. Electron. Mater., 2019, 5, (7), 1900025 LINK [Google Scholar]
  21. Faouri S. S., Mostaed A., Dean J. S., Wang D., Sinclair D. C., Zhang S., Whittow W. G., Vardaxoglou Y., and Reaney I. M. Acta Mater., 2019, 166, 202 LINK [Google Scholar]
  22. Wang D., Zhou D., Zhang S., Vardaxoglou Y., Whittow W. G., Cadman D., and Reaney I. M. ACS Sustain. Chem. Eng., 2018, 6, (2), 2438 LINK [Google Scholar]
  23. Gupta T. K. J. Am. Ceram. Soc., 1990, 73, (7), 1817 LINK [Google Scholar]
  24. Roy T. K., Bhowmick D., Sanyal D., and Chakrabarti A. Ceram. Int., 2008, 34, (1), 81 LINK [Google Scholar]
  25. Kang X., Floyd R., Lowum S., Cabral M., Dickey E., and Maria J.P. J. Am. Ceram. Soc., 2019, 102, (8), 4459 LINK [Google Scholar]
  26. Funahashi S., Guo J., Guo H., Wang K., Baker A. L., Shiratsuyu K., and Randall C. A. J. Am. Ceram. Soc., 2016, 100, (2), 546 LINK [Google Scholar]
  27. Gonzalez-Julian J., Neuhaus K., Bernemann M., Pereira da Silva J., Laptev A., Bram M., and Guillon O. Acta Mater., 2018, 144, 116 LINK [Google Scholar]
  28. Nie J., Zhang Y., Chan J. M., Huang R., and Luo J. Scripta Mater., 2018, 142, 79 LINK [Google Scholar]
  29. Boston R., Guo J., Funahashi S., Baker A. L., Reaney I. M., and Randall C. A. RSC Adv., 2018, 8, (36), 20372 LINK [Google Scholar]
  30. Guo H., Guo J., Baker A., and Randall C. A. J. Am. Ceram. Soc., 2016, 100, (2), 491 LINK [Google Scholar]
  31. Vakifahmetoglu C., Anger J. F., Atakan V., Quinn S., Gupta S., Li Q., Tang L., and Riman R. E. J. Am. Ceram. Soc., 2016, 99, (12), 3893 LINK [Google Scholar]
  32. Ma J.-P., Chen X.-M., Ouyang W.-Q., Wang J., Li H., and Fang J.-L. Ceram. Int., 2018, 44, (4), 4436 LINK [Google Scholar]
  33. Blanco-Lopez M. C., Rand B., and Riley F. L. J. Eur. Ceram. Soc., 1997, 17, (2–3), 281 LINK [Google Scholar]
  34. Bäurer M., Kungl H., and Hoffmann M. J. J. Am. Ceram. Soc., 2009, 92, (3), 601 LINK [Google Scholar]
  35. Alford N. M., Penn S. J., Templeton A., Wang X., Gallop J. C., Klein N., Zuccaro C., and Filhol P. ‘Microwave Dielectrics’, IEE Colloquium on Electro-Technical Ceramics – Processing, Properties and Applications, The Institution of Engineering and Technology, London, UK, 14th November, 1997 LINK [Google Scholar]
  36. Akyildiz I. F., Nie S., Lin S.-C., and Chandrasekaran M. Comput. Networks, 2016, 106, 17 LINK [Google Scholar]
  37. Hossain E., and Hasan M. IEEE Instrum. Meas. Mag., 2015, 18, (3), 11 LINK [Google Scholar]
  38. Ancans G., Bobrovs V., Ancans A., and Kalibatiene D. Procedia Comput. Sci., 2017, 104, 509 LINK [Google Scholar]
  39. Wang P., Li Y., Song L., and Vucetic B. IEEE Commun. Mag., 2015, 53, (1), 168 LINK [Google Scholar]
  40. Zhou D., Randall C. A., Pang L.-X., Wang H., Guo J., Zhang G.-Q., Wu Y., Guo K.-T., Shui L., and Yao X. Mater. Chem. Phys., 2011, 129, (3), 688 LINK [Google Scholar]
  41. Guo J., Berbano S. S., Guo H., Baker A. L., Lanagan M. T., and Randall C. A. Adv. Funct. Mater., 2016, 26, (39), 7115 LINK [Google Scholar]
  42. Zhou D., Randall C. A., Wang H., Pang L.-X., and Yao X. J. Am. Ceram. Soc., 2010, 93, (4), 1096 LINK [Google Scholar]
  43. Zhang S., Arya R. K., Pandey S., Vardaxoglou Y., Whittow W., and Mittra R. IET Microwaves Antennas Propag., 2016, 10, (13), 1411 LINK [Google Scholar]
  44. Blake L. V., and Long M. W. “Antennas: Fundamentals, Design, Measurement”, 3rd Edn., SciTech Publishing, Raleigh, USA, 2009, 503 pp LINK [Google Scholar]
  45. Wang D., Zhang S., Wang G., Vardaxoglou Y., Whittow W., Cadman D., Zhou D., Song K., and Reaney I. M. Appl. Mater. Today, 2020, 18, 100519 LINK [Google Scholar]
  46. Reaney I. M., and Iddles D. J. Am. Ceram. Soc., 2006, 89, (7), 2063 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error