Skip to content
Volume 66, Issue 3
  • ISSN: 2056-5135


The deployment of hydrogen as an infrastructure fuel and an energy vector across a range of industries is expected to aid with meeting decarbonisation goals and achieving net zero emissions. For the transition towards a low carbon hydrogen economy, not only the production of hydrogen needs to be addressed, but also its transportation and storage. Liquid organic hydrogen carriers (LOHCs) are an attractive solution for the storage and transportation of hydrogen to allow a reliable and on-demand hydrogen supply, enabling industrial decarbonisation. This work describes the potential deployment and integration of LOHCs within different industries. These include: the transportation sector; steel and cement industries; the use of stored hydrogen to produce fuels and chemicals from flue gases and a system integration of fuel cells and LOHCs for energy storage.


Article metrics loading...

Loading full text...

Full text loading...



  1. ‘Sources of Greenhouse Gas Emissions’, United States Environmental Protection Agency, Washington, DC, USA: (Accessed 24th December 2021) [Google Scholar]
  2. ‘The Paris Agreement: What is the Paris Agreement?’, United Nations Framework Convention on Climate Change, Bonn, Germany: (Accessed on 24th December 2021) [Google Scholar]
  3. Staffell I., Scamman D., Velazquez Abad A., Balcombe P., Dodds P. E., Ekins P., Shah N., and Ward K. R. Energy Environ. Sci., 2019, 12, (2), 463 LINK [Google Scholar]
  4. Hanley E. S., Deane J. P., and Gallachóir B. P. Ó. Renew. Sustain. Energy Rev., 2018, 82, (3), 3027 LINK [Google Scholar]
  5. Espegren K., Damman S., Pisciella P., Graabak I., and Tomasgard A. Int. J. Hydrogen Energy, 2021, 46, (45), 23125 LINK [Google Scholar]
  6. Falcone P. M., Hiete M., and Sapio A. Curr. Opin. Green Sustain. Chem., 2021, 31, 100506 LINK [Google Scholar]
  7. Sgobbi A., Nijs W., De Miglio R., Chiodi A., Gargiulo M., and Thiel C. Int. J. Hydrogen Energy, 2016, 41, (1), 19 LINK [Google Scholar]
  8. Bicer Y., and Dincer I. Int. J. Hydrogen Energy, 2018, 43, (2), 1179 LINK [Google Scholar]
  9. Acar C., and Dincer I. Int. J. Hydrogen Energy, 2020, 45, (5), 3396 LINK [Google Scholar]
  10. Öhman A., Karakaya E., and Urban F. Energy Res. Soc. Sci., 2022, 84, 102384 LINK [Google Scholar]
  11. Noussan M., Raimondi P. P., Scita R., and Hafner M. Sustainability, 2020, 13, (1), 298 LINK [Google Scholar]
  12. Oliveira A. M., Beswick R. R., and Yan Y. Curr. Opin. Chem. Eng., 2021, 33, 100701 LINK [Google Scholar]
  13. Damman S., Sandberg E., Rosenberg E., Pisciella P., and Graabak I. Energy Res. Soc. Sci., 2021, 78, 102116 LINK [Google Scholar]
  14. Moreira dos Santos R., Szklo A., Lucena A. F. P., and de Miranda P. E. V Int. J. Hydrogen Energy, 2021, 46, (51), 25843 LINK [Google Scholar]
  15. Heide D., von Bremen L., Greiner M., Hoffmann C., Speckmann M., and Bofinger S. Renew. Energy, 2010, 35, (11), 2483 LINK [Google Scholar]
  16. Zhao P., Wang J., and Dai Y. Renew. Energy, 2015, 75, 541 LINK [Google Scholar]
  17. Engeland K., Borga M., Creutin J.-D., François B., Ramos M.-H., and Vidal J.-P. Renew. Sustain. Energy Rev., 2017, 79, 600 LINK [Google Scholar]
  18. Miao B., Giordano L., and Chan S. H. Int. J. Hydrogen Energy, 2021, 46, (36), 18699 LINK [Google Scholar]
  19. Heinemann N., Alcalde J., Miocic J. M., Hangx S. J. T., Kallmeyer J., Ostertag-Henning C., Hassanpouryouzband A., Thaysen E. M., Strobel G. J., Schmidt-Hattenberger C., Edlmann K., Wilkinson M., Bentham M., Haszeldine R. S., Carbonell R., and Rudloff A. Energy Environ. Sci., 2021, 14, (2), 853 LINK [Google Scholar]
  20. Felderhoff M., Weidenthaler C., von Helmolt R., and Eberle U. Phys. Chem. Chem. Phys., 2007, 9, (21), 2643 LINK [Google Scholar]
  21. Abe J. O., Popoola A. P. I., Ajenifuja E., and Popoola O. M. Int. J. Hydrogen Energy, 2019, 44, (29), 15072 LINK [Google Scholar]
  22. Ratnakar R. R., Gupta N., Zhang K., van Doorne C., Fesmire J., Dindoruk B., and Balakotaiah V. Int. J. Hydrogen Energy, 2021, 46, (47), 24149 LINK [Google Scholar]
  23. Abdalla A. M., Hossain S., Nisfindy O. B., Azad A. T., Dawood M., and Azad A. K. Energy Convers. Manag., 2018, 165, 602 LINK [Google Scholar]
  24. Niermann M., Beckendorff A., Kaltschmitt M., and Bonhoff K. Int. J. Hydrogen Energy, 2019, 44, (13), 6631 LINK [Google Scholar]
  25. Niermann M., Drünert S., Kaltschmitt M., and Bonhoff K. Energy Environ. Sci., 2019, 12, (1), 290 LINK [Google Scholar]
  26. Teichmann D., Arlt W., and Wasserscheid P. Int. J. Hydrogen Energy, 2012, 37, (23), 18118 LINK [Google Scholar]
  27. Southall E., and Lukashuk L. Johnson Matthey Technol. Rev., 2021, 66, 3, 246 LINK [Google Scholar]
  28. Jorschick H., Bulgarin A., Alletsee L., Preuster P., Bösmann A., and Wasserscheid P. ACS Sustain. Chem. Eng., 2019, 7, (4), 4186 LINK [Google Scholar]
  29. Brigljević B., Lee B., Dickson R., Kang S., Liu J. J., and Lim H. Cell Reports Phys. Sci., 2020, 1, (3), 100032 LINK [Google Scholar]
  30. Peters R., Deja R., Fang Q., Nguyen V. N., Preuster P., Blum L., Wasserscheid P., and Stolten D. Int. J. Hydrogen Energy, 2019, 44, (26), 13794 LINK [Google Scholar]
  31. Preuster P., Fang Q., Peters R., Deja R., Nguyen V. N., Blum L., Stolten D., and Wasserscheid P. Int. J. Hydrogen Energy, 2018, 43, (3), 1758 LINK [Google Scholar]
  32. Ambrose J. ‘Low Demand for Power Causes Problems for National Grid’, The Guardian, London, UK, 16th April, 2020 LINK [Google Scholar]
  33. ‘Power in the balance: Fluctuating Energy Demand During Times of Crisis’, Crestchic Ltd, Burton-on-Trent, UK: (Accessed on 5th August 2021) [Google Scholar]
  34. Teichmann D., Stark K., Müller K., Zöttl G., Wasserscheid P., and Arlt W. Energy Environ. Sci., 2012, 5, (10), 9044 LINK [Google Scholar]
  35. Knosala K., Kotzur L., Röben F. T. C., Stenzel P., Blum L., Robinius M., and Stolten D. Int. J. Hydrogen Energy, 2021, 46, (42), 21748 LINK [Google Scholar]
  36. Sheldon D. Johnson Matthey Technol. Rev., 2017, 61, (3), 172 LINK [Google Scholar]
  37. Ambrose J. ‘Renewable Energy to Expand by 50% in Next Five Years – Report’, The Guardian, London, UK, 21st October, 2016 LINK [Google Scholar]
  38. Krieger C., Müller K., and Arlt W. Chem. Eng. Technol., 2016, 39, (8), 1570 LINK [Google Scholar]
  39. Flores-Granobles M., and Saeys M. Energy Environ. Sci., 2020, 13, (7), 1923 LINK [Google Scholar]
  40. Leithinger M. ‘Hydrogen-Energy Source for the Future?’, Voestalpine, Linz, Austria, 8th January, 2020 LINK [Google Scholar]
  41. ‘Production of Green Hydrogen: Technology’, H2 Future: Green Hydrogen Project, Verbund Energy4Business GmbH, Vienna, Austria: (Accessed on 5th August 2021) [Google Scholar]
  42. ‘Green Hydrogen for Steel Production: RWE and thyssenkrupp Plan Partnership’, thyssenkrupp, Essen, Germany, 10th June, 2020 LINK [Google Scholar]
  43. Winter O. ‘Green Hydrogen for Steel Production: RWE and thyssenkrupp Plan Partnership, RWE AG, Essen, Germany, 10th June, 2020 LINK [Google Scholar]
  44. ‘HYBRIT: SSAB, LKAB and Vattenfall First in the World with hydrogen-Reduced Sponge Iron’, SSAB, Stockholm, Sweden, 21st June, 2021 LINK [Google Scholar]
  45. ‘HYBRIT Fossil-Free Steel – A Mutual Opportunity’, Hybrit Development AB, Stockholm, Sweden: (Accessed on 5th August 2021) [Google Scholar]
  46. Pei M., Petäjäniemi M., Regnell A., and Wijk O. Metals, 2020, 10, (7), 972 LINK [Google Scholar]
  47. ‘SSAB HYBRIT: SEK 200 Million Invested in Pilot Plant for Storage of Fossil-Free Hydrogen in Luleå’, SSAB, Stockholm, Sweden, 3rd October, 2019 LINK [Google Scholar]
  48. Teichmann D., Arlt W., Wasserscheid P., and Freymann R. Energy Environ. Sci., 2011, 4, (8), 2767 LINK [Google Scholar]
  49. ‘BMW Promotes Hydrogen Technology with New Model in 2022’, Autovista Group, London, UK, 12th August, 2020 LINK,system%20for%20sale%20last%20year [Google Scholar]
  50. Ahluwalia R. K., Hua T. Q., Peng J.-K., Kromer M., Lasher S., McKenney K., Law K., and Sinha J. “Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications”, Office of Energy Efficiency and Renewable Energy, Washington, DC, USA, 21st June, 2011 LINK [Google Scholar]
  51. Myles P. ‘Hyundai Buys into Hydrogen Storage Solution’, Automotive, Informa PLC, London, UK, 4th June, 2020 LINK [Google Scholar]
  52. Van Hoecke L., Laffineur L., Campe R., Perreault P., Verbruggen S. W., and Lenaerts S. Energy Environ. Sci., 2021, 14, (2), 815 LINK [Google Scholar]
  53. Preuster P., Papp C., and Wasserscheid P. Acc. Chem. Res., 2016, 50, (1), 74 LINK [Google Scholar]
  54. ‘Liquid Organic Hydrogen Could Facilitate Hydrogen as Propulsion Fuel’, The Maritime Executive LLC, Plantation, USA, 5th July, 2021 LINK [Google Scholar]
  55. Uhrig F., Kadar J., and Müller K. Energy Sci. Eng., 2020, 8, (6), 2044 LINK [Google Scholar]
  56. Hirschlag A. ‘Next Stop, Hydrogen-Powered Trains’,, London, UK, 27th February, 2020 LINK [Google Scholar]
  57. ‘Trains: On the Right Track’, Cummins, Columbus, USA:,are%20being%20made%20into%20reality (Accessed on 5th August 2021) [Google Scholar]
  58. “Hydrogen-Powered Aviation A Fact-Based Study of Hydrogen Technology, Economics, and Climate Impact by 2050”, Clean Sky 2 JU, Publications of European Union Office, Belgium, May, 2020 LINK [Google Scholar]
  59. ‘Airbus Reveals New Zero-Emission Concept Aircraft’, Airbus, Leiden, The Netherlands, 21st September, 2020 LINK [Google Scholar]
  60. ‘Airbus Looks to the Future with Hydrogen Planes’, BBC, London, UK, 21st September, 2020 LINK [Google Scholar]
  61. ‘Hydrogen Fuel Cells, Explained’,Airbus, Leiden, The Netherlands, 21st September, 2020 LINK [Google Scholar]
  62. Heublein N., Stelzner M., and Sattelmayer T. Int. J. Hydrogen Energy, 2020, 45, (46), 24902 LINK [Google Scholar]
  63. Southall E., and Lukashuk L. Johnson Matthey Technol. Rev., 2021, 66, 3, 271 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error