Skip to content
1887
Volume 67, Issue 1
  • ISSN: 2056-5135

Abstract

This is a focused review of recent highlights in the literature in cathode development for low temperature electrochemical carbon dioxide and carbon monoxide reduction to multi-carbon (C) products. The major goals for the field are to increase Faradaic efficiency (FE) for specific C products, lower cell voltage for industrially relevant current densities and increase cell lifetime. A key to achieving these goals is the rational design of cathodes through increased understanding of structure-selectivity and structure-activity relationships for catalysts and the influence of catalyst binders and gas diffusion layers (GDLs) on the catalyst microenvironment and subsequent performance.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16672291226135
2022-10-31
2024-02-22
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/1/Macpherson_pt1_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16672291226135&mimeType=html&fmt=ahah

References

  1. Schiffer Z. J., and Manthiram K. Joule, 2017, 1, (1), 10 LINK https://doi.org/10.1016/j.joule.2017.07.008 [Google Scholar]
  2. Alcasabas A., Ellis P. R., Malone I., Williams G., and Zalitis C. Johnson Matthey Technol. Rev., 2021, 65, (2), 180 LINK https://technology.matthey.com/article/65/2/180-196/ [Google Scholar]
  3. Hernandez-Aldave S., and Andreoli E. Catalysts, 2020, 10, (6), 713 LINK https://doi.org/10.3390/catal10060713 [Google Scholar]
  4. Salvatore D., and Berlinguette C. P. ACS Energy Lett., 2020, 5, (1), 215 LINK https://doi.org/10.1021/acsenergylett.9b02356 [Google Scholar]
  5. Holzapfel P., Bühler M., Van Pham C., Hegge F., Böhm T., McLaughlin D., Breitwieser M., and Thiele S. Electrochem. Commun., 2020, 110, 106640 LINK https://doi.org/10.1016/j.elecom.2019.106640 [Google Scholar]
  6. Yoshio H., Katsuhei K., and Shin S. Chem. Lett., 1985, 14, (11), 1695 LINK https://doi.org/10.1246/cl.1985.1695 [Google Scholar]
  7. Nitopi S., Bertheussen E., Scott S. B., Liu X., Engstfeld A. K., Horch S., Seger B., Stephens I. E. L., Chan K., Hahn C., Nørskov J. K., Jaramillo T. F., and Chorkendorff I. Chem. Rev., 2019, 119, (12), 7610 LINK https://doi.org/10.1021/acs.chemrev.8b00705 [Google Scholar]
  8. Frese K. W. ‘Electrochemical Reduction of CO2 at Solid Electrodes’, in “Electrochemical and Electrocatalytic Reactions of Carbon Dioxide”, Ch. 6, Elsevier Science Publishers BV, Amsterdam, The Netherlands, 1993, pp. 144216 LINK https://doi.org/10.1016/b978-0-444-88316-2.50010-3 [Google Scholar]
  9. Hori Y., Takahashi I., Koga O., and Hoshi N. J. Phys. Chem. B, 2002, 106, (1), 15 LINK https://doi.org/10.1021/jp013478d [Google Scholar]
  10. Takahashi I., Koga O., Hoshi N., and Hori Y. J. Electroanal. Chem., 2002, 533, (1–2), 135 LINK https://doi.org/10.1016/s0022-0728(02)01081-1 [Google Scholar]
  11. De Gregorio G. L., Burdyny T., Loiudice A., Iyengar P., Smith W. A., and Buonsanti R. ACS Catal., 2020, 10, (9), 4854 LINK https://doi.org/10.1021/acscatal.0c00297 [Google Scholar]
  12. Kim Y.-G., Javier A., Baricuatro J. H., Torelli D., Cummins K. D., Tsang C. F., Hemminger J. C., and Soriaga M. P. J. Electroanal. Chem., 2016, 780, 290 LINK https://doi.org/10.1016/j.jelechem.2016.09.029 [Google Scholar]
  13. Bagger A., Ju W., Varela A. S., Strasser P., and Rossmeisl J. ChemPhysChem, 2017, 18, (22), 3266 LINK https://doi.org/10.1002/cphc.201700736 [Google Scholar]
  14. Kitchin J. R., Nørskov J. K., Barteau M. A., and Chen J. G. Phys. Rev. Lett., 2004, 93, (15), 156801 LINK https://doi.org/10.1103/physrevlett.93.156801 [Google Scholar]
  15. Hansen H. A., Shi C., Lausche A. C., Peterson A. A., and Nørskov J. K. Phys. Chem. Chem. Phys., 2016, 18, (13), 9194 LINK https://doi.org/10.1039/c5cp07717f [Google Scholar]
  16. Ohkawa K., Noguchi Y., Nakayama S., Hashimoto K., and Fujishima A. J. Electroanal. Chem., 1993, 348, (1–2), 459 LINK https://doi.org/10.1016/0022-0728(93)80152-8 [Google Scholar]
  17. Ma S., Sadakiyo M., Heima M., Luo R., Haasch R. T., Gold J. I., Yamauchi M., and Kenis P. J. A. J. Am. Chem. Soc., 2017, 139, (1), 47 LINK https://doi.org/10.1021/jacs.6b10740 [Google Scholar]
  18. Morales-Guio C. G., Cave E. R., Nitopi S. A., Feaster J. T., Wang L., Kuhl K. P., Jackson A., Johnson N. C., Abram D. N., Hatsukade T., Hahn C., and Jaramillo T. F. Nat. Catal., 2018, 1, (10), 764 LINK https://doi.org/10.1038/s41929-018-0139-9 [Google Scholar]
  19. Lin Y., Lee D. U., Tan S., Koshy D. M., Lin T. Y., Wang L., Corral D., Avilés Acosta J. E., Zamora Zeledon J. A., Beck V. A., Baker S. E., Duoss E. B., Hahn C., and Jaramillo T. F. Adv. Funct. Mater., 2022, 32, (28), 2113252 LINK https://doi.org/10.1002/adfm.202113252 [Google Scholar]
  20. Li C. W., and Kanan M. W. J. Am. Chem. Soc., 2012, 134, (17), 7231 LINK https://doi.org/10.1021/ja3010978 [Google Scholar]
  21. Ma M., Djanashvili K., and Smith W. A. Angew. Chem. Int. Ed., 2016, 55, (23), 6680 LINK https://doi.org/10.1002/anie.201601282 [Google Scholar]
  22. Eilert A., Cavalca F., Roberts F. S., Osterwalder J., Liu C., Favaro M., Crumlin E. J., Ogasawara H., Friebel D., Pettersson L. G. M., and Nilsson A. J. Phys. Chem. Lett., 2016, 8, (1), 285 LINK https://doi.org/10.1021/acs.jpclett.6b02273 [Google Scholar]
  23. Verdaguer-Casadevall A., Li C. W., Johansson T. P., Scott S. B., McKeown J. T., Kumar M., Stephens I. E. L., Kanan M. W., and Chorkendorff I. J. Am. Chem. Soc., 2015, 137, (31), 9808 LINK https://doi.org/10.1021/jacs.5b06227 [Google Scholar]
  24. Feng X., Jiang K., Fan S., and Kanan M. W. ACS Cent. Sci., 2016, 2, (3), 169 LINK https://doi.org/10.1021/acscentsci.6b00022 [Google Scholar]
  25. Jiang K., Sandberg R. B., Akey A. J., Liu X., Bell D. C., Nørskov J. K., Chan K., and Wang H. Nat. Catal., 2018, 1, (2), 111 LINK https://doi.org/10.1038/s41929-017-0009-x [Google Scholar]
  26. Cheng D., Zhao Z.-J., Zhang G., Yang P., Li L., Gao H., Liu S., Chang X., Chen S., Wang T., Ozin G. A., Liu Z., and Gong J. Nat. Commun., 2021, 12, (1), 395 LINK https://doi.org/10.1038/s41467-020-20615-0 [Google Scholar]
  27. Lum Y., and Ager J. W. Nat. Catal., 2018, 2, (1), 86 LINK https://doi.org/10.1038/s41929-018-0201-7 [Google Scholar]
  28. Nam D.-H., Bushuyev O. S., Li J., De Luna P., Seifitokaldani A., Dinh C.-T., de Arquer F. P. G., Wang Y., Liang Z., Proppe A. H., Tan C. S., Todorović P., Shekhah O., Gabardo C. M., Jo J. W., Choi J., Choi M.-J., Baek S.-W., Kim J., Sinton D., Kelley S. O., Eddaoudi M., and Sargent E. H. J. Am. Chem. Soc., 2018, 140, (36), 11378 LINK https://doi.org/10.1021/jacs.8b06407 [Google Scholar]
  29. Yao K., Xia Y., Li J., Wang N., Han J., Gao C., Han M., Shen G., Liu Y., Seifitokaldani A., Sun X., and Liang H. J. Mater. Chem. A, 2020, 8, (22), 11117 LINK https://doi.org/10.1039/d0ta02395g [Google Scholar]
  30. Qiu Y.-L., Zhong H.-X., Zhang T.-T., Xu W.-B., Su P.-P., Li X.-F., and Zhang H.-M. ACS Appl. Mater. Interfaces, 2018, 10, (3), 2480 LINK https://doi.org/10.1021/acsami.7b15255 [Google Scholar]
  31. Hori Y., Murata A., and Takahashi R. J. Chem. Soc. Faraday Trans. 1, 1989, 85, (8), 2309 LINK https://doi.org/10.1039/f19898502309 [Google Scholar]
  32. Gattrell M., Gupta N., and Co A. J. Electroanal. Chem., 2006, 594, (1), 1 LINK https://doi.org/10.1016/j.jelechem.2006.05.013 [Google Scholar]
  33. Hansen H. A., Varley J. B., Peterson A. A., and Nørskov J. K. J. Phys. Chem. Lett., 2013, 4, (3), 388 LINK https://doi.org/10.1021/jz3021155 [Google Scholar]
  34. Kortlever R., Shen J., Schouten K. J. P., Calle-Vallejo F., and Koper M. T. M. J. Phys. Chem. Lett., 2015, 6, (20), 4073 LINK https://doi.org/10.1021/acs.jpclett.5b01559 [Google Scholar]
  35. Hussain J., Jónsson H., and Skúlason E. ACS Catal., 2018, 8, (6), 5240 LINK https://doi.org/10.1021/acscatal.7b03308 [Google Scholar]
  36. Peterson A. A., and Nørskov J. K. J. Phys. Chem. Lett., 2012, 3, (2), 251 LINK https://doi.org/10.1021/jz201461p [Google Scholar]
  37. Peterson A. A., Abild-Pedersen F., Studt F., Rossmeisl J., and Nørskov J. K. Energy Environ. Sci., 2010, 3, (9), 1311 LINK https://doi.org/10.1039/c0ee00071j [Google Scholar]
  38. Nie X., Luo W., Janik M. J., and Asthagiri A. J. Catal., 2014, 312, 108 LINK https://doi.org/10.1016/j.jcat.2014.01.013 [Google Scholar]
  39. Mota F. M., and Kim D. H. Chem. Soc. Rev., 2019, 48, (1), 205 LINK https://doi.org/10.1039/c8cs00527c [Google Scholar]
  40. Rendón-Calle A., Builes S., and Calle-Vallejo F. Curr. Opin. Electrochem., 2018, 9, 158 LINK https://doi.org/10.1016/j.coelec.2018.03.012 [Google Scholar]
  41. Huang J., Hörmann N., Oveisi E., Loiudice A., De Gregorio G. L., Andreussi O., Marzari N., and Buonsanti R. Nat. Commun., 2018, 9, 3117 LINK https://doi.org/10.1038/s41467-018-05544-3 [Google Scholar]
  42. Kuo L., and Dinh C.-T. Curr. Opin. Electrochem., 2021, 30, 100807 LINK https://doi.org/10.1016/j.coelec.2021.100807 [Google Scholar]
  43. Li Q., Zhang Y., Shi L., Wu M., Ouyang Y., and Wang J. InfoMat, 2021, 3, (11), 1285 LINK https://doi.org/10.1002/inf2.12229 [Google Scholar]
  44. Mangione G., Huang J., Buonsanti R., and Corminboeuf C. J. Phys. Chem. Lett., 2019, 10, (15), 4259 LINK https://doi.org/10.1021/acs.jpclett.9b01471 [Google Scholar]
  45. Montoya J. H., Shi C., Chan K., and Nørskov J. K. J. Phys. Chem. Lett., 2015, 6, (11), 2032 LINK https://doi.org/10.1021/acs.jpclett.5b00722 [Google Scholar]
  46. Kuhl K. P., Hatsukade T., Cave E. R., Abram D. N., Kibsgaard J., and Jaramillo T. F. J. Am. Chem. Soc., 2014, 136, (40), 14107 LINK https://doi.org/10.1021/ja505791r [Google Scholar]
  47. Resasco J., Chen L. D., Clark E., Tsai C., Hahn C., Jaramillo T. F., Chan K., and Bell A. T. J. Am. Chem. Soc., 2017, 139, (32), 11277 LINK https://doi.org/10.1021/jacs.7b06765 [Google Scholar]
  48. Monteiro M. C. O., Dattila F., Hagedoorn B., García-Muelas R., López N., and Koper M. T. M. Nat. Catal., 2021, 4, (8), 654 LINK https://doi.org/10.1038/s41929-021-00655-5 [Google Scholar]
  49. Greeley J. Annu. Rev. Chem. Biomol. Eng., 2016, 7, 605 LINK https://doi.org/10.1146/annurev-chembioeng-080615-034413 [Google Scholar]
  50. Kohn W., and Sham L. J. Phys. Rev., 1965, 140, (4A), A1133 LINK https://doi.org/10.1103/physrev.140.a1133 [Google Scholar]
  51. Rappe A. M., Rabe K. M., Kaxiras E., and Joannopoulos J. D. Phys. Rev. B, 1990, 41, (2), 1227 LINK https://doi.org/10.1103/physrevb.41.1227 [Google Scholar]
  52. Asthagiri D., Pratt L. R., and Kress J. D. Phys. Rev. E, 2003, 68, (4), 041505 LINK https://doi.org/10.1103/physreve.68.041505 [Google Scholar]
  53. Todorova T., Seitsonen A. P., Hutter J., Kuo I.-F. W., and Mundy C. J. J. Phys. Chem. B, 2006, 110, (8), 3685 LINK https://doi.org/10.1021/jp055127v [Google Scholar]
  54. Schwarz K., and Sundararaman R. Surf. Sci. Rep., 2020, 75, (2), 100492 LINK https://doi.org/10.1016/j.surfrep.2020.100492 [Google Scholar]
  55. Nishihara S., and Otani M. Phys. Rev. B, 2017, 96, (11), 115429 LINK https://doi.org/10.1103/physrevb.96.115429 [Google Scholar]
  56. Fernandez-Alvarez V. M., and Eikerling M. H. ACS Appl. Mater. Interfaces, 2019, 11, (46), 43774 LINK https://doi.org/10.1021/acsami.9b16326 [Google Scholar]
  57. Weitzner S. E., Akhade S. A., Varley J. B., Wood B. C., Otani M., Baker S. E., and Duoss E. B. J. Phys. Chem. Lett., 2020, 11, (10), 4113 LINK https://doi.org/10.1021/acs.jpclett.0c00957 [Google Scholar]
  58. Hagiwara S., Nishihara S., Kuroda F., and Otani M. Phys. Rev. Mater., 2022, 6, (9), 093802 LINK https://doi.org/10.1103/physrevmaterials.6.093802 [Google Scholar]
  59. Xu S., and Carter E. A. Chem. Rev., 2019, 119, (11), 6631 LINK https://doi.org/10.1021/acs.chemrev.8b00481 [Google Scholar]
  60. Todorova T. K., Schreiber M. W., and Fontecave M. ACS Catal., 2020, 10, (3), 1754 LINK https://doi.org/10.1021/acscatal.9b04746 [Google Scholar]
  61. Macpherson H., Hodges T., Chuma M. H., Sherwin C., Podbevšek U., Rigg K., Celorrio V., Russell A., and Corbos E. C. Johnson Matthey Technol. Rev., 2023, 67, (1), 110 LINK https://technology.matthey.com/article/67/1/110-123/ [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651323X16672291226135
Loading
/content/journals/10.1595/205651323X16672291226135
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error