Skip to content
1887
Volume 67, Issue 1
  • ISSN: 2056-5135

Abstract

In Part I (1), the failure response of a 1 Ah layered pouch cell with a commercially available nickel manganese cobalt (NMC) cathode and graphite anode at 100% state of charge (SOC) (4.2 V) was investigated for two failure mechanisms: thermal and mechanical. The architectural changes to the whole-cell and deformations of the electrode layers are analysed after failure for both mechanisms. A methodology for post-mortem cell disassembly and sample preparation is proposed and demonstrated to effectively analyse the changes to the electrode surfaces, bulk microstructures and particle morphologies. Furthermore, insights into critical architectural weak points in LIB pouch cells, electrode behaviours and particle cracking are provided using invasive and non-invasive X-ray computed tomography techniques. The findings in this work demonstrate methods by which LIB failure can be investigated and assessed.

Loading

Article metrics loading...

/content/journals/10.1595/205651323X16686891950941
2022-08-03
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/67/1/Patel_pt2_16a_Imp.html?itemId=/content/journals/10.1595/205651323X16686891950941&mimeType=html&fmt=ahah

References

  1. Patel D., Reid H., Ball S., Brett D. J. L., and Shearing Paul R. Johnson Matthey Technol. Rev., 2023, 67, (1), 36 LINK https://technology.matthey.com/article/67/1/36-46/ [Google Scholar]
  2. Pham M. T. M., Darst J. J., Finegan D. P., Robinson J. B., Heenan T. M. M., Kok M. D. R., Iacoviello F., Owen R., Walker W. Q., Magdysyuk O. V., Connolley T., Darcy E., Hinds G., Brett D. J. L., and Shearing P. R. J. Power Sources, 2020, 470, 228039 LINK https://doi.org/10.1016/j.jpowsour.2020.228039 [Google Scholar]
  3. Robinson J. B., Darr J. A., Eastwood D. S., Hinds G., Lee P. D., Shearing P. R., Taiwo O. O., and Brett D. J. L. J. Power Sources, 2014, 252, 51 LINK https://doi.org/10.1016/j.jpowsour.2013.11.059 [Google Scholar]
  4. Zhang C., Xu J., Cao L., Wu Z., and Santhanagopalan S. J. Power Sources, 2017, 357, 126 LINK https://doi.org/10.1016/j.jpowsour.2017.04.103 [Google Scholar]
  5. Sahraei E., Kahn M., Meier J., and Wierzbicki T. RSC Adv., 2015, 5, (98), 80369 LINK https://doi.org/10.1039/c5ra17865g [Google Scholar]
  6. Feng X., Fang M., He X., Ouyang M., Lu L., Wang H., and Zhang M. J. Power Sources, 2014, 255, 294 LINK https://doi.org/10.1016/j.jpowsour.2014.01.005 [Google Scholar]
  7. Roth E. P., and Doughty D. H. J. Power Sources, 2004, 128, (2), 308 LINK https://doi.org/10.1016/j.jpowsour.2003.09.068 [Google Scholar]
  8. Wang Q., Mao B., Stoliarov S. I., and Sun J. Prog. Energy Combust. Sci., 2019, 73, 95 LINK https://doi.org/10.1016/j.pecs.2019.03.002 [Google Scholar]
  9. Heenan T. M. M., Wade A., Tan C., Parker J. E., Matras D., Leach A. S., Robinson J. B., Llewellyn A., Dimitrijevic A., Jervis R., Quinn P. D., Brett D. J. L., and Shearing P. R. Adv. Energy Mater., 2020, 10, (47), 2002655 LINK https://doi.org/10.1002/aenm.202002655 [Google Scholar]
  10. Abraham D. P., Roth E. P., Kostecki R., McCarthy K., MacLaren S., and Doughty D. H. J. Power Sources, 2006, 161, (1), 648 LINK https://doi.org/10.1016/j.jpowsour.2006.04.088 [Google Scholar]
  11. Mao B., Chen H., Cui Z., Wu T., and Wang Q. Int. J. Heat Mass Transfer, 2018, 122, 1103 LINK https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.036 [Google Scholar]
  12. Wu W., Ma R., Liu J., Liu M., Wang W., and Wang Q. Int. J. Heat Mass Transfer, 2021, 170, 121024 LINK https://doi.org/10.1016/j.ijheatmasstransfer.2021.121024 [Google Scholar]
  13. Geder J., Hoster H. E., Jossen A., Garche J., and Yu D. Y. W. J. Power Sources, 2014, 257, 286 LINK https://doi.org/10.1016/j.jpowsour.2014.01.116 [Google Scholar]
  14. Finegan D. P., Tjaden B., Heenan T. M. M., Jervis R., Di Michiel M., Rack A., Hinds G., Brett D. J. L., and Shearing P. R. J. Electrochem. Soc, 2017, 164, (13), A 3285 LINK https://doi.org/10.1149/2.1501713jes [Google Scholar]
  15. Yokoshima T., Mukoyama D., Maeda F., Osaka T., Takazawa K., Egusa S., Naoi S., Ishikura S., and Yamamoto K. J. Power Sources, 2018, 393, 67 LINK https://doi.org/10.1016/j.jpowsour.2018.04.092 [Google Scholar]
  16. Daemi S. R., Tan C., Volkenandt T., Cooper S. J., Palacios-Padros A., Cookson J., Brett D. J. L., and Shearing P. R. ACS Appl. Energy Mater., 2018, 1, (8), 3702 LINK https://doi.org/10.1021/acsaem.8b00501 [Google Scholar]
  17. Röder F., Sonntag S., Schröder D., and Krewer U. Energy Technol., 2016, 4, (12), 1588 LINK https://doi.org/10.1002/ente.201600232 [Google Scholar]
  18. Taiwo O. O., Finegan D. P., Eastwood D. S., Fife J. L., Brown L. D., Darr J. A., Lee P. D., Brett D. J. L., and Shearing P. R. J. Microsc., 2016, 263, (3), 280 LINK https://doi.org/10.1111/jmi.12389 [Google Scholar]
  19. Lu X., Bertei A., Finegan D. P., Tan C., Daemi S. R., Weaving J. S., O’Regan K. B., Heenan T. M. M., Hinds G., Kendrick E., Brett D. J. L., and Shearing P. R. Nat. Commun., 2020, 11, 2079 LINK https://doi.org/10.1038/s41467-020-15811-x [Google Scholar]
  20. Zhang G., Wei X., Tang X., Zhu J., Chen S., and Dai H. Renew. Sustain. Energy Rev., 2021, 141, 110790 LINK https://doi.org/10.1016/j.rser.2021.110790 [Google Scholar]
  21. Tsai P.-C., Wen B., Wolfman M., Choe M.-J., Pan M. S., Su L., Thornton K., Cabana J., and Chiang Y.-M. Energy Environ. Sci., 2018, 11, (4), 860 LINK https://doi.org/10.1039/c8ee00001h [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651323X16686891950941
Loading
/content/journals/10.1595/205651323X16686891950941
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error