Skip to content
1887
Volume 67, Issue 1
  • ISSN: 2056-5135

Abstract

This is Part II of a focused review of recent highlights in the literature in cathode development for low temperature electrochemical carbon dioxide and carbon monoxide reduction to multi-carbon (C) products. Part I (1) introduced the role of CO reduction in decarbonising the chemical industry and described the catalysts and modelling approaches. Part II describes characterisation to improve the understanding and development of catalysts, the catalyst layer and the gas diffusion layer.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16703459968311
2022-10-31
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/1/Macpherson_pt2_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16703459968311&mimeType=html&fmt=ahah

References

  1. Macpherson H., Hodges T., Chuma M. H., Sherwin C., Podbevšek U., Rigg K., Celorrio V., Russell A., and Corbos E. C. Johnson Matthey Technol. Rev., 2023, 67, (1), 97 LINK https://technology.matthey.com/article/67/1/97-109/ [Google Scholar]
  2. Hori Y., ‘Electrochemical CO2 Reduction on Metal Electrodes’, in “Modern Aspects of Electrochemistry 42”, eds. Vayenas C. G., White R. E., and Gamboa-Aldeco M. E. Springer-Verlag, New York, USA, 2008, pp. 89189 LINK https://doi.org/10.1007/978-0-387-49489-0_3 [Google Scholar]
  3. Chernyshova I. V., Somasundaran P., and Ponnurangam S. Proc. Natl. Acad. Sci. USA, 2018, 115, (40), E 9261 LINK https://doi.org/10.1073/pnas.1802256115 [Google Scholar]
  4. Gunathunge C. M., Ovalle V. J., Li Y., Janik M. J., and Waegele M. M. ACS Catal., 2018, 8, (8), 7507 LINK https://doi.org/10.1021/acscatal.8b01552 [Google Scholar]
  5. Pérez-Gallent E., Figueiredo M. C., Calle-Vallejo F., and Koper M. T. M. Angew. Chem. Int. Ed., 2017, 56, (13), 3621 LINK https://doi.org/10.1002/anie.201700580 [Google Scholar]
  6. Schouten K. J. P., Pérez Gallent E., and Koper M. T. M. ACS Catal., 2013, 3, (6), 1292 LINK https://doi.org/10.1021/cs4002404 [Google Scholar]
  7. Malkani A. S., Dunwell M., and Xu B. ACS Catal., 2019, 9, (1), 474 LINK https://doi.org/10.1021/acscatal.8b04269 [Google Scholar]
  8. Beverskog B., and Puigdomenech I. J. Electrochem. Soc., 1997, 144, (10), 3476 LINK https://doi.org/10.1149/1.1838036 [Google Scholar]
  9. Nitopi S., Bertheussen E., Scott S. B., Liu X., Engstfeld A. K., Horch S., Seger B., Stephens I. E. L., Chan K., Hahn C., Nørskov J. K., Jaramillo T. F., and Chorkendorff I. Chem. Rev., 2019, 119, (12), 7610 LINK https://doi.org/10.1021/acs.chemrev.8b00705 [Google Scholar]
  10. Ren D., Deng Y., Handoko A. D., Chen C. S., Malkhandi S., and Yeo B. S. ACS Catal., 2015, 5, (5), 2814 LINK https://doi.org/10.1021/cs502128q [Google Scholar]
  11. Nguyen-Phan T.-D., Wang C., Marin C. M., Zhou Y., Stavitski E., Popczun E. J., Yu Y., Xu W., Howard B. H., Stuckman M. Y., Waluyo I., Ohodnicki P. R., and Kauffman D. R. J. Mater. Chem. A, 2019, 7, (48), 27576 LINK https://doi.org/10.1039/c9ta10135g [Google Scholar]
  12. Mandal L., Yang K. R., Motapothula M. R., Ren D., Lobaccaro P., Patra A., Sherburne M., Batista V. S., Yeo B. S., Ager J. W., Martin J., and Venkatesan T. ACS Appl. Mater. Interfaces, 2018, 10, (10), 8574 LINK https://doi.org/10.1021/acsami.7b15418 [Google Scholar]
  13. Mistry H., Varela A. S., Bonifacio C. S., Zegkinoglou I., Sinev I., Choi Y.-W., Kisslinger K., Stach E. A., Yang J. C., Strasser P., and Cuenya B. R. Nat. Commun., 2016, 7, 12123 LINK https://doi.org/10.1038/ncomms12123 [Google Scholar]
  14. Eilert A., Roberts F. S., Friebel D., and Nilsson A. J. Phys. Chem. Lett., 2016, 7, (8), 1466 LINK https://doi.org/10.1021/acs.jpclett.6b00367 [Google Scholar]
  15. Eilert A., Cavalca F., Roberts F. S., Osterwalder J., Liu C., Favaro M., Crumlin E. J., Ogasawara H., Friebel D., Pettersson L. G. M., and Nilsson A. J. Phys. Chem. Lett., 2017, 8, (1), 285, LINK https://doi.org/10.1021/acs.jpclett.6b02273 [Google Scholar]
  16. Gao D., Zegkinoglou I., Divins N. J., Scholten F., Sinev I., Grosse P., and Roldan Cuenya B. ACS Nano, 2017, 11, (5), 4825 LINK https://doi.org/10.1021/acsnano.7b01257 [Google Scholar]
  17. Ma S., Sadakiyo M., Heima M., Luo R., Haasch R. T., Gold J. I., Yamauchi M., and Kenis P. J. A. J. Am. Chem. Soc., 2017, 139, (1), 47 LINK https://doi.org/10.1021/jacs.6b10740 [Google Scholar]
  18. Yang P.-P., Zhang X.-L., Gao F.-Y., Zheng Y.-R., Niu Z.-Z., Yu X., Liu R., Wu Z.-Z., Qin S., Chi L.-P., Duan Y., Ma T., Zheng X.-S., Zhu J.-F., Wang H.-J., Gao M.-R., and Yu S.-H. J. Am. Chem. Soc., 2020, 142, (13), 6400 LINK https://doi.org/10.1021/jacs.0c01699 [Google Scholar]
  19. De Luna P., Quintero-Bermudez R., Dinh C.-T., Ross M. B., Bushuyev O. S., Todorović P., Regier T., Kelley S. O., Yang P., and Sargent E. H. Nat. Catal., 2018, 1, (2), 103 LINK https://doi.org/10.1038/s41929-017-0018-9 [Google Scholar]
  20. Jhong H.-R. “M.”, Brushett F. R., and Kenis P. J. A. Adv. Energy Mater., 2013, 3, (5), 589 LINK https://doi.org/10.1002/aenm.201200759 [Google Scholar]
  21. Dinh C.-T., Burdyny T., Kibria M. G., Seifitokaldani A., Gabardo C. M., García de Arquer F. P., Kiani A., Edwards J. P., De Luna P., Bushuyev O. S., Zou C., Quintero-Bermudez R., Pang Y., Sinton D., and Sargent E. H. Science, 2018, 360, (6390), 783 LINK https://doi.org/10.1126/science.aas9100 [Google Scholar]
  22. Jouny M., Luc W., and Jiao F. Ind. Eng. Chem. Res., 2018, 57, (6), 2165 LINK https://doi.org/10.1021/acs.iecr.7b03514 [Google Scholar]
  23. Liu K., Smith W. A., and Burdyny T. ACS Energy Lett., 2019, 4, (3), 639 LINK https://doi.org/10.1021/acsenergylett.9b00137 [Google Scholar]
  24. Leonard M. E., Orella M. J., Aiello N., Román-Leshkov Y., Forner-Cuenca A., and Brushett F. R. J. Electrochem. Soc., 2020, 167, (12), 124521 LINK https://doi.org/10.1149/1945-7111/abaa1a [Google Scholar]
  25. Wheeler D. G., Mowbray B. A. W., Reyes A., Habibzadeh F., He J., and Berlinguette C. P. Energy Environ. Sci., 2020, 13, (12), 5126 LINK https://doi.org/10.1039/d0ee02219e [Google Scholar]
  26. Puring K. J., Siegmund D., Timm J., Möllenbruck F., Schemme S., Marschall R., and Apfel U.-P. Adv. Sustain. Syst., 2021, 5, (1), 2000088 LINK https://doi.org/10.1002/adsu.202000088 [Google Scholar]
  27. Pham T. H. M., Zhang J., Li M., Shen T.-H., Ko Y., Tileli V., Luo W., and Züttel A. Adv. Energy Mater., 2022, 12, (9), 2103663 LINK https://doi.org/10.1002/aenm.202103663 [Google Scholar]
  28. An P., Wei L., Li H., Yang B., Liu K., Fu J., Li H., Liu H., Hu J., Lu Y.-R., Pan H., Chan T.-S., Zhang N., and Liu M. J. Mater. Chem. A, 2020, 8, (31), 15936 LINK https://doi.org/10.1039/d0ta03645e [Google Scholar]
  29. Wang M., Wan L., and Luo J. Nanoscale, 2021, 13, (6), 3588 LINK https://doi.org/10.1039/d0nr08369k [Google Scholar]
  30. Chang Q., Lee J. H., Liu Y., Xie Z., Hwang S., Marinkovic N. S., Park A.-H. A., Kattel S., and Chen J. G. JACS Au, 2021, 2, (1), 214 LINK https://doi.org/10.1021/jacsau.1c00487 [Google Scholar]
  31. Kim C., Bui J. C., Luo X., Cooper J. K., Kusoglu A., Weber A. Z., and Bell A. T. Nat. Energy, 2021, 6, (11), 1026 LINK https://doi.org/10.1038/s41560-021-00920-8 [Google Scholar]
  32. Mowbray B. A. W., Dvorak D. J., Taherimakhsousi N., and Berlinguette C. P. Energy Fuels, 2021, 35, (23), 19178 LINK https://doi.org/10.1021/acs.energyfuels.1c01731 [Google Scholar]
  33. Möller T., Thanh T. N., Wang X., Ju W., Jovanov Z., and Strasser P. Energy Environ. Sci., 2021, 14, (11), 5995 LINK https://doi.org/10.1039/d1ee01696b [Google Scholar]
  34. Suter S., and Haussener S. Energy Environ. Sci., 2019, 12, (5), 1668 LINK https://doi.org/10.1039/c9ee00656g [Google Scholar]
  35. Sisler J., Khan S., Ip A. H., Schreiber M. W., Jaffer S. A., Bobicki E. R., Dinh C.-T., and Sargent E. H. ACS Energy Lett., 2021, 6, (3), 997 LINK https://doi.org/10.1021/acsenergylett.0c02633 [Google Scholar]
  36. Vermaas D. A., Wiegman S., Nagaki T., and Smith W. A. Sustain. Energy Fuels, 2018, 2, (9), 2006 LINK https://doi.org/10.1039/c8se00118a [Google Scholar]
  37. Chen X., Chen J., Alghoraibi N. M., Henckel D. A., Zhang R., Nwabara U. O., Madsen K. E., Kenis P. J. A., Zimmerman S. C., and Gewirth A. A. Nat. Catal., 2021, 4, (1), 20 LINK https://doi.org/10.1038/s41929-020-00547-0 [Google Scholar]
  38. Zulfiqar S., Sarwar M. I., and Mecerreyes D. Polym. Chem., 2015, 6, (36), 6435 LINK https://doi.org/10.1039/c5py00842e [Google Scholar]
  39. Lees E. W., Mowbray B. A. W., Parlane F. G. L., and Berlinguette C. P. Nat. Rev. Mater., 2022, 7, (1), 55 LINK https://doi.org/10.1038/s41578-021-00356-2 [Google Scholar]
  40. Wakerley D., Lamaison S., Wicks J., Clemens A., Feaster J., Corral D., Jaffer S. A., Sarkar A., Fontecave M., Duoss E. B., Baker S., Sargent E. H., Jaramillo T. F., and Hahn C. Nat. Energy, 2022, 7, (2), 130 LINK https://doi.org/10.1038/s41560-021-00973-9 [Google Scholar]
  41. Higgins D., Hahn C., Xiang C., Jaramillo T. F., and Weber A. Z. ACS Energy Lett., 2019, 4, (1), 317 LINK https://doi.org/10.1021/acsenergylett.8b02035 [Google Scholar]
  42. Yang K. D., Ko W. R., Lee J. H., Kim S. J., Lee H., Lee M. H., and Nam K. T. Angew. Chem. Int. Ed., 2017, 56, (3), 796 LINK https://doi.org/10.1002/anie.201610432 [Google Scholar]
  43. Veenstra F. L. P., Ackerl N., Martín A. J., and Pérez-Ramírez J. Chem, 2020, 6, (7), 1707 LINK https://doi.org/10.1016/j.chempr.2020.04.001 [Google Scholar]
  44. Tan Y. C., Lee K. B., Song H., and Oh J. Joule, 2020, 4, (5), 1104 LINK https://doi.org/10.1016/j.joule.2020.03.013 [Google Scholar]
  45. Varela A. S. Curr. Opin. Green Sustain. Chem., 2020, 26, 100371 LINK https://doi.org/10.1016/j.cogsc.2020.100371 [Google Scholar]
  46. Wicks J., Jue M. L., Beck V. A., Oakdale J. S., Dudukovic N. A., Clemens A. L., Liang S., Ellis M. E., Lee G., Baker S. E., Duoss E. B., and Sargent E. H. Adv. Mater., 2021, 33, (7), 2003855 LINK https://doi.org/10.1002/adma.202003855 [Google Scholar]
  47. Leonard M. E., Clarke L. E., Forner-Cuenca A., Brown S. M., and Brushett F. R. ChemSusChem, 2020, 13, (2), 400 LINK https://doi.org/10.1002/cssc.201902547 [Google Scholar]
  48. Li M., Idros M. N., Wu Y., Burdyny T., Garg S., Zhao X. S., Wang G., and Rufford T. E. J. Mater. Chem. A, 2021, 9, (35), 19369 LINK https://doi.org/10.1039/d1ta03636j [Google Scholar]
  49. Martín A. J., Larrazábal G. O., and Pérez-Ramírez J. Green Chem., 2015, 17, (12), 5114 LINK https://doi.org/10.1039/c5gc01893e [Google Scholar]
  50. Yang K., Kas R., Smith W. A., and Burdyny T. ACS Energy Lett., 2021, 6, (1), 33 LINK https://doi.org/10.1021/acsenergylett.0c02184 [Google Scholar]
  51. Niu Z.-Z., Gao F.-Y., Zhang X.-L., Yang P.-P., Liu R., Chi L.-P., Wu Z.-Z., Qin S., Yu X., and Gao M.-R. J. Am. Chem. Soc., 2021, 143, (21), 8011 LINK https://doi.org/10.1021/jacs.1c01190 [Google Scholar]
  52. Gabardo C. M., O’Brien C. P., Edwards J. P., McCallum C., Xu Y., Dinh C.-T., Li J., Sargent E. H., and Sinton D. Joule, 2019, 3, (11), 2777 LINK https://doi.org/10.1016/j.joule.2019.07.021 [Google Scholar]
  53. Kovalev M. K., Ren H., Muhamad M. Z., Ager J. W., and Lapkin A. A. ACS Energy Lett., 2022, 7, (2), 599 LINK https://doi.org/10.1021/acsenergylett.1c02450 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651323X16703459968311
Loading
/content/journals/10.1595/205651323X16703459968311
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error