Skip to content
1887
Volume 66, Issue 3
  • ISSN: 2056-5135

Abstract

Reliable storage and transportation of hydrogen at scale is a challenge which needs to be tackled to allow a robust and on-demand hydrogen supply when moving towards a global low carbon hydrogen economy with the aim of meeting net-zero climate goals. Numerous technologies and options are currently being explored for effective hydrogen storage and transportation to facilitate a smooth transition to the hydrogen economy. This paper provides an overview of different hydrogen storage and transportation technologies, focusing in more detail on liquid organic hydrogen carriers (LOHCs), its advantages and disadvantages and future considerations for the optimisation of the LOHC technology.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16415717819428
2022-01-10
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/3/Lukashuk_16a_Imp-pt1.html?itemId=/content/journals/10.1595/205651322X16415717819428&mimeType=html&fmt=ahah

References

  1. Niermann M., Drünert S., Kaltschmitt M., and Bonhoff K. Energy Environ. Sci., 2019, 12, (1), 290 LINK https://doi.org/10.1039/c8ee02700e [Google Scholar]
  2. Handayani K., Krozer Y., and Filatova T. Energy Policy, 2019, 127, 134 LINK https://doi.org/10.1016/j.enpol.2018.11.045 [Google Scholar]
  3. ‘Graphic: The Relentless Rise of Carbon Dioxide’, NASA, Washington DC, USA:https://climate.nasa.gov/climate_resources/24/graphic-the-relentless-rise-of-carbon-dioxide/ (Accessed on 5th August 2021) [Google Scholar]
  4. ‘World of Change: Global Temperatures’, NASA, Washington DC, USA:https://earthobservatory.nasa.gov/world-of-change/decadaltemp.php (Accessed on 5th August 2021) [Google Scholar]
  5. ‘Facts: The Effects of Climate Change’, Washington DC, USA:https://climate.nasa.gov/effects/ (Accessed on 5th August 2021) [Google Scholar]
  6. Teichmann D., Arlt W., and Wasserscheid P. Int. J. Hydrogen Energy, 2012, 37, (23), 18118 LINK https://doi.org/10.1016/j.ijhydene.2012.08.066 [Google Scholar]
  7. Niermann M., Beckendorff A., Kaltschmitt M., and Bonhoff K. Int. J. Hydrogen Energy, 2019, 44, (13), 6631 LINK https://doi.org/10.1016/j.ijhydene.2019.01.199 [Google Scholar]
  8. Mehta A. ‘ Overcoming Hydrogen Hype’, Chemistry World, Royal Society of Chemistry, Cambridge, UK, 18th August, 2020 LINK https://www.chemistryworld.com/news/overcoming-hydrogen-hype/4012281.article [Google Scholar]
  9. ‘Portugal and the Netherlands Strengthen Bilateral Cooperation on Green Hydrogen’, Government of The Netherlands, The Hague, 23rd September, 2020 LINK https://www.government.nl/latest/news/2020/09/23/portugal-and-the-netherlands-strengthen-bilateral-cooperation-on-green-hydrogen [Google Scholar]
  10. Godden J., and McKenna E. ‘Enabling the Transition to the Hydrogen Economy’, Johnson Matthey, London, UK, 18th September, 2020, 29 pp LINK https://matthey.com/news/2020/hydrogen-enabling-the-transition [Google Scholar]
  11. Aakko-Saksa P. T., Cook C., Kiviaho J., and Repo T. J. Power Sources, 2018, 396, 803 LINK https://doi.org/10.1016/j.jpowsour.2018.04.011 [Google Scholar]
  12. Noussan M., Raimondi P. P., Scita R., and Hafner M. Sustainability, 2021, 13, (1), 298 LINK https://doi.org/10.3390/su13010298 [Google Scholar]
  13. ‘The Hydrogen Trajectory: What Does Research Tell Us About the Pace of Development of Hydrogen Technologies?’, KPMG, Amstelveen, The Netherlands:https://home.kpmg/xx/en/home/insights/2020/11/the-hydrogen-trajectory.html (Accessed on 5th August 2021) [Google Scholar]
  14. Ali Khan M. H., Daiyan R., Neal P., Haque N., MacGill I., and Amal R. Int. J. Hydrogen Energy, 2021, 46, (44), 22685 LINK https://doi.org/10.1016/j.ijhydene.2021.04.104 [Google Scholar]
  15. ‘The Hydrogen Colour Spectrum’, National Grid PLC, London, UK:https://www.nationalgrid.com/stories/energy-explained/hydrogen-colour-spectrum (Accessed on 22nd December 2021) [Google Scholar]
  16. ‘Hydrogen Colours Codes’, H2 Bulletin, London, UK:https://www.h2bulletin.com/knowledge/hydrogen-colours-codes/ (Accessed on 22nd December 2021) [Google Scholar]
  17. ‘Guidance: UK Carbon Capture, Usage and Storage’, Department for Business, Energy & Industrial Strategy, Her Majesty’s Government, London, UK, 22nd January, 2013 LINK https://www.gov.uk/guidance/uk-carbon-capture-and-storage-government-funding-and-support [Google Scholar]
  18. ‘The German Hydrogen Strategy’, Watson, Farley & Williams, London, UK, 17th February, 2021 LINK https://www.wfw.com/articles/the-german-hydrogen-strategy/ [Google Scholar]
  19. Parnell J. ‘Europe’s Green Hydrogen Revolution is Turning Blue’, Greentech Media, Massachusetts, USA, 1st July, 2020 LINK https://www.greentechmedia.com/articles/read/europes-green-hydrogen-revolution-is-turning-blue [Google Scholar]
  20. ‘Sustainable Development Goals: Take Action for the Sustainable Development Goals’, United Nations, New York, USA:https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (Accessed on 23rd December 2021) [Google Scholar]
  21. ‘Sustainable Development Goals: Ensure Access to Affordable, Reliable, Sustainable and Modern Energyy: 7: Affordable and Clean Energy’, United Nations, New York, USA:https://www.un.org/sustainabledevelopment/energy/ (Accessed on 23rd December 2021) [Google Scholar]
  22. Caglayan D. G., Heinrichs H. U., Robinius M., and Stolten D. Int. J. Hydrogen Energy, 2021, 47, (57), 29376 LINK https://doi.org/10.1016/j.ijhydene.2020.12.197 [Google Scholar]
  23. Falcone P. M., Hiete M., and Sapio A. Curr. Opin. Green Sustain. Chem., 2021, 31, 100506 LINK https://doi.org/10.1016/j.cogsc.2021.100506 [Google Scholar]
  24. Andersson J., and Grönkvist S. Int. J. Hydrogen Energy, 2019, 44, (23), 11901 LINK https://doi.org/10.1016/j.ijhydene.2019.03.063 [Google Scholar]
  25. Niermann M., Timmerberg S., Drünert S., and Kaltschmitt M. Renew. Sustain. Energy Rev., 2021, 135, 110171 LINK https://doi.org/10.1016/j.rser.2020.110171 [Google Scholar]
  26. Preuster P., Papp C., and Wasserscheid P. Acc. Chem. Res., 2017, 50, (1), 74 LINK https://doi.org/10.1021/acs.accounts.6b00474 [Google Scholar]
  27. Teichmann D., Arlt W., Wasserscheid P., and Freymann R. Energy Environ. Sci., 2011, 4, (8), 2767 LINK https://doi.org/10.1039/c1ee01454d [Google Scholar]
  28. Southall E., and Lukashuk L. Johnson Matthey Technol. Rev., 2022, 66, (3), 259 LINK https://www.technology.matthey.com/article/66/2/259-270/ [Google Scholar]
  29. Southall E., and Lukashuk L. Johnson Matthey Technol. Rev., 2022, 66, (3), 271 LINK https://www.technology.matthey.com/article/66/2/271-284/ [Google Scholar]
  30. Ali A., Kumar G. U., and Lee H. J. Mater. Today: Proc., 2021, 45, (2), 1123 LINK https://doi.org/10.1016/j.matpr.2020.03.232 [Google Scholar]
  31. Quarton C. J., and Samsatli S. Renew. Sustain. Energy Rev., 2018, 98, 302 LINK https://doi.org/10.1016/j.rser.2018.09.007 [Google Scholar]
  32. ‘HyDeploy: UK Gas Grid Injection of Hydrogen in Full Operation’, ITM Power, Sheffield, UK:https://www.itm-power.com/news/hydeploy-uk-gas-grid-injection-of-hydrogen-in-full-operation (Accessed on 5th August 2021) [Google Scholar]
  33. “Hydrogen: A Renewable Energy Perspective”, International Renewable Energy Agency (IRENA), Abu Dhabi, September, 2019, 52 pp LINK https://www.irena.org/publications/2019/Sep/Hydrogen-A-renewable-energy-perspective [Google Scholar]
  34. Sakintuna B., Lamaridarkrim F., and Hirscher M. Int. J. Hydrogen Energy, 2007, 32, (9), 1121 LINK https://doi.org/10.1016/j.ijhydene.2006.11.022 [Google Scholar]
  35. El-Eskandarany M. S. “Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy”, 2nd Edn., Elsevier Inc, Waltham, USA, 2015, 333 pp [Google Scholar]
  36. Zaluska A., Zaluski L., and Ström–Olsen J. O. J. Alloys Compd., 1999, 288, (1–2), 217 LINK https://doi.org/10.1016/s0925-8388(99)00073-0 [Google Scholar]
  37. Rivard E., Trudeau M., and Zaghib K. Materials, 2019, 12, (12), 1973 LINK https://doi.org/10.3390/ma12121973 [Google Scholar]
  38. Wang H., Zhu Q.-L., Zou R., and Xu Q. Chem, 2017, 2, (1), 52 LINK https://doi.org/10.1016/j.chempr.2016.12.002 [Google Scholar]
  39. Juangsa F. B., Irhamna A. R., and Aziz M. Int. J. Hydrogen Energy, 2021, 46, (27), 14455 LINK https://doi.org/10.1016/j.ijhydene.2021.01.214 [Google Scholar]
  40. Lamb K. E., Dolan M. D., and Kennedy D. F. Int. J. Hydrogen Energy, 2019, 44, (7), 3580 LINK https://doi.org/10.1016/j.ijhydene.2018.12.024 [Google Scholar]
  41. Wijayanta A. T., Oda T., Purnomo C. W., Kashiwagi T., and Aziz M. Int. J. Hydrogen Energy, 2019, 44, (29), 15026 LINK https://doi.org/10.1016/j.ijhydene.2019.04.112 [Google Scholar]
  42. Aziz M., Wijayanta A. T., and Nandiyanto A. B. D. Energies, 2020, 13, (12), 3062 LINK https://doi.org/10.3390/en13123062 [Google Scholar]
  43. Nayak-Luke R., Bañares-Alcántara R., and Wilkinson I. Ind. Eng. Chem. Res., 2018, 57, (43), 14607 LINK https://doi.org/10.1021/acs.iecr.8b02447 [Google Scholar]
  44. Chehade G., and Dincer I. Fuel, 2021, 299, 120845 LINK https://doi.org/10.1016/j.fuel.2021.120845 [Google Scholar]
  45. Salmon N., and Bañares-Alcántara R. Sustain. Energy Fuels, 2021, 5, (11), 2814 LINK https://doi.org/10.1039/d1se00345c [Google Scholar]
  46. Chehade G., and Dincer I. Fuel, 2021, 299, 120845 LINK https://doi.org/10.1016/j.fuel.2021.120845 [Google Scholar]
  47. Giddey S., Badwal S. P. S., Munnings C., and Dolan M. ACS Sustain. Chem. Eng., 2017, 5, (11), 10231 LINK https://doi.org/10.1021/acssuschemeng.7b02219 [Google Scholar]
  48. Ravn S. ‘World’s Largest Green Hydrogen Project will use Haldor Topsoe Ammonia Technology’, Haldor Topsoe A/S, Kogens Lyngby, Denmark, 13th July, 2020LINK https://blog.topsoe.com/worlds-largest-green-hydrogen-project-will-use-haldor-topsoe-ammonia-technology?utm_campaign=Process%20-%20Ammonia&utm_content=134592410&utm_medium=social&utm_source=linkedin&hss_channel=lcp-164107 [Google Scholar]
  49. Klerke A., Christensen C. H., Nørskov J. K., and Vegge T. J. Mater. Chem., 2008, 18, (20), 2304 LINK https://doi.org/10.1039/b720020j [Google Scholar]
  50. Valera-Medina A., Amer-Hatem F., Azad A. K., Dedoussi I. C., de Joannon M., Fernandes R. X., Glarborg P., Hashemi H., He X., Mashruk S., McGowan J., Mounaim-Rouselle C., Ortiz-Prado A., Ortiz-Valera A., Rossetti I., Shu B., Yehia M., Xiao H., and Costa M. Energy Fuels, 2021, 35, (9), 6964 LINK https://doi.org/10.1021/acs.energyfuels.0c03685 [Google Scholar]
  51. Ravn S. ‘Topsoe and Partners Issue a Report: “Ammonfuel – An Industrial View of Ammonia as Marine Fuel’”, Haldor Topsoe A/S, Kogens Lyngby, Denmark, 4th August, 2020 LINK https://blog.topsoe.com/topsoe-and-partners-issue-a-report-ammonfuel-an-industrial-view-of-ammonia-as-marine-fuel [Google Scholar]
  52. Deign J. ‘Marine Sector Turns to Ammonia to Decarbonize Shipping’, Greentech Media, Wood Mackenzie, Edinburgh, UK, 21st May, 2020 LINK https://www.greentechmedia.com/articles/read/marine-sector-looks-to-ammonia-to-decarbonize-shipping [Google Scholar]
  53. ‘New Research Shows Benefits of Ammonia as Marine Fuel’, The Maritime Executive LLC, Plantation, USA, 11th June, 2019 LINK https://www.maritime-executive.com/article/new-research-shows-benefits-of-ammonia-as-marine-fuel [Google Scholar]
  54. Ayvalý T., Tsang S. C. E., and Van Vrijaldenhoven T. Johnson Matthey Technol. Rev., 2021, 65, (2), 275 LINK https://www.technology.matthey.com/article/65/2/275-290/ [Google Scholar]
  55. Ayvalý T., Tsang S. C. E., and Van Vrijaldenhoven T. Johnson Matthey Technol. Rev., 2021, 65, (2), 291 LINK https://www.technology.matthey.com/article/65/2/291-300/ [Google Scholar]
  56. Gulden J., Sklarow A., and Luschtinetz T. E3S Web Conf., 2018, 70, 01004 LINK https://doi.org/10.1051/e3sconf/20187001004 [Google Scholar]
  57. Aslam R., Minceva M., Müller K., and Arlt W. Sep. Purif. Technol., 2016, 163, 140 LINK https://doi.org/10.1016/j.seppur.2016.01.051 [Google Scholar]
  58. Müller K., Völkl J., and Arlt W. Energy Technol., 2013, 1, (1), 20 LINK https://doi.org/10.1002/ente.201200045 [Google Scholar]
  59. Wang Z., Belli J., and Jensen C. M. Faraday Discuss., 2011, 151, 297 LINK https://doi.org/10.1039/c1fd00002k [Google Scholar]
  60. Geburtig D., Preuster P., Bösmann A., Müller K., and Wasserscheid P. Int. J. Hydrogen Energy, 2016, 41, (2), 1010 LINK https://doi.org/10.1016/j.ijhydene.2015.10.013 [Google Scholar]
  61. Shi L., Qi S., Qu J., Che T., Yi C., and Yang B. Int. J. Hydrogen Energy, 2019, 44, (11), 5345 LINK https://doi.org/10.1016/j.ijhydene.2018.09.083 [Google Scholar]
  62. Hurskainen M. “Liquid Organic Hydrogen Carriers (LOHC): Concept Evaluation and Techno-Economics”, Report No. VTT-R-00057-19, VTT Technical Research Centre of Finland Ltd, Espoo, Finland, 2nd December, 2019, 62 pp LINK https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech [Google Scholar]
  63. Preuster P., Fang Q., Peters R., Deja R., Nguyen V. N., Blum L., Stolten D., and Wasserscheid P. Int. J. Hydrogen Energy, 2018, 43, (3), 1758 LINK https://doi.org/10.1016/j.ijhydene.2017.11.054 [Google Scholar]
  64. Müller K., Stark K., Emel’yanenko V. N., Varfolomeev M. A., Zaitsau D. H., Shoifet E., Schick C., Verevkin S. P., and Arlt W. Ind. Eng. Chem. Res., 2015, 54, (32), 7967 LINK https://doi.org/10.1021/acs.iecr.5b01840 [Google Scholar]
  65. Markiewicz M., Zhang Y.-Q., Empl M. T., Lykaki M., Thöming J., Steinberg P., and Stolte S. Energy Environ. Sci., 2019, 12, (1), 366 LINK https://doi.org/10.1039/c8ee01696h [Google Scholar]
  66. Hurskainen M., and Ihonen J. Int. J. Hydrogen Energy, 2020, 45, (56), 32098 LINK https://doi.org/10.1016/j.ijhydene.2020.08.186 [Google Scholar]
  67. Jackson C., Fothergill K., Gray P., Haroon F., Makhloufi C., Kezibri N., Davey A., LHote O., Zarea M., Davenne T., Greenwood S., Huddart A., Makepeace J., Wood T., David B., and Wilkinson I. “Ammonia to Green Hydrogen Project: Feasibility Study”, Ecuity, UK, 2019, 70 pp LINK https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf [Google Scholar]
  68. Modisha P. M., Ouma C. N. M., Garidzirai R., Wasserscheid P., and Bessarabov D. Energy Fuels, 2019, 33, (4), 2778 LINK https://doi.org/10.1021/acs.energyfuels.9b00296 [Google Scholar]
  69. Heublein N., Stelzner M., and Sattelmayer T. Int. J. Hydrogen Energy, 2020, 45, (46), 24902 LINK https://doi.org/10.1016/j.ijhydene.2020.04.274 [Google Scholar]
  70. Jensen C., Brayton D., Jorgensen S. W., and Hou P. “Development of a Practical Hydrogen Storage System Based on Liquid Organic Hydrogen Carriers and a Homogeneous Catalyst”, Report/Contract No. DE-EE0005020, Hawaii Hydrogen Carriers LLC, Honolulu, USA,General Motors LLC, Warren, USA, 24th March, 2017, 75 pp LINK https://doi.org/10.2172/1347919 [Google Scholar]
  71. Wunsch A., Kant P., Mohr M., Haas-Santo K., Pfeifer P., and Dittmeyer R. Membranes, 2018, 8, (4), 107 LINK https://doi.org/10.3390/membranes8040107 [Google Scholar]
  72. Jorschick H., Preuster P., Dürr S., Seidel A., Müller K., Bösmann A., and Wasserscheid P. Energy Environ. Sci., 2017, 10, (7), 1652 LINK https://doi.org/10.1039/c7ee00476a [Google Scholar]
  73. Peters W., Eypasch M., Frank T., Schwerdtfeger J., Körner C., Bösmann A., and Wasserscheid P. Energy Environ. Sci., 2015, 8, (2), 641 LINK https://doi.org/10.1039/c4ee03461a [Google Scholar]
  74. ‘Liquid Organic Hydrogen Carriers’, SherLOHCk Project:https://sherlohck.eu/ (Accessed on 5th August 2021) [Google Scholar]
  75. Wunsch A., Mohr M., and Pfeifer P. Membranes, 2018, 8, (4), 112 LINK https://doi.org/10.3390/membranes8040112 [Google Scholar]
  76. Sekine Y., and Higo T. Top. Catal., 2021, 64, (7–8), 470 LINK https://doi.org/10.1007/s11244-021-01452-x [Google Scholar]
  77. Kreuder H., Boeltken T., Cholewa M., Meier J., Pfeifer P., and Dittmeyer R. Int. J. Hydrogen Energy, 2016, 41, (28), 12082 LINK https://doi.org/10.1016/j.ijhydene.2016.05.140 [Google Scholar]
  78. Byun M., Kim H., Choe C., and Lim H. Energy Convers. Manag., 2021, 227, 113576 LINK https://doi.org/10.1016/j.enconman.2020.113576 [Google Scholar]
  79. Wunsch A., Berg T., and Pfeifer P. Materials, 2020, 13, (2), 277 LINK https://doi.org/10.3390/ma13020277 [Google Scholar]
  80. Gora A., Tanaka D. A. P., Mizukami F., and Suzuki T. M. Chem. Lett., 2006, 35, (12), 1372 LINK https://doi.org/10.1246/cl.2006.1372 [Google Scholar]
  81. Geißelbrecht M., Mrusek S., Müller K., Preuster P., Bösmann A., and Wasserscheid P. Energy Environ. Sci., 2020, 13, (9), 3119 LINK https://doi.org/10.1039/d0ee01155j [Google Scholar]
  82. Mrusek S., Preuster P., Müller K., Bösmann A., and Wasserscheid P. Int. J. Hydrogen Energy, 2021, 46, (29), 15624 LINK https://doi.org/10.1016/j.ijhydene.2021.02.021 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651322X16415717819428
Loading
/content/journals/10.1595/205651322X16415717819428
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error