Skip to content
1887
Volume 67, Issue 1
  • ISSN: 2056-5135
  • oa Cathodes for Electrochemical Carbon Dioxide Reduction to Multi-Carbon Products: Part I

    A focused review of recent highlights

  • Authors: Harry Macpherson1, Toby Hodges1, Moyahabo Hellen Chuma1, Connor Sherwin2, Urša Podbevšek1, Katie Rigg1, Veronica Celorrio3, Andrea Russell2 and Elena C. Corbos1
  • Affiliations: 1 Johnson MattheyBlounts Court, Sonning Common, Reading, RG4 9NHUK 2 University of SouthamptonB29 Building, East Highfield Campus, University Road, SO17 1BJUK 3 Diamond Light SourceHarwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DEUK
  • Source: Johnson Matthey Technology Review, Volume 67, Issue 1, Jan 2023, p. 97 - 109
  • DOI: https://doi.org/10.1595/205651323X16672291226135
    • Received: 07 Jul 2022
    • Accepted: 27 Oct 2022
    • Published online: 31 Oct 2022

Abstract

This is a focused review of recent highlights in the literature in cathode development for low temperature electrochemical carbon dioxide and carbon monoxide reduction to multi-carbon (C) products. The major goals for the field are to increase Faradaic efficiency (FE) for specific C products, lower cell voltage for industrially relevant current densities and increase cell lifetime. A key to achieving these goals is the rational design of cathodes through increased understanding of structure-selectivity and structure-activity relationships for catalysts and the influence of catalyst binders and gas diffusion layers (GDLs) on the catalyst microenvironment and subsequent performance.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16672291226135
2022-10-31
2024-12-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/1/Macpherson_pt1_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16672291226135&mimeType=html&fmt=ahah

References

  1. Z. J. Schiffer, K. Manthiram, Joule, 2017, 1, (1), 10 LINK https://doi.org/10.1016/j.joule.2017.07.008 [Google Scholar]
  2. A. Alcasabas, P. R. Ellis, I. Malone, G. Williams, C. Zalitis, Johnson Matthey Technol. Rev., 2021, 65, (2), 180 LINK https://technology.matthey.com/article/65/2/180-196/ [Google Scholar]
  3. S. Hernandez-Aldave, E. Andreoli, Catalysts, 2020, 10, (6), 713 LINK https://doi.org/10.3390/catal10060713 [Google Scholar]
  4. D. Salvatore, C. P. Berlinguette, ACS Energy Lett., 2020, 5, (1), 215 LINK https://doi.org/10.1021/acsenergylett.9b02356 [Google Scholar]
  5. P. Holzapfel, M. Bühler, C. Van Pham, F. Hegge, T. Böhm, D. McLaughlin, M. Breitwieser, S. Thiele, Electrochem. Commun., 2020, 110, 106640 LINK https://doi.org/10.1016/j.elecom.2019.106640 [Google Scholar]
  6. H. Yoshio, K. Katsuhei, S. Shin, Chem. Lett., 1985, 14, (11), 1695 LINK https://doi.org/10.1246/cl.1985.1695 [Google Scholar]
  7. S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev., 2019, 119, (12), 7610 LINK https://doi.org/10.1021/acs.chemrev.8b00705 [Google Scholar]
  8. K. W. Frese, ‘Electrochemical Reduction of CO2 at Solid Electrodes’, in “Electrochemical and Electrocatalytic Reactions of Carbon Dioxide”, Ch. 6, Elsevier Science Publishers BV, Amsterdam, The Netherlands, 1993, pp. 144216 LINK https://doi.org/10.1016/b978-0-444-88316-2.50010-3 [Google Scholar]
  9. Y. Hori, I. Takahashi, O. Koga, N. Hoshi, J. Phys. Chem. B, 2002, 106, (1), 15 LINK https://doi.org/10.1021/jp013478d [Google Scholar]
  10. I. Takahashi, O. Koga, N. Hoshi, Y. Hori, J. Electroanal. Chem., 2002, 533, (1–2), 135 LINK https://doi.org/10.1016/s0022-0728(02)01081-1 [Google Scholar]
  11. G. L. De Gregorio, T. Burdyny, A. Loiudice, P. Iyengar, W. A. Smith, R. Buonsanti, ACS Catal., 2020, 10, (9), 4854 LINK https://doi.org/10.1021/acscatal.0c00297 [Google Scholar]
  12. Y.-G. Kim, A. Javier, J. H. Baricuatro, D. Torelli, K. D. Cummins, C. F. Tsang, J. C. Hemminger, M. P. Soriaga, J. Electroanal. Chem., 2016, 780, 290 LINK https://doi.org/10.1016/j.jelechem.2016.09.029 [Google Scholar]
  13. A. Bagger, W. Ju, A. S. Varela, P. Strasser, J. Rossmeisl, ChemPhysChem, 2017, 18, (22), 3266 LINK https://doi.org/10.1002/cphc.201700736 [Google Scholar]
  14. J. R. Kitchin, J. K. Nørskov, M. A. Barteau, J. G. Chen, Phys. Rev. Lett., 2004, 93, (15), 156801 LINK https://doi.org/10.1103/physrevlett.93.156801 [Google Scholar]
  15. H. A. Hansen, C. Shi, A. C. Lausche, A. A. Peterson, J. K. Nørskov, Phys. Chem. Chem. Phys., 2016, 18, (13), 9194 LINK https://doi.org/10.1039/c5cp07717f [Google Scholar]
  16. K. Ohkawa, Y. Noguchi, S. Nakayama, K. Hashimoto, A. Fujishima, J. Electroanal. Chem., 1993, 348, (1–2), 459 LINK https://doi.org/10.1016/0022-0728(93)80152-8 [Google Scholar]
  17. S. Ma, M. Sadakiyo, M. Heima, R. Luo, R. T. Haasch, J. I. Gold, M. Yamauchi, P. J. A. Kenis, J. Am. Chem. Soc., 2017, 139, (1), 47 LINK https://doi.org/10.1021/jacs.6b10740 [Google Scholar]
  18. C. G. Morales-Guio, E. R. Cave, S. A. Nitopi, J. T. Feaster, L. Wang, K. P. Kuhl, A. Jackson, N. C. Johnson, D. N. Abram, T. Hatsukade, C. Hahn, T. F. Jaramillo, Nat. Catal., 2018, 1, (10), 764 LINK https://doi.org/10.1038/s41929-018-0139-9 [Google Scholar]
  19. Y. Lin, D. U. Lee, S. Tan, D. M. Koshy, T. Y. Lin, L. Wang, D. Corral, J. E. Avilés Acosta, J. A. Zamora Zeledon, V. A. Beck, S. E. Baker, E. B. Duoss, C. Hahn, T. F. Jaramillo, Adv. Funct. Mater., 2022, 32, (28), 2113252 LINK https://doi.org/10.1002/adfm.202113252 [Google Scholar]
  20. C. W. Li, M. W. Kanan, J. Am. Chem. Soc., 2012, 134, (17), 7231 LINK https://doi.org/10.1021/ja3010978 [Google Scholar]
  21. M. Ma, K. Djanashvili, W. A. Smith, Angew. Chem. Int. Ed., 2016, 55, (23), 6680 LINK https://doi.org/10.1002/anie.201601282 [Google Scholar]
  22. A. Eilert, F. Cavalca, F. S. Roberts, J. Osterwalder, C. Liu, M. Favaro, E. J. Crumlin, H. Ogasawara, D. Friebel, L. G. M. Pettersson, A. Nilsson, J. Phys. Chem. Lett., 2016, 8, (1), 285 LINK https://doi.org/10.1021/acs.jpclett.6b02273 [Google Scholar]
  23. A. Verdaguer-Casadevall, C. W. Li, T. P. Johansson, S. B. Scott, J. T. McKeown, M. Kumar, I. E. L. Stephens, M. W. Kanan, I. Chorkendorff, J. Am. Chem. Soc., 2015, 137, (31), 9808 LINK https://doi.org/10.1021/jacs.5b06227 [Google Scholar]
  24. X. Feng, K. Jiang, S. Fan, M. W. Kanan, ACS Cent. Sci., 2016, 2, (3), 169 LINK https://doi.org/10.1021/acscentsci.6b00022 [Google Scholar]
  25. K. Jiang, R. B. Sandberg, A. J. Akey, X. Liu, D. C. Bell, J. K. Nørskov, K. Chan, H. Wang, Nat. Catal., 2018, 1, (2), 111 LINK https://doi.org/10.1038/s41929-017-0009-x [Google Scholar]
  26. D. Cheng, Z.-J. Zhao, G. Zhang, P. Yang, L. Li, H. Gao, S. Liu, X. Chang, S. Chen, T. Wang, G. A. Ozin, Z. Liu, J. Gong, Nat. Commun., 2021, 12, (1), 395 LINK https://doi.org/10.1038/s41467-020-20615-0 [Google Scholar]
  27. Y. Lum, J. W. Ager, Nat. Catal., 2018, 2, (1), 86 LINK https://doi.org/10.1038/s41929-018-0201-7 [Google Scholar]
  28. D.-H. Nam, O. S. Bushuyev, J. Li, P. De Luna, A. Seifitokaldani, C.-T. Dinh, F. P. G. de Arquer, Y. Wang, Z. Liang, A. H. Proppe, C. S. Tan, P. Todorović, O. Shekhah, C. M. Gabardo, J. W. Jo, J. Choi, M.-J. Choi, S.-W. Baek, J. Kim, D. Sinton, S. O. Kelley, M. Eddaoudi, E. H. Sargent, J. Am. Chem. Soc., 2018, 140, (36), 11378 LINK https://doi.org/10.1021/jacs.8b06407 [Google Scholar]
  29. K. Yao, Y. Xia, J. Li, N. Wang, J. Han, C. Gao, M. Han, G. Shen, Y. Liu, A. Seifitokaldani, X. Sun, H. Liang, J. Mater. Chem. A, 2020, 8, (22), 11117 LINK https://doi.org/10.1039/d0ta02395g [Google Scholar]
  30. Y.-L. Qiu, H.-X. Zhong, T.-T. Zhang, W.-B. Xu, P.-P. Su, X.-F. Li, H.-M. Zhang, ACS Appl. Mater. Interfaces, 2018, 10, (3), 2480 LINK https://doi.org/10.1021/acsami.7b15255 [Google Scholar]
  31. Y. Hori, A. Murata, R. Takahashi, J. Chem. Soc. Faraday Trans. 1, 1989, 85, (8), 2309 LINK https://doi.org/10.1039/f19898502309 [Google Scholar]
  32. M. Gattrell, N. Gupta, A. Co, J. Electroanal. Chem., 2006, 594, (1), 1 LINK https://doi.org/10.1016/j.jelechem.2006.05.013 [Google Scholar]
  33. H. A. Hansen, J. B. Varley, A. A. Peterson, J. K. Nørskov, J. Phys. Chem. Lett., 2013, 4, (3), 388 LINK https://doi.org/10.1021/jz3021155 [Google Scholar]
  34. R. Kortlever, J. Shen, K. J. P. Schouten, F. Calle-Vallejo, M. T. M. Koper, J. Phys. Chem. Lett., 2015, 6, (20), 4073 LINK https://doi.org/10.1021/acs.jpclett.5b01559 [Google Scholar]
  35. J. Hussain, H. Jónsson, E. Skúlason, ACS Catal., 2018, 8, (6), 5240 LINK https://doi.org/10.1021/acscatal.7b03308 [Google Scholar]
  36. A. A. Peterson, J. K. Nørskov, J. Phys. Chem. Lett., 2012, 3, (2), 251 LINK https://doi.org/10.1021/jz201461p [Google Scholar]
  37. A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J. K. Nørskov, Energy Environ. Sci., 2010, 3, (9), 1311 LINK https://doi.org/10.1039/c0ee00071j [Google Scholar]
  38. X. Nie, W. Luo, M. J. Janik, A. Asthagiri, J. Catal., 2014, 312, 108 LINK https://doi.org/10.1016/j.jcat.2014.01.013 [Google Scholar]
  39. F. M. Mota, D. H. Kim, Chem. Soc. Rev., 2019, 48, (1), 205 LINK https://doi.org/10.1039/c8cs00527c [Google Scholar]
  40. A. Rendón-Calle, S. Builes, F. Calle-Vallejo, Curr. Opin. Electrochem., 2018, 9, 158 LINK https://doi.org/10.1016/j.coelec.2018.03.012 [Google Scholar]
  41. J. Huang, N. Hörmann, E. Oveisi, A. Loiudice, G. L. De Gregorio, O. Andreussi, N. Marzari, R. Buonsanti, Nat. Commun., 2018, 9, 3117 LINK https://doi.org/10.1038/s41467-018-05544-3 [Google Scholar]
  42. L. Kuo, C.-T. Dinh, Curr. Opin. Electrochem., 2021, 30, 100807 LINK https://doi.org/10.1016/j.coelec.2021.100807 [Google Scholar]
  43. Q. Li, Y. Zhang, L. Shi, M. Wu, Y. Ouyang, J. Wang, InfoMat, 2021, 3, (11), 1285 LINK https://doi.org/10.1002/inf2.12229 [Google Scholar]
  44. G. Mangione, J. Huang, R. Buonsanti, C. Corminboeuf, J. Phys. Chem. Lett., 2019, 10, (15), 4259 LINK https://doi.org/10.1021/acs.jpclett.9b01471 [Google Scholar]
  45. J. H. Montoya, C. Shi, K. Chan, J. K. Nørskov, J. Phys. Chem. Lett., 2015, 6, (11), 2032 LINK https://doi.org/10.1021/acs.jpclett.5b00722 [Google Scholar]
  46. K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard, T. F. Jaramillo, J. Am. Chem. Soc., 2014, 136, (40), 14107 LINK https://doi.org/10.1021/ja505791r [Google Scholar]
  47. J. Resasco, L. D. Chen, E. Clark, C. Tsai, C. Hahn, T. F. Jaramillo, K. Chan, A. T. Bell, J. Am. Chem. Soc., 2017, 139, (32), 11277 LINK https://doi.org/10.1021/jacs.7b06765 [Google Scholar]
  48. M. C. O. Monteiro, F. Dattila, B. Hagedoorn, R. García-Muelas, N. López, M. T. M. Koper, Nat. Catal., 2021, 4, (8), 654 LINK https://doi.org/10.1038/s41929-021-00655-5 [Google Scholar]
  49. J. Greeley, Annu. Rev. Chem. Biomol. Eng., 2016, 7, 605 LINK https://doi.org/10.1146/annurev-chembioeng-080615-034413 [Google Scholar]
  50. W. Kohn, L. J. Sham, Phys. Rev., 1965, 140, (4A), A1133 LINK https://doi.org/10.1103/physrev.140.a1133 [Google Scholar]
  51. A. M. Rappe, K. M. Rabe, E. Kaxiras, J. D. Joannopoulos, Phys. Rev. B, 1990, 41, (2), 1227 LINK https://doi.org/10.1103/physrevb.41.1227 [Google Scholar]
  52. D. Asthagiri, L. R. Pratt, J. D. Kress, Phys. Rev. E, 2003, 68, (4), 041505 LINK https://doi.org/10.1103/physreve.68.041505 [Google Scholar]
  53. T. Todorova, A. P. Seitsonen, J. Hutter, I.-F. W. Kuo, C. J. Mundy, J. Phys. Chem. B, 2006, 110, (8), 3685 LINK https://doi.org/10.1021/jp055127v [Google Scholar]
  54. K. Schwarz, R. Sundararaman, Surf. Sci. Rep., 2020, 75, (2), 100492 LINK https://doi.org/10.1016/j.surfrep.2020.100492 [Google Scholar]
  55. S. Nishihara, M. Otani, Phys. Rev. B, 2017, 96, (11), 115429 LINK https://doi.org/10.1103/physrevb.96.115429 [Google Scholar]
  56. V. M. Fernandez-Alvarez, M. H. Eikerling, ACS Appl. Mater. Interfaces, 2019, 11, (46), 43774 LINK https://doi.org/10.1021/acsami.9b16326 [Google Scholar]
  57. S. E. Weitzner, S. A. Akhade, J. B. Varley, B. C. Wood, M. Otani, S. E. Baker, E. B. Duoss, J. Phys. Chem. Lett., 2020, 11, (10), 4113 LINK https://doi.org/10.1021/acs.jpclett.0c00957 [Google Scholar]
  58. S. Hagiwara, S. Nishihara, F. Kuroda, M. Otani, Phys. Rev. Mater., 2022, 6, (9), 093802 LINK https://doi.org/10.1103/physrevmaterials.6.093802 [Google Scholar]
  59. S. Xu, E. A. Carter, Chem. Rev., 2019, 119, (11), 6631 LINK https://doi.org/10.1021/acs.chemrev.8b00481 [Google Scholar]
  60. T. K. Todorova, M. W. Schreiber, M. Fontecave, ACS Catal., 2020, 10, (3), 1754 LINK https://doi.org/10.1021/acscatal.9b04746 [Google Scholar]
  61. H. Macpherson, T. Hodges, M. H. Chuma, C. Sherwin, U. Podbevšek, K. Rigg, V. Celorrio, A. Russell, E. C. Corbos, Johnson Matthey Technol. Rev., 2023, 67, (1), 110 LINK https://technology.matthey.com/article/67/1/110-123/ [Google Scholar]
/content/journals/10.1595/205651323X16672291226135
Loading
/content/journals/10.1595/205651323X16672291226135
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test