Skip to content
Volume 67, Issue 1
  • ISSN: 2056-5135


This is a focused review of recent highlights in the literature in cathode development for low temperature electrochemical carbon dioxide and carbon monoxide reduction to multi-carbon (C) products. The major goals for the field are to increase Faradaic efficiency (FE) for specific C products, lower cell voltage for industrially relevant current densities and increase cell lifetime. A key to achieving these goals is the rational design of cathodes through increased understanding of structure-selectivity and structure-activity relationships for catalysts and the influence of catalyst binders and gas diffusion layers (GDLs) on the catalyst microenvironment and subsequent performance.


Article metrics loading...

Loading full text...

Full text loading...



  1. Schiffer Z. J., and Manthiram K. Joule, 2017, 1, (1), 10 LINK [Google Scholar]
  2. Alcasabas A., Ellis P. R., Malone I., Williams G., and Zalitis C. Johnson Matthey Technol. Rev., 2021, 65, (2), 180 LINK [Google Scholar]
  3. Hernandez-Aldave S., and Andreoli E. Catalysts, 2020, 10, (6), 713 LINK [Google Scholar]
  4. Salvatore D., and Berlinguette C. P. ACS Energy Lett., 2020, 5, (1), 215 LINK [Google Scholar]
  5. Holzapfel P., Bühler M., Van Pham C., Hegge F., Böhm T., McLaughlin D., Breitwieser M., and Thiele S. Electrochem. Commun., 2020, 110, 106640 LINK [Google Scholar]
  6. Yoshio H., Katsuhei K., and Shin S. Chem. Lett., 1985, 14, (11), 1695 LINK [Google Scholar]
  7. Nitopi S., Bertheussen E., Scott S. B., Liu X., Engstfeld A. K., Horch S., Seger B., Stephens I. E. L., Chan K., Hahn C., Nørskov J. K., Jaramillo T. F., and Chorkendorff I. Chem. Rev., 2019, 119, (12), 7610 LINK [Google Scholar]
  8. Frese K. W. ‘Electrochemical Reduction of CO2 at Solid Electrodes’, in “Electrochemical and Electrocatalytic Reactions of Carbon Dioxide”, Ch. 6, Elsevier Science Publishers BV, Amsterdam, The Netherlands, 1993, pp. 144216 LINK [Google Scholar]
  9. Hori Y., Takahashi I., Koga O., and Hoshi N. J. Phys. Chem. B, 2002, 106, (1), 15 LINK [Google Scholar]
  10. Takahashi I., Koga O., Hoshi N., and Hori Y. J. Electroanal. Chem., 2002, 533, (1–2), 135 LINK [Google Scholar]
  11. De Gregorio G. L., Burdyny T., Loiudice A., Iyengar P., Smith W. A., and Buonsanti R. ACS Catal., 2020, 10, (9), 4854 LINK [Google Scholar]
  12. Kim Y.-G., Javier A., Baricuatro J. H., Torelli D., Cummins K. D., Tsang C. F., Hemminger J. C., and Soriaga M. P. J. Electroanal. Chem., 2016, 780, 290 LINK [Google Scholar]
  13. Bagger A., Ju W., Varela A. S., Strasser P., and Rossmeisl J. ChemPhysChem, 2017, 18, (22), 3266 LINK [Google Scholar]
  14. Kitchin J. R., Nørskov J. K., Barteau M. A., and Chen J. G. Phys. Rev. Lett., 2004, 93, (15), 156801 LINK [Google Scholar]
  15. Hansen H. A., Shi C., Lausche A. C., Peterson A. A., and Nørskov J. K. Phys. Chem. Chem. Phys., 2016, 18, (13), 9194 LINK [Google Scholar]
  16. Ohkawa K., Noguchi Y., Nakayama S., Hashimoto K., and Fujishima A. J. Electroanal. Chem., 1993, 348, (1–2), 459 LINK [Google Scholar]
  17. Ma S., Sadakiyo M., Heima M., Luo R., Haasch R. T., Gold J. I., Yamauchi M., and Kenis P. J. A. J. Am. Chem. Soc., 2017, 139, (1), 47 LINK [Google Scholar]
  18. Morales-Guio C. G., Cave E. R., Nitopi S. A., Feaster J. T., Wang L., Kuhl K. P., Jackson A., Johnson N. C., Abram D. N., Hatsukade T., Hahn C., and Jaramillo T. F. Nat. Catal., 2018, 1, (10), 764 LINK [Google Scholar]
  19. Lin Y., Lee D. U., Tan S., Koshy D. M., Lin T. Y., Wang L., Corral D., Avilés Acosta J. E., Zamora Zeledon J. A., Beck V. A., Baker S. E., Duoss E. B., Hahn C., and Jaramillo T. F. Adv. Funct. Mater., 2022, 32, (28), 2113252 LINK [Google Scholar]
  20. Li C. W., and Kanan M. W. J. Am. Chem. Soc., 2012, 134, (17), 7231 LINK [Google Scholar]
  21. Ma M., Djanashvili K., and Smith W. A. Angew. Chem. Int. Ed., 2016, 55, (23), 6680 LINK [Google Scholar]
  22. Eilert A., Cavalca F., Roberts F. S., Osterwalder J., Liu C., Favaro M., Crumlin E. J., Ogasawara H., Friebel D., Pettersson L. G. M., and Nilsson A. J. Phys. Chem. Lett., 2016, 8, (1), 285 LINK [Google Scholar]
  23. Verdaguer-Casadevall A., Li C. W., Johansson T. P., Scott S. B., McKeown J. T., Kumar M., Stephens I. E. L., Kanan M. W., and Chorkendorff I. J. Am. Chem. Soc., 2015, 137, (31), 9808 LINK [Google Scholar]
  24. Feng X., Jiang K., Fan S., and Kanan M. W. ACS Cent. Sci., 2016, 2, (3), 169 LINK [Google Scholar]
  25. Jiang K., Sandberg R. B., Akey A. J., Liu X., Bell D. C., Nørskov J. K., Chan K., and Wang H. Nat. Catal., 2018, 1, (2), 111 LINK [Google Scholar]
  26. Cheng D., Zhao Z.-J., Zhang G., Yang P., Li L., Gao H., Liu S., Chang X., Chen S., Wang T., Ozin G. A., Liu Z., and Gong J. Nat. Commun., 2021, 12, (1), 395 LINK [Google Scholar]
  27. Lum Y., and Ager J. W. Nat. Catal., 2018, 2, (1), 86 LINK [Google Scholar]
  28. Nam D.-H., Bushuyev O. S., Li J., De Luna P., Seifitokaldani A., Dinh C.-T., de Arquer F. P. G., Wang Y., Liang Z., Proppe A. H., Tan C. S., Todorović P., Shekhah O., Gabardo C. M., Jo J. W., Choi J., Choi M.-J., Baek S.-W., Kim J., Sinton D., Kelley S. O., Eddaoudi M., and Sargent E. H. J. Am. Chem. Soc., 2018, 140, (36), 11378 LINK [Google Scholar]
  29. Yao K., Xia Y., Li J., Wang N., Han J., Gao C., Han M., Shen G., Liu Y., Seifitokaldani A., Sun X., and Liang H. J. Mater. Chem. A, 2020, 8, (22), 11117 LINK [Google Scholar]
  30. Qiu Y.-L., Zhong H.-X., Zhang T.-T., Xu W.-B., Su P.-P., Li X.-F., and Zhang H.-M. ACS Appl. Mater. Interfaces, 2018, 10, (3), 2480 LINK [Google Scholar]
  31. Hori Y., Murata A., and Takahashi R. J. Chem. Soc. Faraday Trans. 1, 1989, 85, (8), 2309 LINK [Google Scholar]
  32. Gattrell M., Gupta N., and Co A. J. Electroanal. Chem., 2006, 594, (1), 1 LINK [Google Scholar]
  33. Hansen H. A., Varley J. B., Peterson A. A., and Nørskov J. K. J. Phys. Chem. Lett., 2013, 4, (3), 388 LINK [Google Scholar]
  34. Kortlever R., Shen J., Schouten K. J. P., Calle-Vallejo F., and Koper M. T. M. J. Phys. Chem. Lett., 2015, 6, (20), 4073 LINK [Google Scholar]
  35. Hussain J., Jónsson H., and Skúlason E. ACS Catal., 2018, 8, (6), 5240 LINK [Google Scholar]
  36. Peterson A. A., and Nørskov J. K. J. Phys. Chem. Lett., 2012, 3, (2), 251 LINK [Google Scholar]
  37. Peterson A. A., Abild-Pedersen F., Studt F., Rossmeisl J., and Nørskov J. K. Energy Environ. Sci., 2010, 3, (9), 1311 LINK [Google Scholar]
  38. Nie X., Luo W., Janik M. J., and Asthagiri A. J. Catal., 2014, 312, 108 LINK [Google Scholar]
  39. Mota F. M., and Kim D. H. Chem. Soc. Rev., 2019, 48, (1), 205 LINK [Google Scholar]
  40. Rendón-Calle A., Builes S., and Calle-Vallejo F. Curr. Opin. Electrochem., 2018, 9, 158 LINK [Google Scholar]
  41. Huang J., Hörmann N., Oveisi E., Loiudice A., De Gregorio G. L., Andreussi O., Marzari N., and Buonsanti R. Nat. Commun., 2018, 9, 3117 LINK [Google Scholar]
  42. Kuo L., and Dinh C.-T. Curr. Opin. Electrochem., 2021, 30, 100807 LINK [Google Scholar]
  43. Li Q., Zhang Y., Shi L., Wu M., Ouyang Y., and Wang J. InfoMat, 2021, 3, (11), 1285 LINK [Google Scholar]
  44. Mangione G., Huang J., Buonsanti R., and Corminboeuf C. J. Phys. Chem. Lett., 2019, 10, (15), 4259 LINK [Google Scholar]
  45. Montoya J. H., Shi C., Chan K., and Nørskov J. K. J. Phys. Chem. Lett., 2015, 6, (11), 2032 LINK [Google Scholar]
  46. Kuhl K. P., Hatsukade T., Cave E. R., Abram D. N., Kibsgaard J., and Jaramillo T. F. J. Am. Chem. Soc., 2014, 136, (40), 14107 LINK [Google Scholar]
  47. Resasco J., Chen L. D., Clark E., Tsai C., Hahn C., Jaramillo T. F., Chan K., and Bell A. T. J. Am. Chem. Soc., 2017, 139, (32), 11277 LINK [Google Scholar]
  48. Monteiro M. C. O., Dattila F., Hagedoorn B., García-Muelas R., López N., and Koper M. T. M. Nat. Catal., 2021, 4, (8), 654 LINK [Google Scholar]
  49. Greeley J. Annu. Rev. Chem. Biomol. Eng., 2016, 7, 605 LINK [Google Scholar]
  50. Kohn W., and Sham L. J. Phys. Rev., 1965, 140, (4A), A1133 LINK [Google Scholar]
  51. Rappe A. M., Rabe K. M., Kaxiras E., and Joannopoulos J. D. Phys. Rev. B, 1990, 41, (2), 1227 LINK [Google Scholar]
  52. Asthagiri D., Pratt L. R., and Kress J. D. Phys. Rev. E, 2003, 68, (4), 041505 LINK [Google Scholar]
  53. Todorova T., Seitsonen A. P., Hutter J., Kuo I.-F. W., and Mundy C. J. J. Phys. Chem. B, 2006, 110, (8), 3685 LINK [Google Scholar]
  54. Schwarz K., and Sundararaman R. Surf. Sci. Rep., 2020, 75, (2), 100492 LINK [Google Scholar]
  55. Nishihara S., and Otani M. Phys. Rev. B, 2017, 96, (11), 115429 LINK [Google Scholar]
  56. Fernandez-Alvarez V. M., and Eikerling M. H. ACS Appl. Mater. Interfaces, 2019, 11, (46), 43774 LINK [Google Scholar]
  57. Weitzner S. E., Akhade S. A., Varley J. B., Wood B. C., Otani M., Baker S. E., and Duoss E. B. J. Phys. Chem. Lett., 2020, 11, (10), 4113 LINK [Google Scholar]
  58. Hagiwara S., Nishihara S., Kuroda F., and Otani M. Phys. Rev. Mater., 2022, 6, (9), 093802 LINK [Google Scholar]
  59. Xu S., and Carter E. A. Chem. Rev., 2019, 119, (11), 6631 LINK [Google Scholar]
  60. Todorova T. K., Schreiber M. W., and Fontecave M. ACS Catal., 2020, 10, (3), 1754 LINK [Google Scholar]
  61. Macpherson H., Hodges T., Chuma M. H., Sherwin C., Podbevšek U., Rigg K., Celorrio V., Russell A., and Corbos E. C. Johnson Matthey Technol. Rev., 2023, 67, (1), 110 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error