- Home
- A-Z Publications
- Johnson Matthey Technology Review
- Previous Issues
- Volume 65, Issue 4, 2021
Johnson Matthey Technology Review - Volume 65, Issue 4, 2021
Volume 65, Issue 4, 2021
-
-
A Conflict of Fineness and Stability: Platinum- and Palladium-Based Bulk Metallic Glasses for Jewellery: Part I
Authors: O. S. Houghton* and A. L. GreerFor the metals used in jewellery, high hardness and the associated scratch resistance are much sought after. Conventional crystalline alloys for jewellery are alloyed and extensively processed (thermally and mechanically) to improve hardness, but it is difficult to reach values beyond 300 HV. The advent of bulk metallic glasses (BMGs), based on precious metals and with hardness exceeding 300 HV in the as-cast state, is therefore of great interest for both jewellery and watchmaking. The non-crystalline structure of these materials not only gives high hardness, but also the opportunity to shape metals like plastics, via thermoplastic forming (TPF). For more traditional jewellery manufacture, BMGs also exhibit high-definition and near-net-shape casting. Gold-based alloys have long dominated the consideration of BMGs for jewellery as they can comply with 18 karat hallmarks. Although BMGs based on platinum or palladium possess excellent thermoplastic formability and are without known tarnishing problems, achieving useful glass-forming ability (GFA) within the more restrictive hallmarking standards typically used for jewellery (≥95 wt% platinum or palladium) is at best challenging. In this two-part review, platinum- and palladium-based BMGs are discussed, focusing on their potential application in jewellery and on the further research that is necessary.
-
-
-
A Conflict of Fineness and Stability: Platinum- and Palladium-Based Bulk Metallic Glasses for Jewellery: Part II
Authors: O. S. Houghton* and A. L. GreerThe properties and glass-forming ability (GFA) of platinum- and palladium-based bulk metallic glasses (BMGs) for jewellery were introduced in Part I of this two-part review (1). Here, we will describe methods for their processing, tarnishing and corrosion resistance and consider their prospects and future developments.
-
-
-
Research Progress of Platinum-Based Superalloys for High Temperature Applications
Authors: Changyi Hu, Yan Wei, Hongzhong Cai, Li Chen, Xian Wang, Xuxiang Zhang, Guixue Zhang and Xingqiang WangPlatinum-based alloys are being developed for high-temperature applications with the aim of replacing some of the currently used nickel-based superalloys (NBSAs) and benchmark alloy, PM2000. The platinum-based superalloys have a similar structure to the NBSAs and can potentially be used at higher temperatures and in more aggressive environments because platinum is more chemically inert and has a higher melting point. In this paper, the recent progress in research and development of platinum-based superalloys is overviewed. Firstly, the composition optimisation and structural design of platinum-base superalloys are introduced. The structural characteristics, mechanical properties, oxidation resistance and corrosion behaviour of platinum-aluminium ternary, quaternary and multiple superalloys are summarised. Finally, directions for further research and application of platinum-based superalloys are analysed and prospected.
-
-
-
Study of Ultrasonic Attenuation and Thermal Conduction in Bimetallic Gold/Platinum Nanofluids
Here, we report the frequency dependent ultrasonic attenuation of monometallic gold and bimetallic gold/platinum based aqueous nanofluids (NFs). The as-synthesised bimetallic NFs (BMNFs) revealed less resistance to ultrasonic waves compared to the monometallic NFs. Thermal conductivity of both NFs taken at different concentrations revealed substantial conductivity improvement when compared to the base fluid, although gold/platinum showed lesser improvement compared to gold. Characterisation of the as-synthesised nanoparticles (NPs) and fluids was carried out with X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The distinct two-phase bimetallic nature of gold/platinum, its two plasmonic band optical absorption features and the spherical morphology of the particles were shown. The findings were correlated with the observed thermal and ultrasonic behaviour and proper rationalisation is provided. It was revealed that the comparatively lesser thermal conductivity of gold/platinum had direct implication on its attenuation property. The findings could have important repercussions in both industrial applications and in the mechanistic approach towards the field of ultrasonic attenuation in NFs.
-
-
-
Mass Loss of Platinum-Rhodium Thermocouple Wires at 1324°C
Authors: Sivahami Uthayakumaar, Stuart Davidson and Jonathan PearceIt is known that platinum-rhodium thermocouples exhibit mass loss when in the presence of oxygen at high temperatures due to the formation of volatile oxides of platinum and rhodium. The mass losses of platinum, Pt-6%Rh and Pt-30%Rh wires, commonly used for thermocouples, were considered in this paper to characterise the mass loss of wires of the three compositions due to formation and evaporation of the oxides PtO2 and RhO2 under the conditions that would be seen by thermocouples used at high temperature. For the tests, the wires were placed in thin alumina tubes to emulate the thermocouple format, and the measurements were performed in air at a temperature of 1324°C, i.e. with oxygen partial pressure of 21.3 kPa. It was found that the mass loss of the three wires increases linearly with elapsed time, consistent with other investigations, up to an elapsed time of about 150 h, but after that, a marked acceleration of the mass loss is observed. Remarkably, previous high precision studies have shown that a crossover after about 150 h at 1324°C is also observed in the thermoelectric drift of a wide range of platinum-rhodium thermocouples, and the current results are compared with those studies. The mass loss was greatest for Pt-30%Rh, followed by Pt6%Rh, then platinum.
-
-
-
Technological Capabilities of Hydrocarbonyl Processes in the Concentration and Separation of Platinum Group Metals
Authors: I. V. Fedoseev, Yu. A. Kotlyar, V. V. Vasekin and N. V. RovinskayaThe principal possibility of processing the industrial poor collective concentrates of platinum group metals (pgms) using a hydrocarbonyl technology with the selective concentration of pgms from poor multicomponent chloride and chloride-sulfate solutions with the subsequent production of pure pgms is shown.
-
-
-
Microstructure Evolution of Ruthenium During Vacuum Hot Pressing
Authors: Renyao Zhang, Junmei Guo, Chuanjun Wang, Limin Zhou and Ming WenRuthenium tablets with mean grain size of ~4–5 μm were prepared by vacuum hot pressing (VHP), and tablets with maximum density of 12.2 g cm–3 were obtained with sintering time of 2 h. X-ray diffraction (XRD) revealed that there was a texture change with sintering time. The microstructure of the ruthenium tablets was observed by electron backscatter diffraction (EBSD) and field emission scanning electron microscopy (FSEM). The microstructure evolution of ruthenium with sintering time is discussed.
-
-
-
Using Surface Science Techniques to Investigate the Interaction of Acetonitrile with Dust Grain Analogue Surfaces
Authors: Emily R. Ingman, Amber Shepherd and Wendy A. BrownSurface science methodologies, such as reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD), are ideally suited to studying the interaction of molecules with model astrophysical surfaces. Here we describe the use of RAIRS and TPD to investigate the adsorption, interactions and thermal processing of acetonitrile and water containing model ices grown under astrophysical conditions on a graphitic dust grain analogue surface. Experiments show that acetonitrile physisorbs on the graphitic surface at all exposures. At the lowest coverages, repulsions between the molecules lead to a decreasing desorption energy with increasing coverage. Analysis of TPD data gives monolayer desorption energies ranging from 28.8–39.2 kJ mol−1 and an average multilayer desorption energy of 43.8 kJ mol−1. When acetonitrile is adsorbed in the presence of water ice, the desorption energy of monolayer acetonitrile shows evidence of desorption with a wide range of energies. An estimate of the desorption energy of acetonitrile from crystalline ice (CI) shows that it is increased to ~37 kJ mol−1 at the lowest exposures of acetonitrile. Amorphous water ice also traps acetonitrile on the graphite surface past its natural desorption temperature, leading to volcano and co-desorption. RAIRS data show that the C≡N vibration shifts, indicative of an interaction between the acetonitrile and the water ice surface.
-