Skip to content
1887
Volume 65, Issue 4
  • ISSN: 2056-5135

Abstract

Surface science methodologies, such as reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD), are ideally suited to studying the interaction of molecules with model astrophysical surfaces. Here we describe the use of RAIRS and TPD to investigate the adsorption, interactions and thermal processing of acetonitrile and water containing model ices grown under astrophysical conditions on a graphitic dust grain analogue surface. Experiments show that acetonitrile physisorbs on the graphitic surface at all exposures. At the lowest coverages, repulsions between the molecules lead to a decreasing desorption energy with increasing coverage. Analysis of TPD data gives monolayer desorption energies ranging from 28.8–39.2 kJ mol−1 and an average multilayer desorption energy of 43.8 kJ mol−1. When acetonitrile is adsorbed in the presence of water ice, the desorption energy of monolayer acetonitrile shows evidence of desorption with a wide range of energies. An estimate of the desorption energy of acetonitrile from crystalline ice (CI) shows that it is increased to ~37 kJ mol−1 at the lowest exposures of acetonitrile. Amorphous water ice also traps acetonitrile on the graphite surface past its natural desorption temperature, leading to volcano and co-desorption. RAIRS data show that the C≡N vibration shifts, indicative of an interaction between the acetonitrile and the water ice surface.

Loading

Article metrics loading...

/content/journals/10.1595/205651321X16264409352535
2021-01-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/65/4/Brown_16a_Imp.html?itemId=/content/journals/10.1595/205651321X16264409352535&mimeType=html&fmt=ahah

References

  1. Draine B. T. Annu. Rev. Astron. Astrophys., 2003, 41, 241 LINK https://doi.org/10.1146/annurev.astro.41.011802.094840 [Google Scholar]
  2. Williams D. A., and Herbst E. Surf. Sci., 2002, 500, (1–3), 823 LINK https://doi.org/10.1016/S0039-6028(01)01538-2 [Google Scholar]
  3. Pontoppidan K. M., Dartois E., Van Dishoeck E. F., Thi W.-F., and d’Hendecourt L. Astron. Astrophys., 2003, 404, (1), L17 LINK https://doi.org/10.1051/0004-6361:20030617 [Google Scholar]
  4. Herbst E., and van Dishoeck E. F. Annu. Rev. Astron. Astrophys., 2009, 47, 427 LINK https://doi.org/10.1146/annurev-astro-082708-101654 [Google Scholar]
  5. Wakelam V., Bron E., Cazaux S., Dulieu F., Gry C., Guillard P., Habart E., Hornekær L., Morisset S., Nyman G., Pirronello V., Price S. D., Valdivia V., Vidali G., and Watanabe N. Mol. Astrophys., 2017, 9, 1 LINK https://doi.org/10.1016/j.molap.2017.11.001 [Google Scholar]
  6. Fuchs G. W., Cuppen H. M., Ioppolo S., Romanzin C., Bisschop S. E., Andersson S., Van Dishoeck E. F., and Linnartz H. Astron. Astrophys., 2009, 505, (2), 629 LINK https://doi.org/10.1051/0004-6361/200810784 [Google Scholar]
  7. Hudson R. L., and Moore M. H. Icarus, 2004, 172, (2), 466 LINK https://doi.org/10.1016/j.icarus.2004.06.011 [Google Scholar]
  8. Abdulgalil A. G. M., Marchione D., Rosu-Finsen A., Collings M. P., and McCoustra M. R. S. J. Vac. Sci. Technol. A, 2012, 30, (4), 041505 LINK https://doi.org/10.1116/1.4716463 [Google Scholar]
  9. Kaiser R. I., and Roessler K. Astrophys. J., 1998, 503, (2), 959 LINK https://doi.org/10.1086/306001 [Google Scholar]
  10. Ehrenfreund P., d’Hendecourt L., Charnley S., and Ruiterkamp R. J. Geophys. Res.: Planets, 2001, 106, (E12), 33291 LINK https://doi.org/10.1029/2000JE001349 [Google Scholar]
  11. Kaňuchová Z., Boduch P., Domaracka A., Palumbo M. E., Rothard H., and Strazzulla G. Astron. Astrophys., 2017, 604, A68 LINK https://doi.org/10.1051/0004-6361/201730711 [Google Scholar]
  12. Potapov A., and McCoustra M. Int. Rev. Phys. Chem., 2021, 40, (2), 299 LINK https://doi.org/10.1080/0144235x.2021.1918498 [Google Scholar]
  13. Munõz Caro G. M., Ciaravella A., Jiménez-Escobar A., Cecchi-Pestellini C., González-Diáz C., and Chen Y. J. ACS Earth Space Chem., 2019, 3, (10), 2138 LINK https://doi.org/10.1021/acsearthspacechem.9b00086 [Google Scholar]
  14. Mathis J. S. Annu. Rev. Astron. Astrophys., 1990, 28, 37 LINK https://doi.org/10.1146/annurev.aa.28.090190.000345 [Google Scholar]
  15. Carruthers G. R. Astrophys. J., 1970, 161, L81 LINK https://doi.org/10.1086/180575 [Google Scholar]
  16. Chiar J. E., Adamson A. J., Kerr T. H., and Whittet D. C. B. Astrophys. J., 1995, 455, 234 LINK https://doi.org/10.1086/176571 [Google Scholar]
  17. Manicò G., Ragunì G., Pirronello V., Roser J. E., and Vidali G. Astrophys. J., 2001, 548, (2), L253 LINK https://doi.org/10.1086/319116 [Google Scholar]
  18. Ioppolo S., Cuppen H. M., Romanzin C., van Dishoeck E. F., and Linnartz H. Astrophys. J., 2008, 686, (2), 1474 LINK https://doi.org/10.1086/591506 [Google Scholar]
  19. Miyauchi N., Hidaka H., Chigai T., Nagaoka A., Watanabe N., and Kouchi A. Chem. Phys. Lett., 2008, 456, (1–3), 27 LINK https://doi.org/10.1016/j.cplett.2008.02.095 [Google Scholar]
  20. Roser J. E., Vidali G., Manicò G., and Pirronello V. Astrophys. J., 2001, 555, (1), L61 LINK https://doi.org/10.1086/321732 [Google Scholar]
  21. Watanabe N., and Kouchi A. Astrophys. J., 2002, 571, (2), L173 LINK https://doi.org/10.1086/341412 [Google Scholar]
  22. Wada A., Mochizuki N., and Hiraoka K. Astrophys. J., 2006, 644, (1), 300 LINK https://doi.org/10.1086/503380 [Google Scholar]
  23. Hudson R. L., and Moore M. H. Icarus, 1999, 140, (2), 451 LINK https://doi.org/10.1006/icar.1999.6144 [Google Scholar]
  24. Gerakines P. A., Moore M. H., and Hudson R. L. Astron. Astrophys., 2000, 357, 793 LINK https://ui.adsabs.harvard.edu/abs/2000A&A...357..793G/abstract [Google Scholar]
  25. Loeffler M. J., Baratta G. A., Palumbo M. E., Strazzulla G., and Baragiola R. A. Astron. Astrophys., 2005, 435, (2), 587 LINK https://doi.org/10.1051/0004-6361:20042256 [Google Scholar]
  26. Andrade D. P. P., Boechat-Roberty H. M., Martinez R., Homem M. G. P., da Silveira E. F., and Rocco M. L. M. Surf. Sci., 2009, 603, (9), 1190 LINK https://doi.org/10.1016/j.susc.2009.02.035 [Google Scholar]
  27. Bennett C. J., and Kaiser R. I. Astrophys. J., 2007, 661, (2), 899 LINK https://doi.org/10.1086/516745 [Google Scholar]
  28. Mason N. J., Nair B., Jheeta S., and Szymańska E. Faraday Discuss., 2014, 168, 235 LINK https://doi.org/10.1039/c4fd00004h [Google Scholar]
  29. Vasconcelos F. A., Pilling S., Rocha W. R. M., Rothard H., Boduch P., and Ding J. J. Phys. Chem. Chem. Phys., 2017, 19, (20), 12845 LINK https://doi.org/10.1039/c7cp00883j [Google Scholar]
  30. de Ribeiro F. A., Almeida G. C., Wolff W., Boechat-Roberty H. M., Rocco M. L. M., and da Silveira E. F. Mon. Not. R. Astron. Soc., 2020, 492, (2), 2140 LINK https://doi.org/10.1093/mnras/stz3562 [Google Scholar]
  31. Collings M. P., Anderson M. A., Chen R., Dever J. W., Viti S., Williams D. A., and McCoustra M. R. S. Mon. Not. R. Astron. Soc., 2004, 354, (4), 1133 LINK https://doi.org/10.1111/j.1365-2966.2004.08272.x [Google Scholar]
  32. Bertin M., Romanzin C., Michaut X., Jeseck P., and Fillion J.-H. J. Phys. Chem. C, 2011, 115, (26), 12920 LINK https://doi.org/10.1021/jp201487u [Google Scholar]
  33. Burke D. J., and Brown W. A. Phys. Chem. Chem. Phys., 2010, 12, (23), 5947 LINK https://doi.org/10.1039/b917005g [Google Scholar]
  34. Potapov A., Jäger C., and Henning T. Astrophys. J., 2019, 880, (1), 12 LINK https://doi.org/10.3847/1538-4357/ab25e7 [Google Scholar]
  35. Suhasaria T., Thrower J. D., and Zacharias H. Mon. Not. R. Astron. Soc., 2017, 472, (1), 389 LINK https://doi.org/10.1093/MNRAS/STX1965 [Google Scholar]
  36. Luna R., Luna-Ferrándiz R., Millán C., Domingo M., Caro G. M. M., Santonja C., and Satorre M. Á. Astrophys. J., 2017, 842, (1), 51 LINK https://doi.org/10.3847/1538-4357/aa7562 [Google Scholar]
  37. Martín-Doménech R., Muñoz Caro G. M., Bueno J., and Goesmann F. Astron. Astrophys., 2014, 564, A8 LINK https://doi.org/10.1051/0004-6361/201322824 [Google Scholar]
  38. Salter T. L., Stubbing J. W., Brigham L., and Brown W. A. J. Chem. Phys., 2018, 149, (16), 164705 LINK https://doi.org/10.1063/1.5051134 [Google Scholar]
  39. Fuchs G. W., Acharyya K., Bisschop S. E., Öberg K. I., Van Broekhuizen F. A., Fraser H. J., Schlemmer S., van Dishoeck E. F., and Linnartz H. Faraday Discuss., 2006, 133, 331 LINK https://doi.org/10.1039/b517262b [Google Scholar]
  40. Acharyya K., Fuchs G. W., Fraser H. J., Van Dishoeck E. F., and Linnartz H. Astron. Astrophys., 2007, 466, (3), 1005 LINK https://doi.org/10.1051/0004-6361:20066272 [Google Scholar]
  41. Fraser H. J., Collings M. P., McCoustra M. R. S., and Williams D. A. Mon. Not. R. Astron. Soc., 2001, 327, (4), 1165 LINK https://doi.org/10.1046/j.1365-8711.2001.04835.x [Google Scholar]
  42. Bolina A. S., Wolff A. J., and Brown W. A. J. Phys. Chem. B, 2005, 109, (35), 16836 LINK https://doi.org/10.1021/jp0528111 [Google Scholar]
  43. Ulbricht H., Zacharia R., Cindir N., and Hertel T. Carbon, 2006, 44, (14), 2931 LINK https://doi.org/10.1016/j.carbon.2006.05.040 [Google Scholar]
  44. Gálvez O., Ortega I. K., Maté B., Moreno M. A., Martín-Llórente B., Herrero V. J., Escribano R., and Gutiérrez P. J. Astron. Astrophys., 2007, 472, (2), 691 LINK https://doi.org/10.1051/0004-6361:20077421 [Google Scholar]
  45. Sandford S. A., and Allamandola L. J. Icarus, 1988, 76, (2), 201 LINK https://doi.org/10.1016/0019-1035(88)90069-3 [Google Scholar]
  46. Sandford S. A., and Allamandola L. J. Astrophys. J., 1993, 417, 815 LINK https://doi.org/10.1086/173362 [Google Scholar]
  47. Salama F., Allamandola L. J., Witteborn F. C., Cruikshank D. P., Sandford S. A., and Bregman J. D. Icarus, 1990, 83, (1), 66 LINK https://doi.org/10.1016/0019-1035(90)90006-U [Google Scholar]
  48. Viti S., Collings M. P., Dever J. W., McCoustra M. R. S., and Williams D. A. Mon. Not. R. Astron. Soc., 2004, 354, (4), 1141 LINK https://doi.org/10.1111/j.1365-2966.2004.08273.x [Google Scholar]
  49. Garrod R., Park I. H., Caselli P., and Herbst E. Faraday Discuss., 2006, 133, 51 LINK https://doi.org/10.1039/b516202e [Google Scholar]
  50. Burke D. J., Puletti F., Brown W. A., Woods P. M., Viti S., and Slater B. Mon. Not. R. Astron. Soc., 2015, 447, (2), 1444 LINK https://doi.org/10.1093/mnras/stu2490 [Google Scholar]
  51. Bolina A. S., and Brown W. A. Surf. Sci., 2005, 598, (1–3), 45 LINK https://doi.org/10.1016/j.susc.2005.08.025 [Google Scholar]
  52. Marchione D., Rosu-Finsen A., Taj S., Lasne J., Abdulgalil A. G. M., Thrower J. D., Frankland V. L., Collings M. P., and McCoustra M. R. S. ACS Earth Space Chem., 2019, 3, (9), 1915 LINK https://doi.org/10.1021/acsearthspacechem.9b00052 [Google Scholar]
  53. Smith R. S., Huang C., Wong E. K. L., and Kay B. D. Phys. Rev. Lett., 1997, 79, (5), 909 LINK https://doi.org/10.1103/PhysRevLett.79.909 [Google Scholar]
  54. Kouchi A., Yamamoto T., Kozasa T., Kuroda T., and Greenberg J. M. Astron. Astrophys., 1994, 290, 1009 [Google Scholar]
  55. Jenniskens P., and Blake D. F. Science, 1994, 265, (5173), 753 LINK https://doi.org/10.1126/science.11539186 [Google Scholar]
  56. Jenniskens P., and Blake D. F. Astrophys. J., 1996, 473, (2), 1104 LINK https://doi.org/10.1086/178220 [Google Scholar]
  57. Smith R. S., and Kay B. D. Nature, 1999, 398, (6730), 788 LINK https://doi.org/10.1038/19725 [Google Scholar]
  58. Collings M. P., Dever J. W., Fraser H. J., McCoustra M. R. S., and Williams D. A. Astrophys. J., 2003, 583, (2), 1058 LINK https://doi.org/10.1086/345389 [Google Scholar]
  59. Bar-Nun A., Herman G., Laufer D., and Rappaport M. L. Icarus, 1985, 63, (3), 317 LINK https://doi.org/10.1016/0019-1035(85)90048-X [Google Scholar]
  60. Bar-Nun A., Kleinfeld I., and Kochavi E. Phys. Rev. B, 1988, 38, (11), 7749 LINK https://doi.org/10.1103/PhysRevB.38.7749 [Google Scholar]
  61. Notesco G., and Bar-Nun A. Icarus, 1997, 126, (2), 336 LINK https://doi.org/10.1006/icar.1996.5654 [Google Scholar]
  62. Creighan S. C., Perry J. S. A., and Price S. D. J. Chem. Phys., 2006, 124, (11), 114701 LINK https://doi.org/10.1063/1.2174878 [Google Scholar]
  63. Hornekær L., Baurichter A., Petrunin V. V., Field D., and Luntz A. C. Science, 2003, 302, (5652), 1943 LINK https://doi.org/10.1126/science.1090820 [Google Scholar]
  64. Dondi D., Merli D., Pretali L., Fagnoni M., Albini A., and Serpone N. Photochem. Photobiol. Sci., 2007, 6, (11), 1210 LINK https://doi.org/10.1039/b709813h [Google Scholar]
  65. Oró J. Nature, 1961, 190, (4774), 389 LINK https://doi.org/10.1038/190389a0 [Google Scholar]
  66. Le Roy L., Altwegg K., Balsiger H., Berthelier J. J., Bieler A., Briois C., Calmonte U., Combi M. R., De Keyser J., Dhooghe F., Fiethe B., Fuselier S. A., Gasc S., Gombosi T. I., Hassig M., Jackel A., Rubin M., and Tzou C.-Y. Astron. Astrophys., 2015, 583, A1 LINK https://doi.org/10.1051/0004-6361/201526450 [Google Scholar]
  67. Marten A., Hidayat T., Braud Y., and Moreno R. Icarus, 2002, 158, (2), 532 LINK https://doi.org/10.1006/icar.2002.6897 [Google Scholar]
  68. Lara L. M., Lellouch E., López-Moreno J. J., and Rodrigo R. J. Geophys. Res.: Planets, 1996, 101, (E10), 23261 LINK https://doi.org/10.1029/96JE02036 [Google Scholar]
  69. Loomis R. A., Cleeves L. I., Öberg K. I., Aikawa Y., Bergner J., Furuya K., Guzman V. V., and Walsh C. Astrophys. J., 2018, 859, (2), 131 LINK https://doi.org/10.3847/1538-4357/aac169 [Google Scholar]
  70. Öberg K. I., Guzmán V. V., Furuya K., Qi C., Aikawa Y., Andrews S. M., Loomis R., and Wilner D. J. Nature, 2015, 520, (7546), 198 LINK https://doi.org/10.1038/nature14276 [Google Scholar]
  71. Bergner J. B., Guzmán V. G., Öberg K. I., Loomis R. A., and Pegues J. Astrophys. J., 2018, 857, (1), 69 LINK https://doi.org/10.3847/1538-4357/aab664 [Google Scholar]
  72. Mumma M. J., and Charnley S. B. Annu. Rev. Astron. Astrophys., 2011, 49, 471 LINK https://doi.org/10.1146/annurev-astro-081309-130811 [Google Scholar]
  73. Biver N., Bockelée-Morvan D., Crovisier J., Colom P., Henry F., Moreno R., Paubert G., Despois D., and Lis D. C. Earth, Moon Planets, 2002, 90, (1–4), 323 LINK https://doi.org/10.1023/A:1021530316352 [Google Scholar]
  74. Crovisier J., Biver N., Bockelée-Morvan D., and Colom P. Planet. Space Sci., 2009, 57, (10), 1162 LINK https://doi.org/10.1016/j.pss.2008.08.019 [Google Scholar]
  75. Garrod R. T., Weaver S. L. W., and Herbst E. Astrophys. J., 2008, 682, (1), 283 LINK https://doi.org/10.1086/588035 [Google Scholar]
  76. Solomon P. M., Jefferts K. B., Penzias A. A., and Wilson R. W. Astrophys. J., 1971, 168, L107 LINK https://doi.org/10.1086/180794 [Google Scholar]
  77. Ulich B. L., and Conklin E. K. Nature, 1974, 248, (5444), 121 LINK https://doi.org/10.1038/248121a0 [Google Scholar]
  78. Beltrán M. T., Cesaroni R., Codella C., Testi L., Furuya R. S., and Olmi L. Nature, 2006, 443, (7110), 427 LINK https://doi.org/10.1038/nature05074 [Google Scholar]
  79. Snyder L. E., and Buhl D. Astrophys. J., 1971, 163, L47 LINK https://doi.org/10.1086/180664 [Google Scholar]
  80. Koubowetz F., Latzel J., and Noller H. J. Colloid Interface Sci., 1980, 74, (2), 322 LINK https://doi.org/10.1016/0021-9797(80)90201-5 [Google Scholar]
  81. Ritter G., Noller H., and Lercher J. A. J. Chem. Soc., Faraday Trans. 1, 1982, 78, (7), 2239 LINK https://doi.org/10.1039/F19827802239 [Google Scholar]
  82. Sexton B. A., and Avery N. R. Surf. Sci., 1983, 129, (1), 21 LINK https://doi.org/10.1016/0039-6028(83)90092-4 [Google Scholar]
  83. Bahr S., and Kempter V. J. Chem. Phys., 2009, 130, (21), 214509 LINK https://doi.org/10.1063/1.3139967 [Google Scholar]
  84. Abdulgalil A. G. M., Marchione D., Thrower J. D., Collings M. P., McCoustra M. R. S., Islam F., Palumbo M. E., Congiu E., and Dulieu F. Philos. Trans. R. Soc. A, 2013, 371, (1994), 20110586 LINK https://doi.org/10.1098/rsta.2011.0586 [Google Scholar]
  85. Tylinski M., Smith R. S., and Kay B. D. J. Phys. Chem. C, 2020, 124, (4), 2521 LINK https://doi.org/10.1021/acs.jpcc.9b10579 [Google Scholar]
  86. Parker F. W., Nielsen A. H., and Fletcher W. H. J. Mol. Spectrosc., 1957, 1, (1–4), 107 LINK https://doi.org/10.1016/0022-2852(57)90014-0 [Google Scholar]
  87. Duncan J. L., McKean D. C., Tullini F., Nivellini G. D., and Perez Peña J. J. Mol. Spectrosc., 1978, 69, (1), 123 LINK https://doi.org/10.1016/0022-2852(78)90033-4 [Google Scholar]
  88. Shannon C., and Campion A. Surf. Sci., 1990, 227, (3), 219 LINK https://doi.org/10.1016/S0039-6028(05)80009-3 [Google Scholar]
  89. Schaff J. E., and Roberts J. T. Surf. Sci., 1999, 426, (3), 384 LINK https://doi.org/10.1016/S0039-6028(99)00375-1 [Google Scholar]
  90. Dello Russo N., and Khanna R. K. Icarus, 1996, 123, (2), 366 LINK https://doi.org/10.1006/icar.1996.0165 [Google Scholar]
  91. Ennis C., Auchettl R., Ruzi M., and Robertson E. G. Phys. Chem. Chem. Phys., 2017, 19, (4), 2915 LINK https://doi.org/10.1039/c6cp08110j [Google Scholar]
  92. Hudson R. L. Icarus, 2020, 338, 113548 LINK https://doi.org/10.1016/j.icarus.2019.113548 [Google Scholar]
  93. Moore M. H., Ferrante R. F., Moore W. J., and Hudson R. Astrophys. J.: Suppl. Ser., 2010, 191, (1), 96 LINK https://doi.org/10.1088/0067-0049/191/1/96 [Google Scholar]
  94. Smith R. S., Tylinski M., Kimmel G. A., and Kay B. D. J. Chem. Phys., 2021, 154, (14), 144703 LINK https://doi.org/10.1063/5.0045461 [Google Scholar]
  95. Bertin M., Doronin M., Fillion J.-H., Michaut X., Philippe L., Lattelais M., Markovits A., Pauzat F., Ellinger Y., and Guillemin J.-C. Astron. Astrophys., 2017, 598, A18 LINK https://doi.org/10.1051/0004-6361/201629394 [Google Scholar]
  96. Bhuin R. G., Methikkalam R. R. J., Sivaraman B., and Pradeep T. J. Phys. Chem. C, 2015, 119, (21), 11524 LINK https://doi.org/10.1021/jp512607v [Google Scholar]
  97. Schaff J. E., and Roberts J. T. Langmuir, 1999, 15, (21), 7232 LINK https://doi.org/10.1021/la990394b [Google Scholar]
  98. Hudson R. L., Moore M. H., Dworkin J. P., Martin M. P., and Pozun Z. D. Astrobiology, 2008, 8, (4), 771 LINK https://doi.org/10.1089/ast.2007.0131 [Google Scholar]
  99. Salter T. L., Wootton L., and Brown W. A. ACS Earth Space Chem., 2019, 3, (8), 1524 LINK https://doi.org/10.1021/acsearthspacechem.9b00091 [Google Scholar]
  100. Ayling S. A., Burke D. J., Salter T. L., and Brown W. A. RSC Adv., 2017, 7, (81), 51621 LINK https://doi.org/10.1039/C7RA10410C [Google Scholar]
  101. Thrower J. D., Collings M. P., Rutten F. J. M., and McCoustra M. R. S. Mon. Not. R. Astron. Soc., 2009, 394, (3), 1510 LINK https://doi.org/10.1111/j.1365-2966.2009.14420.x [Google Scholar]
  102. Burke D. J., Wolff A. J., Edridge J. L., and Brown W. A. J. Chem. Phys., 2008, 128, (10), 104702 LINK https://doi.org/10.1063/1.2888556 [Google Scholar]
  103. Burke D. J., Puletti F., Woods P. M., Viti S., Slater B., and Brown W. A. J. Chem. Phys., 2015, 143, (16), 164704 LINK https://doi.org/10.1063/1.4934264 [Google Scholar]
  104. Gálvez O., Ortega I. K., Maté B., Moreno M. A., Martín-Llórente B., Herrero V. J., Escribano R., and Gutiérrez P. J. Astron. Astrophys., 2007, 472, (2), 691 LINK https://doi.org/10.1051/0004-6361:20077421 [Google Scholar]
  105. Souda R. Phys. Rev. B, 2007, 75, (18), 184116 LINK https://doi.org/10.1103/PhysRevB.75.184116 [Google Scholar]
  106. Brown W. A., and Bolina A. S. Mon. Not. R. Astron. Soc., 2007, 374, (3), 1006 LINK https://doi.org/10.1111/j.1365-2966.2006.11216.x [Google Scholar]
  107. Öberg K. I., Fraser H. J., Boogert A. C. A., Bisschop S. E., Fuchs G. W., van Dishoeck E. F., and Linnartz H. Astron. Astrophys., 2007, 462, (3), 1187 LINK https://doi.org/10.1051/0004-6361:20065881 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651321X16264409352535
Loading
/content/journals/10.1595/205651321X16264409352535
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error