Skip to content
1887
Volume 66, Issue 3
  • ISSN: 2056-5135

Abstract

The deployment of hydrogen as an infrastructure fuel and an energy vector across a range of industries is expected to aid with meeting decarbonisation goals and achieving net zero emissions. For the transition towards a low carbon hydrogen economy, not only the production of hydrogen needs to be addressed, but also its transportation and storage. Liquid organic hydrogen carriers (LOHCs) are an attractive solution for the storage and transportation of hydrogen to allow a reliable and on-demand hydrogen supply, enabling industrial decarbonisation. This work describes the potential deployment and integration of LOHCs within different industries. These include: the transportation sector; steel and cement industries; the use of stored hydrogen to produce fuels and chemicals from flue gases and a system integration of fuel cells and LOHCs for energy storage.

Loading

Article metrics loading...

/content/journals/10.1595/205651322X16415722152512
2022-01-10
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/66/3/Lukashuk_16a_Imp-pt2.html?itemId=/content/journals/10.1595/205651322X16415722152512&mimeType=html&fmt=ahah

References

  1. ‘Sources of Greenhouse Gas Emissions’, United States Environmental Protection Agency, Washington, DC, USA:https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions (Accessed 24th December 2021) [Google Scholar]
  2. ‘The Paris Agreement: What is the Paris Agreement?’, United Nations Framework Convention on Climate Change, Bonn, Germany:https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (Accessed on 24th December 2021) [Google Scholar]
  3. I. Staffell, D. Scamman, A. Velazquez Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah, K. R. Ward, Energy Environ. Sci., 2019, 12, (2), 463 LINK https://doi.org/10.1039/c8ee01157e [Google Scholar]
  4. E. S. Hanley, J. P. Deane, B. P. Ó. Gallachóir, Renew. Sustain. Energy Rev., 2018, 82, (3), 3027 LINK https://doi.org/10.1016/j.rser.2017.10.034 [Google Scholar]
  5. K. Espegren, S. Damman, P. Pisciella, I. Graabak, A. Tomasgard, Int. J. Hydrogen Energy, 2021, 46, (45), 23125 LINK https://doi.org/10.1016/j.ijhydene.2021.04.143 [Google Scholar]
  6. P. M. Falcone, M. Hiete, A. Sapio, Curr. Opin. Green Sustain. Chem., 2021, 31, 100506 LINK https://doi.org/10.1016/j.cogsc.2021.100506 [Google Scholar]
  7. A. Sgobbi, W. Nijs, R. De Miglio, A. Chiodi, M. Gargiulo, C. Thiel, Int. J. Hydrogen Energy, 2016, 41, (1), 19 LINK https://doi.org/10.1016/j.ijhydene.2015.09.004 [Google Scholar]
  8. Y. Bicer, I. Dincer, Int. J. Hydrogen Energy, 2018, 43, (2), 1179 LINK https://doi.org/10.1016/j.ijhydene.2017.10.157 [Google Scholar]
  9. C. Acar, I. Dincer, Int. J. Hydrogen Energy, 2020, 45, (5), 3396 LINK https://doi.org/10.1016/j.ijhydene.2018.10.149 [Google Scholar]
  10. A. Öhman, E. Karakaya, F. Urban, Energy Res. Soc. Sci., 2022, 84, 102384 LINK https://doi.org/10.1016/j.erss.2021.102384 [Google Scholar]
  11. M. Noussan, P. P. Raimondi, R. Scita, M. Hafner, Sustainability, 2020, 13, (1), 298 LINK https://doi.org/10.3390/su13010298 [Google Scholar]
  12. A. M. Oliveira, R. R. Beswick, Y. Yan, Curr. Opin. Chem. Eng., 2021, 33, 100701 LINK https://doi.org/10.1016/j.coche.2021.100701 [Google Scholar]
  13. S. Damman, E. Sandberg, E. Rosenberg, P. Pisciella, I. Graabak, Energy Res. Soc. Sci., 2021, 78, 102116 LINK https://doi.org/10.1016/j.erss.2021.102116 [Google Scholar]
  14. R. Moreira dos Santos, A. Szklo, A. F. P. Lucena, P. E. V de Miranda, Int. J. Hydrogen Energy, 2021, 46, (51), 25843 LINK https://doi.org/10.1016/j.ijhydene.2021.05.112 [Google Scholar]
  15. D. Heide, L. von Bremen, M. Greiner, C. Hoffmann, M. Speckmann, S. Bofinger, Renew. Energy, 2010, 35, (11), 2483 LINK https://doi.org/10.1016/j.renene.2010.03.012 [Google Scholar]
  16. P. Zhao, J. Wang, Y. Dai, Renew. Energy, 2015, 75, 541 LINK https://doi.org/10.1016/j.renene.2014.10.040 [Google Scholar]
  17. K. Engeland, M. Borga, J.-D. Creutin, B. François, M.-H. Ramos, J.-P. Vidal, Renew. Sustain. Energy Rev., 2017, 79, 600 LINK https://doi.org/10.1016/j.rser.2017.05.046 [Google Scholar]
  18. B. Miao, L. Giordano, S. H. Chan, Int. J. Hydrogen Energy, 2021, 46, (36), 18699 LINK https://doi.org/10.1016/j.ijhydene.2021.03.067 [Google Scholar]
  19. N. Heinemann, J. Alcalde, J. M. Miocic, S. J. T. Hangx, J. Kallmeyer, C. Ostertag-Henning, A. Hassanpouryouzband, E. M. Thaysen, G. J. Strobel, C. Schmidt-Hattenberger, K. Edlmann, M. Wilkinson, M. Bentham, R. S. Haszeldine, R. Carbonell, A. Rudloff, Energy Environ. Sci., 2021, 14, (2), 853 LINK https://doi.org/10.1039/d0ee03536j [Google Scholar]
  20. M. Felderhoff, C. Weidenthaler, R. von Helmolt, U. Eberle, Phys. Chem. Chem. Phys., 2007, 9, (21), 2643 LINK https://doi.org/10.1039/b701563c [Google Scholar]
  21. J. O. Abe, A. P. I. Popoola, E. Ajenifuja, O. M. Popoola, Int. J. Hydrogen Energy, 2019, 44, (29), 15072 LINK https://doi.org/10.1016/j.ijhydene.2019.04.068 [Google Scholar]
  22. R. R. Ratnakar, N. Gupta, K. Zhang, C. van Doorne, J. Fesmire, B. Dindoruk, V. Balakotaiah, Int. J. Hydrogen Energy, 2021, 46, (47), 24149 LINK https://doi.org/10.1016/j.ijhydene.2021.05.025 [Google Scholar]
  23. A. M. Abdalla, S. Hossain, O. B. Nisfindy, A. T. Azad, M. Dawood, A. K. Azad, Energy Convers. Manag., 2018, 165, 602 LINK https://doi.org/10.1016/j.enconman.2018.03.088 [Google Scholar]
  24. M. Niermann, A. Beckendorff, M. Kaltschmitt, K. Bonhoff, Int. J. Hydrogen Energy, 2019, 44, (13), 6631 LINK https://doi.org/10.1016/j.ijhydene.2019.01.199 [Google Scholar]
  25. M. Niermann, S. Drünert, M. Kaltschmitt, K. Bonhoff, Energy Environ. Sci., 2019, 12, (1), 290 LINK https://doi.org/10.1039/c8ee02700e [Google Scholar]
  26. D. Teichmann, W. Arlt, P. Wasserscheid, Int. J. Hydrogen Energy, 2012, 37, (23), 18118 LINK https://doi.org/10.1016/j.ijhydene.2012.08.066 [Google Scholar]
  27. E. Southall, L. Lukashuk, Johnson Matthey Technol. Rev., 2021, 66, 3, 246 LINK https://www.technology.matthey.com/article/66/3/246-258/ [Google Scholar]
  28. H. Jorschick, A. Bulgarin, L. Alletsee, P. Preuster, A. Bösmann, P. Wasserscheid, ACS Sustain. Chem. Eng., 2019, 7, (4), 4186 LINK https://doi.org/10.1021/acssuschemeng.8b05778 [Google Scholar]
  29. B. Brigljević, B. Lee, R. Dickson, S. Kang, J. J. Liu, H. Lim, Cell Reports Phys. Sci., 2020, 1, (3), 100032 LINK https://doi.org/10.1016/j.xcrp.2020.100032 [Google Scholar]
  30. R. Peters, R. Deja, Q. Fang, V. N. Nguyen, P. Preuster, L. Blum, P. Wasserscheid, D. Stolten, Int. J. Hydrogen Energy, 2019, 44, (26), 13794 LINK https://doi.org/10.1016/j.ijhydene.2019.03.220 [Google Scholar]
  31. P. Preuster, Q. Fang, R. Peters, R. Deja, V. N. Nguyen, L. Blum, D. Stolten, P. Wasserscheid, Int. J. Hydrogen Energy, 2018, 43, (3), 1758 LINK https://doi.org/10.1016/j.ijhydene.2017.11.054 [Google Scholar]
  32. J. Ambrose, ‘Low Demand for Power Causes Problems for National Grid’, The Guardian, London, UK, 16th April, 2020 LINK https://www.theguardian.com/business/2020/apr/16/low-demand-for-power-causes-problems-for-national-grid [Google Scholar]
  33. ‘Power in the balance: Fluctuating Energy Demand During Times of Crisis’, Crestchic Ltd, Burton-on-Trent, UK:https://crestchicloadbanks.com/power-in-the-balance-fluctuating-energy-demand-during-times-of-crisis/ (Accessed on 5th August 2021) [Google Scholar]
  34. D. Teichmann, K. Stark, K. Müller, G. Zöttl, P. Wasserscheid, W. Arlt, Energy Environ. Sci., 2012, 5, (10), 9044 LINK https://doi.org/10.1039/c2ee22070a [Google Scholar]
  35. K. Knosala, L. Kotzur, F. T. C. Röben, P. Stenzel, L. Blum, M. Robinius, D. Stolten, Int. J. Hydrogen Energy, 2021, 46, (42), 21748 LINK https://doi.org/10.1016/j.ijhydene.2021.04.036 [Google Scholar]
  36. D. Sheldon, Johnson Matthey Technol. Rev., 2017, 61, (3), 172 LINK https://www.technology.matthey.com/article/61/3/172-182/ [Google Scholar]
  37. J. Ambrose, ‘Renewable Energy to Expand by 50% in Next Five Years – Report’, The Guardian, London, UK, 21st October, 2016 LINK https://www.theguardian.com/environment/2019/oct/21/renewable-energy-to-expand-by-50-in-next-five-years-report [Google Scholar]
  38. C. Krieger, K. Müller, W. Arlt, Chem. Eng. Technol., 2016, 39, (8), 1570 LINK https://doi.org/10.1002/ceat.201600180 [Google Scholar]
  39. M. Flores-Granobles, M. Saeys, Energy Environ. Sci., 2020, 13, (7), 1923 LINK https://doi.org/10.1039/D0EE00787K [Google Scholar]
  40. M. Leithinger, ‘Hydrogen-Energy Source for the Future?’, Voestalpine, Linz, Austria, 8th January, 2020 LINK https://www.voestalpine.com/blog/en/energy/hydrogen-energy-source-for-the-future/ [Google Scholar]
  41. ‘Production of Green Hydrogen: Technology’, H2 Future: Green Hydrogen Project, Verbund Energy4Business GmbH, Vienna, Austria:https://www.h2future-project.eu/technology (Accessed on 5th August 2021) [Google Scholar]
  42. ‘Green Hydrogen for Steel Production: RWE and thyssenkrupp Plan Partnership’, thyssenkrupp, Essen, Germany, 10th June, 2020 LINK https://www.thyssenkrupp.com/en/newsroom/press-releases/pressdetailpage/green-hydrogen-for-steel-production--rwe-and-thyssenkrupp-plan-partnership-82841 [Google Scholar]
  43. O. Winter, ‘Green Hydrogen for Steel Production: RWE and thyssenkrupp Plan Partnership, RWE AG, Essen, Germany, 10th June, 2020 LINK https://www.group.rwe/en/press/rwe-generation/2020-06-10-green-hydrogen-for-steel-production [Google Scholar]
  44. ‘HYBRIT: SSAB, LKAB and Vattenfall First in the World with hydrogen-Reduced Sponge Iron’, SSAB, Stockholm, Sweden, 21st June, 2021 LINK https://www.ssab.com/news/2021/06/hybrit-ssab-lkab-and-vattenfall-first-in-the-world-with-hydrogenreduced-sponge-iron [Google Scholar]
  45. ‘HYBRIT Fossil-Free Steel – A Mutual Opportunity’, Hybrit Development AB, Stockholm, Sweden:https://www.hybritdevelopment.se/en/ (Accessed on 5th August 2021) [Google Scholar]
  46. M. Pei, M. Petäjäniemi, A. Regnell, O. Wijk, Metals, 2020, 10, (7), 972 LINK https://doi.org/10.3390/met10070972 [Google Scholar]
  47. ‘SSAB HYBRIT: SEK 200 Million Invested in Pilot Plant for Storage of Fossil-Free Hydrogen in Luleå’, SSAB, Stockholm, Sweden, 3rd October, 2019 LINK https://www.ssab.co.uk/news/2019/10/hybrit-sek-200-million-invested-in-pilot-plant-for-storage-of-fossilfree-hydrogen-in-lule [Google Scholar]
  48. D. Teichmann, W. Arlt, P. Wasserscheid, R. Freymann, Energy Environ. Sci., 2011, 4, (8), 2767 LINK https://doi.org/10.1039/c1ee01454d [Google Scholar]
  49. ‘BMW Promotes Hydrogen Technology with New Model in 2022’, Autovista Group, London, UK, 12th August, 2020 LINK https://autovistagroup.com/news-and-insights/bmw-promotes-hydrogen-technology-new-model-2022#:~:text=BMW%20has%20confirmed%20that%20its,system%20for%20sale%20last%20year [Google Scholar]
  50. R. K. Ahluwalia, T. Q. Hua, J.-K. Peng, M. Kromer, S. Lasher, K. McKenney, K. Law, J. Sinha, “Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications”, Office of Energy Efficiency and Renewable Energy, Washington, DC, USA, 21st June, 2011 LINK https://doi.org/10.2172/1219358 [Google Scholar]
  51. P. Myles, ‘Hyundai Buys into Hydrogen Storage Solution’, Automotive, Informa PLC, London, UK, 4th June, 2020 LINK https://www.tu-auto.com/hyundai-buys-into-hydrogen-storage-solution/ [Google Scholar]
  52. L. Van Hoecke, L. Laffineur, R. Campe, P. Perreault, S. W. Verbruggen, S. Lenaerts, Energy Environ. Sci., 2021, 14, (2), 815 LINK https://doi.org/10.1039/d0ee01545h [Google Scholar]
  53. P. Preuster, C. Papp, P. Wasserscheid, Acc. Chem. Res., 2016, 50, (1), 74 LINK https://doi.org/10.1021/acs.accounts.6b00474 [Google Scholar]
  54. ‘Liquid Organic Hydrogen Could Facilitate Hydrogen as Propulsion Fuel’, The Maritime Executive LLC, Plantation, USA, 5th July, 2021 LINK https://www.maritime-executive.com/article/liquid-organic-hydrogen-could-facilitate-hydrogen-as-propulsion-fuel [Google Scholar]
  55. F. Uhrig, J. Kadar, K. Müller, Energy Sci. Eng., 2020, 8, (6), 2044 LINK https://doi.org/10.1002/ese3.646 [Google Scholar]
  56. A. Hirschlag, ‘Next Stop, Hydrogen-Powered Trains’, BBC.com, London, UK, 27th February, 2020 LINK https://www.bbc.com/future/article/20200227-how-hydrogen-powered-trains-can-tackle-climate-change [Google Scholar]
  57. ‘Trains: On the Right Track’, Cummins, Columbus, USA:https://www.hydrogenics.com/hydrogen-products-solutions/fuel-cell-power-systems/hydrail/#:~:text=Hydrail%20is%20an%20alternative%20approach,are%20being%20made%20into%20reality (Accessed on 5th August 2021) [Google Scholar]
  58. “Hydrogen-Powered Aviation A Fact-Based Study of Hydrogen Technology, Economics, and Climate Impact by 2050”, Clean Sky 2 JU, Publications of European Union Office, Belgium, May, 2020 LINK https://cleansky.paddlecms.net/sites/default/files/2021-10/20200507_Hydrogen-Powered-Aviation-report.pdf. [Google Scholar]
  59. ‘Airbus Reveals New Zero-Emission Concept Aircraft’, Airbus, Leiden, The Netherlands, 21st September, 2020 LINK https://www.airbus.com/newsroom/press-releases/en/2020/09/airbus-reveals-new-zeroemission-concept-aircraft.html [Google Scholar]
  60. ‘Airbus Looks to the Future with Hydrogen Planes’, BBC, London, UK, 21st September, 2020 LINK https://www.bbc.co.uk/news/business-54242176 [Google Scholar]
  61. ‘Hydrogen Fuel Cells, Explained’,Airbus, Leiden, The Netherlands, 21st September, 2020 LINK https://www.airbus.com/en/newsroom/news/2020-10-hydrogen-fuel-cells-explained [Google Scholar]
  62. N. Heublein, M. Stelzner, T. Sattelmayer, Int. J. Hydrogen Energy, 2020, 45, (46), 24902 LINK https://doi.org/10.1016/j.ijhydene.2020.04.274 [Google Scholar]
  63. E. Southall, L. Lukashuk, Johnson Matthey Technol. Rev., 2021, 66, 3, 271 LINK https://www.technology.matthey.com/article/66/3/271-284/ [Google Scholar]
/content/journals/10.1595/205651322X16415722152512
Loading
/content/journals/10.1595/205651322X16415722152512
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test