Skip to content
Volume 60, Issue 2
  • ISSN: 2056-5135


Small metallic nanoparticles used for polymer exchange membrane fuel cells (PEMFC) represent a characterisation challenge. Electron microscopy would seem the ideal technique to analyse their structure at high resolution. However, their minute size and sensitivity to irradiation damage makes this difficult. In this review, the latest techniques for overcoming these limitations in order to provide quantitative structural and compositional information are presented, focusing specifically on quantitative annular dark-field (ADF) scanning transmission electron microscopy (STEM) and quantitative energy dispersive X-ray (EDX) analysis. The implications for the study of bimetallic fuel cell catalyst materials are also discussed.


Article metrics loading...

Loading full text...

Full text loading...



  1. Crewe A. V., Wall J., and Langmore J. Science , 1970,168, (3937), 1338 LINK [Google Scholar]
  2. Nellist P. D., and Pennycook S. J. Science, 1996, 274, (5286), 413 LINK [Google Scholar]
  3. Goldstein J. I., Newbury D. E., Echlin P., Joy D. C., Lyman C. E., Lifshin E., Sawyer L., and Michael J. R. “Scanning Electron Microscopy and X-ray Microanalysis”, 3rd Edn., Springer Science+Business Media, New York, USA, 2003 LINK [Google Scholar]
  4. Williams D. B., and Carter C. B. “Transmission Electron Microscopy: A Textbook for Materials Science”, 2nd Edn., Springer Science+Business Media, New York, USA, 2009 LINK [Google Scholar]
  5. Pogany A. P., and Turner P. S. Acta Cryst. A, 1968, 24, 103 LINK [Google Scholar]
  6. Lee S., Oshima Y., Sawada H., Hosokawa F., Okunishi E., Kaneyama T., Kondo Y., Niitaka S., Takagi H., Tanishiro Y., and Takayanagi K. J. Appl. Phys., 2011, 109, (11), 113530 LINK [Google Scholar]
  7. Findlay S. D., Azuma S., Shibata N., Okunishi E., and Ikuhara Y. Ultramicroscopy, 2011, 111, (4), 285 LINK [Google Scholar]
  8. Okunishi E., Sawada H., and Kondo Y. Micron, 2012, 43, (4), 538 LINK [Google Scholar]
  9. Howie A. J. Microsc., 1979, 117, (1), 11 LINK [Google Scholar]
  10. Amali A., and Rez P. Microsc. Microanal., 1997, 3, (1), 28 LINK [Google Scholar]
  11. Wang Z. W., Li Z. Y., Park S. J., Abdela A., Tang D., and Palmer R. E. Phys. Rev. B, 2011, 84, (7), 073408 LINK [Google Scholar]
  12. Budinger T. F., and Glaeser R. M. Ultramicroscopy, 1976–1977, 2, 31 LINK [Google Scholar]
  13. Scherzer O. Z. Phys., 1936, 101, (9), 593 LINK [Google Scholar]
  14. Haguenau F., Hawkes P. W., Hutchison J. L., Satiat-Jeunemaître B., Simon G. T., and Williams D. B. Microsc. Microanal., 2003, 9, (2), 96 LINK [Google Scholar]
  15. Xu P., Kirkland E. J., Silcox J., and Keyse R. Ultramicroscopy, 1990, 32, (2), 93 LINK [Google Scholar]
  16. Krivanek O. L., Dellby N., Spence A. J., Camps R. A., and Brown L. M. Electron Microsc. Anal., 1997, 153, 35 [Google Scholar]
  17. Nellist P. D., Chisholm M. F., Dellby N., Krivanek O. L., Murfitt M. F., Szilagyi Z. S., Lupini A. R., Borisevich A., Sides W. H. Jr., and Pennycook S. J. Science, 2004, 305, (5691), 1741 LINK [Google Scholar]
  18. Müller H., Uhlemann S., Hartel P., and Haider M. Microsc. Microanal., 2006, 12, (6), 442 LINK [Google Scholar]
  19. Batson P. E., Dellby N., and Krivanek O. L. Nature, 2002, 418, (6898), 617 LINK [Google Scholar]
  20. Anderson S. C., Birkeland C. R., Anstis G. R., and Cockayne D. J. H. Ultramicroscopy, 1997, 69, (2), 83 LINK [Google Scholar]
  21. Darji R., and Howie A. Micron, 1997, 28, (2), 95 LINK [Google Scholar]
  22. Hÿtch M. J., and Stobbs W. M. Ultramicroscopy, 1994, 53, (3), 191 LINK [Google Scholar]
  23. Retsky M. Optik, 1974, 41, 127 [Google Scholar]
  24. Isaacson M. S., Kopf D., Ohtsuki M., and Utlaut M. Ultramicroscopy, 1979, 4, (1), 101 LINK [Google Scholar]
  25. Young N. P., Li Z. Y., Chen Y., Palomba S., Di Vece M., and Palmer R. E. Phys. Rev. Lett., 2008, 101, (24), 246103 LINK [Google Scholar]
  26. Singhal A., Yang J. C., and Gibson J. M. Ultramicroscopy, 1997, 67, (1–4), 191 LINK [Google Scholar]
  27. Maccagnano-Zacher S. E., Mkhoyan K. A., Kirkland E. J., and Silcox J. Ultramicroscopy, 2008, 108, (8), 718 LINK [Google Scholar]
  28. Van Dyck D., and Op de Beeck M. Ultramicroscopy, 1996, 64, (1–4), 99 LINK [Google Scholar]
  29. MacArthur H. E, K. E., Pennycook T. J., Okunishi E., D’Alfonso A. J., Lugg N. R., Allen L. J., and Nellist P. D. Ultramicroscopy, 2013, 133, 109 LINK [Google Scholar]
  30. Rotunno E., Albrecht M., Markurt T., Remmele T., and Grillo V. Ultramicroscopy, 2014, 146, 62 LINK [Google Scholar]
  31. De Backer A., Martinez G. T., MacArthur K. E., Jones L., Béché A., Nellist P. D., and Van Aert S. Ultramicroscopy, 2015, 151, 56 LINK [Google Scholar]
  32. MacArthur K. E., D’Alfonso A. J., Ozkaya D., Allen L. J., and Nellist P. D. Ultramicroscopy, 2015, 156, 1 LINK [Google Scholar]
  33. Loane R. F., Kirkland E. J., and Silcox J. Acta Cryst. A, 1988, 44, 912 LINK [Google Scholar]
  34. Hwang J., Zhang J. Y., D’Alfonso A. J., Allen L. J., and Stemmer S. Phys. Rev. Lett., 2013, 111, (26–27), 266101 LINK [Google Scholar]
  35. Voyles P. M., Muller D. A., and Kirkland E. J. Microsc. Microanal., 2004, 10, (2), 291 LINK [Google Scholar]
  36. Voyles P. M., Grazul J. L., and Muller D. A. Ultramicroscopy, 2003, 96, (3–4), 251 LINK [Google Scholar]
  37. Ishikawa R., Lupini A. R., Findlay S. D., Taniguchi T., and Pennycook S. J. Nano Lett., 2014, 14, (4), 1903 LINK [Google Scholar]
  38. LeBeau J. M., and Stemmer S. Ultramicroscopy, 2008, 108, (12), 1653 LINK [Google Scholar]
  39. Rosenauer A., Gries K., Müller K., Pretorius A., Schowalter M., Avramescu A., Engl K., and Lutgen S. Ultramicroscopy, 2009, 109, (9), 1171 LINK [Google Scholar]
  40. Yu Z., Batson P. E., and Silcox J. Ultramicroscopy, 2003, 96, (3–4), 275 LINK [Google Scholar]
  41. H. E ‘Quantitative Analysis of Core-Shell Nanoparticle Catalysts by Scanning Transmission Electron Microscopy’, DPhil Thesis, University of Oxford, UK, 2013 [Google Scholar]
  42. Nellist H. E, P. D., Lozano-Perez S., and Ozkaya D. J. Phys.: Conf. Ser., 2010, 241, (1), 012067 LINK [Google Scholar]
  43. Findlay S. D., and LeBeau J. M. Ultramicroscopy, 2013, 124, 52 LINK [Google Scholar]
  44. MacArthur K. E., Jones L. B., and Nellist P. D. J. Phys.: Conf. Ser., 2014, 522, 012018 LINK [Google Scholar]
  45. Martinez G. T., Jones L., De Backer A., Béché A., Verbeeck J., Van Aert S., and Nellist P. D. Ultramicroscopy, 2015, 159, (1), 46 LINK [Google Scholar]
  46. LeBeau J. M., Findlay S. D., Allen L. J., and Stemmer S. Nano Lett., 2010, 10, (11), 4405 LINK [Google Scholar]
  47. MacArthur K. E. ‘Quantitative Structural and Compositional Characterisation of Bimetallic Fuel-Cell Catalyst Nanoparticles Using STEM’, DPhil Thesis, University of Oxford, UK, 2015 [Google Scholar]
  48. Martinez G. T., De Backer A., Rosenauer A., Verbeeck J., and Van Aert S. Micron, 2014, 63, 57 LINK [Google Scholar]
  49. Rosenauer A., Mehrtens T., Müller K., Gries K., Schowalter M., Satyam P. V., Bley S., Tessarek C., Hommel D., Sebald K., Seyfried M., Gutowski J., Avramescu A., Engl K., and Lutgen S. Ultramicroscopy, 2011, 111, (8), 1316 LINK [Google Scholar]
  50. Nguyen D. T., Findlay S. D., and Etheridge J. Ultramicroscopy, 2014, 146, 6 LINK [Google Scholar]
  51. Van Aert S., De Backer A., Martinez G. T., Goris B., Bals S., Van Tendeloo G., and Rosenauer A. Phys. Rev. B, 2013, 87, (6), 064107 LINK [Google Scholar]
  52. Grillo V., and Rossi F. Ultramicroscopy, 2013, 125, 112 LINK [Google Scholar]
  53. Rečnik A., Möbus G., and Šturm S. Ultramicroscopy, 2005, 103, (4), 285 LINK [Google Scholar]
  54. Yankovich A. B., Berkels B., Dahmen W., Binev P., Sanchez S. I., Bradley S. A., Li A., Szlufarska I., and Voyles P. M. Nature Commun., 2014, 5, 4155 LINK [Google Scholar]
  55. Jones L., Yang H., Pennycook T. J., Marshall M. S. J., Van Aert S., Browning N. D., Castell M. R., and Nellist P. D. Adv. Struct. Chem. Imaging., 2015, 1, 8 LINK [Google Scholar]
  56. den Dekker A. J., Van Aert S., van den Bos A., and Van Dyck D. Ultramicroscopy, 2005, 104, (2), 83 LINK [Google Scholar]
  57. Van Aert S., Verbeeck J., Erni R., Bals S., Luysberg M., Van Dyck D., and Van Tendeloo G. Ultramicroscopy, 2009, 109, (10), 1236 LINK [Google Scholar]
  58. Erni R., Heinrich H., and Kostorz G. Ultramicroscopy, 2003, 94, (2), 125 LINK [Google Scholar]
  59. Van Aert S., Batenburg K. J., Rossell M. D., Erni R., and Van Tendeloo G. Nature, 2011, 470, (7334), 374 LINK [Google Scholar]
  60. De Backer A., Martinez G. T., Rosenauer A., and Van Aert S. Ultramicroscopy, 2013, 134, 23 LINK [Google Scholar]
  61. De Rosier D. J., and Klug A. Nature, 1968, 217, (5124), 130 LINK [Google Scholar]
  62. Flannery B. P., Deckman H. W., Roberge W. G., and D’Amico K. L. Science, 1987, 237, (4821), 1439 LINK [Google Scholar]
  63. Kawase N., Kato M., Nishioka H., and Jinnai H. Ultramicroscopy, 2007, 107, (1), 8 LINK [Google Scholar]
  64. Kübel C., Niemeyer D., Cieslinski R., and Rozeveld S. Mater. Sci. Forum, 2010, 638–642, 2517 LINK [Google Scholar]
  65. Weyland M. Top. Catal, 2002, 21, (4), 175 LINK [Google Scholar]
  66. Jesson D. E., and Pennycook S. J. Proc. Roy. Soc. Lond., 1995, 449, (1936), 273 LINK [Google Scholar]
  67. Nanda K. K., Maisels A., Kruis F. E., Fissan H., and Stappert S. Phys. Rev. Lett., 2003, 91, (10), 106102 LINK [Google Scholar]
  68. Koster A. J., Ziese U., Verkleij A. J., Janssen A. H., and de Jong K. P. J. Phys. Chem. B., 2000, 104, (40), 9368 LINK [Google Scholar]
  69. Jinschek J. R., Batenburg K. J., Calderon H. A., Kilaas R., Radmilovic V., and Kisielowski C. Ultramicroscopy, 2008, 108, (6), 589 LINK [Google Scholar]
  70. Gontard L. C., Dunin-Borkowski R. E., Ozkaya D., Hyde T., Midgley P. A., and Ash P. J. Phys.: Conf. Ser., 2006, 26, 367 LINK [Google Scholar]
  71. Möbus G., and Inkson B. J. Appl. Phys. Lett., 2001, 79, (9), 1369 LINK [Google Scholar]
  72. Grothausmann R., Fiechter S., Beare R., Lehmann G., Kropf H., Kumar G. S. V., Manke I., and Banhart J. Ultramicroscopy, 2012, 122, 65 LINK [Google Scholar]
  73. Friedrich H., Guo S., de Jongh P. E., Pan X., Bao X., and de Jong K. P. ChemSusChem, 2011, 4, (7), 957 LINK [Google Scholar]
  74. Sueda S., Yoshida K., and Tanaka N. Ultramicroscopy, 2010, 110, (9), 1120 LINK [Google Scholar]
  75. Batenburg K. J., and Sijbers J. IEEE Trans. Image Process., 2011, 20, (9), 2542 LINK [Google Scholar]
  76. Bals S., Casavola M., van Huis M. A., Van Aert S., Batenburg K. J., Van Tendeloo G., and Vanmaekelbergh D. Nano Lett., 2011, 11, (8), 3420 LINK [Google Scholar]
  77. Jones L., MacArthur K. E., Fauske V. T., van Helvoort A. T. J., and Nellist P. D. Nano Lett., 2014, 14, (11), 6336 LINK [Google Scholar]
  78. MacArthur K. E., Jones L. B., Lozano-Perez S., Ozkaya D., and Nellist P. D. ‘Quantification of Pt/Ir Catalyst Nanoparticles using ADF STEM’ in 18th International Microscopy Congress, Prague, Czech Republic, 7–12th September, 2014 [Google Scholar]
  79. MacArthur K. E., Slater T. J. A., Haigh S. J., Ozkaya D., Nellist P. D., and Lozano-Perez S. Microsc. Microanal., 2016, 22, (1), 71 LINK [Google Scholar]
  80. MacArthur K. E., Slater T. J. A., Haigh S. J., Ozkaya D., Nellist P. D., and Lozano-Perez S. Mater. Sci. Technol., 2016, doi:10.1080/02670836.2015.1133021 LINK [Google Scholar]
  81. Ortalan V., Uzun A., Gates B. C., and Browning N. D. Nature Nanotechnol., 2010, 5, (12), 843 LINK [Google Scholar]
  82. Carlino E., and Grillo V. Phys. Rev. B., 2005, 71, (23), 235303 LINK [Google Scholar]
  83. Grillo V. Ultramicroscopy, 2009, 109, (12), 1453 LINK [Google Scholar]
  84. Rosenauer A., Gries K., Müller K., Schowalter M., Pretorius A., Avramescu A., Engl K., and Lutgen S. J. Phys.: Conf. Ser., 2010, 209, (1), 012009 LINK [Google Scholar]
  85. Molina S. I., Sales D. L., Galindo P. L., Fuster D., González Y., Alén B., González L., Varela M., and Pennycook S. J. Ultramicroscopy, 2009, 109, (2), 172 LINK [Google Scholar]
  86. Molina S. I., Guerrero M. P., Galindo P. L., Sales D. L., Varela M., and Pennycook S. J. J. Electron Microsc. (Tokyo), 2011, 60, (1), 29 LINK [Google Scholar]
  87. Hernández-Maldonado D., Herrera M., Alonso-González P., González Y., González L., Gazquez J., Varela M., Pennycook S. J., de la Paz Guerrero-Lebrero M., Pizarro J., Galindo P. L., and Molina S. I. Microsc. Microanal., 2011, 17, (4), 578 LINK [Google Scholar]
  88. Lyman C. E. J. Mol. Catal., 1983, 20, (3), 357 LINK [Google Scholar]
  89. Deepak F. L., Casillas-Garcia G., Esparza R., Barron H., and Jose-Yacaman M. J. Cryst. Growth, 2011, 325, (1), 60 LINK [Google Scholar]
  90. Friel J. J., and Lyman C. E. Microsc. Microanal., 2006, 12, (1), 2 LINK [Google Scholar]
  91. Prestvik R., Tøtdal B., Lyman C. E., and Holmen A. J. Catal., 1998, 176, (1), 246 LINK [Google Scholar]
  92. Titchmarsh J. M. Micron, 1999, 30, (2), 159 LINK [Google Scholar]
  93. Lechner P., Fiorini C., Hartmann R., Kemmer J., Krause N., Leutenegger P., Longoni A., Soltau H., Stötter D., Stötter R., Strüder L., and Weber U. Nucl. Instr. Methods Phys. Res. A., 2001, 458, (1–2), 281 LINK [Google Scholar]
  94. von Harrach H. S., Dona P., Freitag B., Soltau H., Niculae A., and Rohde M. J. Phys.: Conf. Ser., 2010, 241, (1), 012015 LINK [Google Scholar]
  95. Phillips P. J., Paulauskas T., Rowlands N., Nicholls A. W., Low K.-B., Bhadare S., and Klie R. F. Microsc. Microanal., 2014, 20, (4), 1046 LINK [Google Scholar]
  96. Allen L. J., D’Alfonso A. J., Freitag B., and Klenov D. O. MRS Bull., 2012, 37, (1), 47 LINK [Google Scholar]
  97. Itakura M., Watanabe N., Nishida M., Daio T., and Matsumura S. Jpn. J. Appl. Phys.,52, (5R), 050201 LINK [Google Scholar]
  98. Kothleitner G., Neish M. J., Lugg N. R., Findlay S. D., Grogger W., Hofer F., and Allen L. J. Phys. Rev. Lett., 2014, 112, (8), 085501 LINK [Google Scholar]
  99. Kotula P. G., Klenov D. O., and von Harrach H. S. Microsc. Microanal., 2012, 18, (4), 691 LINK [Google Scholar]
  100. Slater T. J. A., Camargo P. H. C., Burke M. G., Zaluzec N. J., and Haigh S. J. J. Phys.: Conf. Ser., 2014, 522, 012025 LINK [Google Scholar]
  101. Tran D. T., Jones I. P., Preece J. A., Johnston R. L., and van den Brom C. R. J. Nanoparticle Res., 2011, 13, (9), 4229 LINK [Google Scholar]
  102. Cliff G., and Lorimer G. W. J. Microsc., 1975, 103, (2), 203 LINK [Google Scholar]
  103. Watanabe M., Williams D. B., and Tomokiyo Y. Micron, 2003, 34, (3–5), 173 LINK [Google Scholar]
  104. Watanabe M., and Williams D. B. J. Microsc., 2006, 221, (2), 89 LINK [Google Scholar]
  105. Watanabe M., Horita Z., and Nemoto M. Ultramicroscopy, 1996, 65, (3–4), 187 LINK [Google Scholar]
  106. Watanabe M., Ackland D. W., Kiely C. J., Williams D. B., Kanno M., Hynes R., and Sawada H. JEOL News, 2006, 41, (1), 2 [Google Scholar]
  107. Williams D. B., Papworth A. J., and Watanabe M. J. Electron Microsc., 2002, 51, S113 LINK [Google Scholar]
  108. Lyman C. E., Stenger H. G. Jr., and Michael J. R. Ultramicroscopy, 1987, 22, (1–4), 129 LINK [Google Scholar]
  109. Herzing A. A., Watanabe M., Edwards J. K., Conte M., Tang Z.-R., Hutchings G. J., and Kiely C. J. Faraday Discuss., 2008, 138, 337 LINK [Google Scholar]
  110. Liu J. J. Electron Microsc., 2005, 54, (3), 251 LINK [Google Scholar]
  111. Skiff W. M., Carpenter R. W., Lin S. H., and Higgs A. Ultramicroscopy, 1988, 25, (1), 47 LINK [Google Scholar]
  112. Hofer F. Microsc. Microanal. Microstruct., 1991, 2, (2–3), 215 LINK [Google Scholar]
  113. Egerton R. F., and Malac M. J. Electron Spectrosc. Relat. Phenomena, 2005, 143, (2–3), 43 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error