Skip to content
1887
Volume 60, Issue 2
  • ISSN: 2056-5135

Abstract

Small metallic nanoparticles used for polymer exchange membrane fuel cells (PEMFC) represent a characterisation challenge. Electron microscopy would seem the ideal technique to analyse their structure at high resolution. However, their minute size and sensitivity to irradiation damage makes this difficult. In this review, the latest techniques for overcoming these limitations in order to provide quantitative structural and compositional information are presented, focusing specifically on quantitative annular dark-field (ADF) scanning transmission electron microscopy (STEM) and quantitative energy dispersive X-ray (EDX) analysis. The implications for the study of bimetallic fuel cell catalyst materials are also discussed.

Loading

Article metrics loading...

/content/journals/10.1595/205651316X691186
2016-01-01
2024-02-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/60/2/JMTR-60-2-MacArthur.html?itemId=/content/journals/10.1595/205651316X691186&mimeType=html&fmt=ahah

References

  1. Crewe A. V., Wall J., and Langmore J. Science , 1970,168, (3937), 1338 LINK http://www.jstor.org/stable/1730030 [Google Scholar]
  2. Nellist P. D., and Pennycook S. J. Science, 1996, 274, (5286), 413 LINK http://dx.doi.org/10.1126/science.274.5286.413 [Google Scholar]
  3. Goldstein J. I., Newbury D. E., Echlin P., Joy D. C., Lyman C. E., Lifshin E., Sawyer L., and Michael J. R. “Scanning Electron Microscopy and X-ray Microanalysis”, 3rd Edn., Springer Science+Business Media, New York, USA, 2003 LINK http://dx.doi.org/10.1007/978-1-4615-0215-9 [Google Scholar]
  4. Williams D. B., and Carter C. B. “Transmission Electron Microscopy: A Textbook for Materials Science”, 2nd Edn., Springer Science+Business Media, New York, USA, 2009 LINK http://dx.doi.org/10.1007/978-0-387-76501-3 [Google Scholar]
  5. Pogany A. P., and Turner P. S. Acta Cryst. A, 1968, 24, 103 LINK http://dx.doi.org/10.1107/S0567739468000136 [Google Scholar]
  6. Lee S., Oshima Y., Sawada H., Hosokawa F., Okunishi E., Kaneyama T., Kondo Y., Niitaka S., Takagi H., Tanishiro Y., and Takayanagi K. J. Appl. Phys., 2011, 109, (11), 113530 LINK http://dx.doi.org/10.1063/1.3592239 [Google Scholar]
  7. Findlay S. D., Azuma S., Shibata N., Okunishi E., and Ikuhara Y. Ultramicroscopy, 2011, 111, (4), 285 LINK http://dx.doi.org/10.1016/j.ultramic.2010.12.022 [Google Scholar]
  8. Okunishi E., Sawada H., and Kondo Y. Micron, 2012, 43, (4), 538 LINK http://dx.doi.org/10.1016/j.micron.2011.10.007 [Google Scholar]
  9. Howie A. J. Microsc., 1979, 117, (1), 11 LINK http://dx.doi.org/10.1111/j.1365-2818.1979.tb00228.x [Google Scholar]
  10. Amali A., and Rez P. Microsc. Microanal., 1997, 3, (1), 28 LINK http://dx.doi.org/10.1017/S1431927697970021 [Google Scholar]
  11. Wang Z. W., Li Z. Y., Park S. J., Abdela A., Tang D., and Palmer R. E. Phys. Rev. B, 2011, 84, (7), 073408 LINK http://dx.doi.org/10.1103/PhysRevB.84.073408 [Google Scholar]
  12. Budinger T. F., and Glaeser R. M. Ultramicroscopy, 1976–1977, 2, 31 LINK http://dx.doi.org/10.1016/S0304-3991(76)90263-1 [Google Scholar]
  13. Scherzer O. Z. Phys., 1936, 101, (9), 593 LINK http://dx.doi.org/10.1007/BF01349606 [Google Scholar]
  14. Haguenau F., Hawkes P. W., Hutchison J. L., Satiat-Jeunemaître B., Simon G. T., and Williams D. B. Microsc. Microanal., 2003, 9, (2), 96 LINK http://dx.doi.org/10.1017/S1431927603030113 [Google Scholar]
  15. Xu P., Kirkland E. J., Silcox J., and Keyse R. Ultramicroscopy, 1990, 32, (2), 93 LINK http://dx.doi.org/10.1016/0304-3991(90)90027-J [Google Scholar]
  16. Krivanek O. L., Dellby N., Spence A. J., Camps R. A., and Brown L. M. Electron Microsc. Anal., 1997, 153, 35 [Google Scholar]
  17. Nellist P. D., Chisholm M. F., Dellby N., Krivanek O. L., Murfitt M. F., Szilagyi Z. S., Lupini A. R., Borisevich A., Sides W. H. Jr., and Pennycook S. J. Science, 2004, 305, (5691), 1741 LINK http://dx.doi.org/10.1126/science.1100965 [Google Scholar]
  18. Müller H., Uhlemann S., Hartel P., and Haider M. Microsc. Microanal., 2006, 12, (6), 442 LINK http://dx.doi.org/10.1017/S1431927606060600 [Google Scholar]
  19. Batson P. E., Dellby N., and Krivanek O. L. Nature, 2002, 418, (6898), 617 LINK http://dx.doi.org/10.1038/nature00972 [Google Scholar]
  20. Anderson S. C., Birkeland C. R., Anstis G. R., and Cockayne D. J. H. Ultramicroscopy, 1997, 69, (2), 83 LINK http://dx.doi.org/10.1016/S0304-3991(97)00041-7 [Google Scholar]
  21. Darji R., and Howie A. Micron, 1997, 28, (2), 95 LINK http://dx.doi.org/10.1016/S0968-4328(96)00053-4 [Google Scholar]
  22. Hÿtch M. J., and Stobbs W. M. Ultramicroscopy, 1994, 53, (3), 191 LINK http://dx.doi.org/10.1016/0304-3991(94)90034-5 [Google Scholar]
  23. Retsky M. Optik, 1974, 41, 127 [Google Scholar]
  24. Isaacson M. S., Kopf D., Ohtsuki M., and Utlaut M. Ultramicroscopy, 1979, 4, (1), 101 LINK http://dx.doi.org/10.1016/0304-3991(79)90013-5 [Google Scholar]
  25. Young N. P., Li Z. Y., Chen Y., Palomba S., Di Vece M., and Palmer R. E. Phys. Rev. Lett., 2008, 101, (24), 246103 LINK http://dx.doi.org/10.1103/PhysRevLett.101.246103 [Google Scholar]
  26. Singhal A., Yang J. C., and Gibson J. M. Ultramicroscopy, 1997, 67, (1–4), 191 LINK http://dx.doi.org/10.1016/S0304-3991(96)00094-0 [Google Scholar]
  27. Maccagnano-Zacher S. E., Mkhoyan K. A., Kirkland E. J., and Silcox J. Ultramicroscopy, 2008, 108, (8), 718 LINK http://dx.doi.org/10.1016/j.ultramic.2007.11.003 [Google Scholar]
  28. Van Dyck D., and Op de Beeck M. Ultramicroscopy, 1996, 64, (1–4), 99 LINK http://dx.doi.org/10.1016/0304-3991(96)00008-3 [Google Scholar]
  29. MacArthur H. E, K. E., Pennycook T. J., Okunishi E., D’Alfonso A. J., Lugg N. R., Allen L. J., and Nellist P. D. Ultramicroscopy, 2013, 133, 109 LINK http://dx.doi.org/10.1016/j.ultramic.2013.07.002 [Google Scholar]
  30. Rotunno E., Albrecht M., Markurt T., Remmele T., and Grillo V. Ultramicroscopy, 2014, 146, 62 LINK http://dx.doi.org/10.1016/j.ultramic.2014.07.003 [Google Scholar]
  31. De Backer A., Martinez G. T., MacArthur K. E., Jones L., Béché A., Nellist P. D., and Van Aert S. Ultramicroscopy, 2015, 151, 56 LINK http://dx.doi.org/10.1016/j.ultramic.2014.11.028 [Google Scholar]
  32. MacArthur K. E., D’Alfonso A. J., Ozkaya D., Allen L. J., and Nellist P. D. Ultramicroscopy, 2015, 156, 1 LINK http://dx.doi.org/10.1016/j.ultramic.2015.04.010 [Google Scholar]
  33. Loane R. F., Kirkland E. J., and Silcox J. Acta Cryst. A, 1988, 44, 912 LINK http://dx.doi.org/10.1107/S0108767388006403 [Google Scholar]
  34. Hwang J., Zhang J. Y., D’Alfonso A. J., Allen L. J., and Stemmer S. Phys. Rev. Lett., 2013, 111, (26–27), 266101 LINK http://dx.doi.org/10.1103/PhysRevLett.111.266101 [Google Scholar]
  35. Voyles P. M., Muller D. A., and Kirkland E. J. Microsc. Microanal., 2004, 10, (2), 291 LINK http://dx.doi.org/10.1017/S1431927604040012 [Google Scholar]
  36. Voyles P. M., Grazul J. L., and Muller D. A. Ultramicroscopy, 2003, 96, (3–4), 251 LINK http://dx.doi.org/10.1016/S0304-3991(03)00092-5 [Google Scholar]
  37. Ishikawa R., Lupini A. R., Findlay S. D., Taniguchi T., and Pennycook S. J. Nano Lett., 2014, 14, (4), 1903 LINK http://dx.doi.org/10.1021/nl500564b [Google Scholar]
  38. LeBeau J. M., and Stemmer S. Ultramicroscopy, 2008, 108, (12), 1653 LINK http://dx.doi.org/10.1016/j.ultramic.2008.07.001 [Google Scholar]
  39. Rosenauer A., Gries K., Müller K., Pretorius A., Schowalter M., Avramescu A., Engl K., and Lutgen S. Ultramicroscopy, 2009, 109, (9), 1171 LINK http://dx.doi.org/10.1016/j.ultramic.2009.05.003 [Google Scholar]
  40. Yu Z., Batson P. E., and Silcox J. Ultramicroscopy, 2003, 96, (3–4), 275 LINK http://dx.doi.org/10.1016/S0304-3991(03)00093-7 [Google Scholar]
  41. H. E ‘Quantitative Analysis of Core-Shell Nanoparticle Catalysts by Scanning Transmission Electron Microscopy’, DPhil Thesis, University of Oxford, UK, 2013 [Google Scholar]
  42. Nellist H. E, P. D., Lozano-Perez S., and Ozkaya D. J. Phys.: Conf. Ser., 2010, 241, (1), 012067 LINK http://dx.doi.org/10.1088/1742-6596/241/1/012067 [Google Scholar]
  43. Findlay S. D., and LeBeau J. M. Ultramicroscopy, 2013, 124, 52 LINK http://dx.doi.org/10.1016/j.ultramic.2012.09.001 [Google Scholar]
  44. MacArthur K. E., Jones L. B., and Nellist P. D. J. Phys.: Conf. Ser., 2014, 522, 012018 LINK http://dx.doi.org/10.1088/1742-6596/522/1/012018 [Google Scholar]
  45. Martinez G. T., Jones L., De Backer A., Béché A., Verbeeck J., Van Aert S., and Nellist P. D. Ultramicroscopy, 2015, 159, (1), 46 LINK http://dx.doi.org/10.1016/j.ultramic.2015.07.010 [Google Scholar]
  46. LeBeau J. M., Findlay S. D., Allen L. J., and Stemmer S. Nano Lett., 2010, 10, (11), 4405 LINK http://dx.doi.org/10.1021/nl102025s [Google Scholar]
  47. MacArthur K. E. ‘Quantitative Structural and Compositional Characterisation of Bimetallic Fuel-Cell Catalyst Nanoparticles Using STEM’, DPhil Thesis, University of Oxford, UK, 2015 [Google Scholar]
  48. Martinez G. T., De Backer A., Rosenauer A., Verbeeck J., and Van Aert S. Micron, 2014, 63, 57 LINK http://dx.doi.org/10.1016/j.micron.2013.12.009 [Google Scholar]
  49. Rosenauer A., Mehrtens T., Müller K., Gries K., Schowalter M., Satyam P. V., Bley S., Tessarek C., Hommel D., Sebald K., Seyfried M., Gutowski J., Avramescu A., Engl K., and Lutgen S. Ultramicroscopy, 2011, 111, (8), 1316 LINK http://dx.doi.org/10.1016/j.ultramic.2011.04.009 [Google Scholar]
  50. Nguyen D. T., Findlay S. D., and Etheridge J. Ultramicroscopy, 2014, 146, 6 LINK http://dx.doi.org/10.1016/j.ultramic.2014.04.008 [Google Scholar]
  51. Van Aert S., De Backer A., Martinez G. T., Goris B., Bals S., Van Tendeloo G., and Rosenauer A. Phys. Rev. B, 2013, 87, (6), 064107 LINK http://dx.doi.org/10.1103/PhysRevB.87.064107 [Google Scholar]
  52. Grillo V., and Rossi F. Ultramicroscopy, 2013, 125, 112 LINK http://dx.doi.org/10.1016/j.ultramic.2012.10.009 [Google Scholar]
  53. Rečnik A., Möbus G., and Šturm S. Ultramicroscopy, 2005, 103, (4), 285 LINK http://dx.doi.org/10.1016/j.ultramic.2005.01.003 [Google Scholar]
  54. Yankovich A. B., Berkels B., Dahmen W., Binev P., Sanchez S. I., Bradley S. A., Li A., Szlufarska I., and Voyles P. M. Nature Commun., 2014, 5, 4155 LINK http://dx.doi.org/10.1038/ncomms5155 [Google Scholar]
  55. Jones L., Yang H., Pennycook T. J., Marshall M. S. J., Van Aert S., Browning N. D., Castell M. R., and Nellist P. D. Adv. Struct. Chem. Imaging., 2015, 1, 8 LINK http://dx.doi.org/10.1186/s40679-015-0008-4 [Google Scholar]
  56. den Dekker A. J., Van Aert S., van den Bos A., and Van Dyck D. Ultramicroscopy, 2005, 104, (2), 83 LINK http://dx.doi.org/10.1016/j.ultramic.2005.03.001 [Google Scholar]
  57. Van Aert S., Verbeeck J., Erni R., Bals S., Luysberg M., Van Dyck D., and Van Tendeloo G. Ultramicroscopy, 2009, 109, (10), 1236 LINK http://dx.doi.org/10.1016/j.ultramic.2009.05.010 [Google Scholar]
  58. Erni R., Heinrich H., and Kostorz G. Ultramicroscopy, 2003, 94, (2), 125 LINK http://dx.doi.org/10.1016/S0304-3991(02)00249-8 [Google Scholar]
  59. Van Aert S., Batenburg K. J., Rossell M. D., Erni R., and Van Tendeloo G. Nature, 2011, 470, (7334), 374 LINK http://dx.doi.org/10.1038/nature09741 [Google Scholar]
  60. De Backer A., Martinez G. T., Rosenauer A., and Van Aert S. Ultramicroscopy, 2013, 134, 23 LINK http://dx.doi.org/10.1016/j.ultramic.2013.05.003 [Google Scholar]
  61. De Rosier D. J., and Klug A. Nature, 1968, 217, (5124), 130 LINK http://dx.doi.org/10.1038/217130a0 [Google Scholar]
  62. Flannery B. P., Deckman H. W., Roberge W. G., and D’Amico K. L. Science, 1987, 237, (4821), 1439 LINK http://dx.doi.org/10.1126/science.237.4821.1439 [Google Scholar]
  63. Kawase N., Kato M., Nishioka H., and Jinnai H. Ultramicroscopy, 2007, 107, (1), 8 LINK http://dx.doi.org/10.1016/j.ultramic.2006.04.007 [Google Scholar]
  64. Kübel C., Niemeyer D., Cieslinski R., and Rozeveld S. Mater. Sci. Forum, 2010, 638–642, 2517 LINK http://dx.doi.org/10.4028/www.scientific.net/MSF.638-642.2517 [Google Scholar]
  65. Weyland M. Top. Catal, 2002, 21, (4), 175 LINK http://dx.doi.org/10.1023/A:1021385427655 [Google Scholar]
  66. Jesson D. E., and Pennycook S. J. Proc. Roy. Soc. Lond., 1995, 449, (1936), 273 LINK http://dx.doi.org/10.1098/rspa.1995.0044 [Google Scholar]
  67. Nanda K. K., Maisels A., Kruis F. E., Fissan H., and Stappert S. Phys. Rev. Lett., 2003, 91, (10), 106102 LINK http://dx.doi.org/10.1103/PhysRevLett.91.106102 [Google Scholar]
  68. Koster A. J., Ziese U., Verkleij A. J., Janssen A. H., and de Jong K. P. J. Phys. Chem. B., 2000, 104, (40), 9368 LINK http://dx.doi.org/10.1021/jp0015628 [Google Scholar]
  69. Jinschek J. R., Batenburg K. J., Calderon H. A., Kilaas R., Radmilovic V., and Kisielowski C. Ultramicroscopy, 2008, 108, (6), 589 LINK http://dx.doi.org/10.1016/j.ultramic.2007.10.002 [Google Scholar]
  70. Gontard L. C., Dunin-Borkowski R. E., Ozkaya D., Hyde T., Midgley P. A., and Ash P. J. Phys.: Conf. Ser., 2006, 26, 367 LINK http://dx.doi.org/10.1088/1742-6596/26/1/089 [Google Scholar]
  71. Möbus G., and Inkson B. J. Appl. Phys. Lett., 2001, 79, (9), 1369 LINK http://dx.doi.org/10.1063/1.1400080 [Google Scholar]
  72. Grothausmann R., Fiechter S., Beare R., Lehmann G., Kropf H., Kumar G. S. V., Manke I., and Banhart J. Ultramicroscopy, 2012, 122, 65 LINK http://dx.doi.org/10.1016/j.ultramic.2012.07.024 [Google Scholar]
  73. Friedrich H., Guo S., de Jongh P. E., Pan X., Bao X., and de Jong K. P. ChemSusChem, 2011, 4, (7), 957 LINK http://dx.doi.org/10.1002/cssc.201000325 [Google Scholar]
  74. Sueda S., Yoshida K., and Tanaka N. Ultramicroscopy, 2010, 110, (9), 1120 LINK http://dx.doi.org/10.1016/j.ultramic.2010.04.003 [Google Scholar]
  75. Batenburg K. J., and Sijbers J. IEEE Trans. Image Process., 2011, 20, (9), 2542 LINK http://dx.doi.org/10.1109/TIP.2011.2131661 [Google Scholar]
  76. Bals S., Casavola M., van Huis M. A., Van Aert S., Batenburg K. J., Van Tendeloo G., and Vanmaekelbergh D. Nano Lett., 2011, 11, (8), 3420 LINK http://dx.doi.org/10.1021/nl201826e [Google Scholar]
  77. Jones L., MacArthur K. E., Fauske V. T., van Helvoort A. T. J., and Nellist P. D. Nano Lett., 2014, 14, (11), 6336 LINK http://dx.doi.org/10.1021/nl502762m [Google Scholar]
  78. MacArthur K. E., Jones L. B., Lozano-Perez S., Ozkaya D., and Nellist P. D. ‘Quantification of Pt/Ir Catalyst Nanoparticles using ADF STEM’ in 18th International Microscopy Congress, Prague, Czech Republic, 7–12th September, 2014 [Google Scholar]
  79. MacArthur K. E., Slater T. J. A., Haigh S. J., Ozkaya D., Nellist P. D., and Lozano-Perez S. Microsc. Microanal., 2016, 22, (1), 71 LINK http://dx.doi.org/10.1017/S1431927615015494 [Google Scholar]
  80. MacArthur K. E., Slater T. J. A., Haigh S. J., Ozkaya D., Nellist P. D., and Lozano-Perez S. Mater. Sci. Technol., 2016, doi:10.1080/02670836.2015.1133021 LINK http://dx.doi.org/10.1080/02670836.2015.1133021 [Google Scholar]
  81. Ortalan V., Uzun A., Gates B. C., and Browning N. D. Nature Nanotechnol., 2010, 5, (12), 843 LINK http://dx.doi.org/10.1038/nnano.2010.234 [Google Scholar]
  82. Carlino E., and Grillo V. Phys. Rev. B., 2005, 71, (23), 235303 LINK http://dx.doi.org/10.1103/PhysRevB.71.235303 [Google Scholar]
  83. Grillo V. Ultramicroscopy, 2009, 109, (12), 1453 LINK http://dx.doi.org/10.1016/j.ultramic.2009.07.010 [Google Scholar]
  84. Rosenauer A., Gries K., Müller K., Schowalter M., Pretorius A., Avramescu A., Engl K., and Lutgen S. J. Phys.: Conf. Ser., 2010, 209, (1), 012009 LINK http://dx.doi.org/10.1088/1742-6596/209/1/012009 [Google Scholar]
  85. Molina S. I., Sales D. L., Galindo P. L., Fuster D., González Y., Alén B., González L., Varela M., and Pennycook S. J. Ultramicroscopy, 2009, 109, (2), 172 LINK http://dx.doi.org/10.1016/j.ultramic.2008.10.008 [Google Scholar]
  86. Molina S. I., Guerrero M. P., Galindo P. L., Sales D. L., Varela M., and Pennycook S. J. J. Electron Microsc. (Tokyo), 2011, 60, (1), 29 LINK http://dx.doi.org/10.1093/jmicro/dfq078 [Google Scholar]
  87. Hernández-Maldonado D., Herrera M., Alonso-González P., González Y., González L., Gazquez J., Varela M., Pennycook S. J., de la Paz Guerrero-Lebrero M., Pizarro J., Galindo P. L., and Molina S. I. Microsc. Microanal., 2011, 17, (4), 578 LINK http://dx.doi.org/10.1017/S1431927611000213 [Google Scholar]
  88. Lyman C. E. J. Mol. Catal., 1983, 20, (3), 357 LINK http://dx.doi.org/10.1016/0304-5102(83)80050-9 [Google Scholar]
  89. Deepak F. L., Casillas-Garcia G., Esparza R., Barron H., and Jose-Yacaman M. J. Cryst. Growth, 2011, 325, (1), 60 LINK http://dx.doi.org/10.1016/j.jcrysgro.2011.04.026 [Google Scholar]
  90. Friel J. J., and Lyman C. E. Microsc. Microanal., 2006, 12, (1), 2 LINK http://dx.doi.org/10.1017/S1431927606060211 [Google Scholar]
  91. Prestvik R., Tøtdal B., Lyman C. E., and Holmen A. J. Catal., 1998, 176, (1), 246 LINK http://dx.doi.org/10.1006/jcat.1998.2025 [Google Scholar]
  92. Titchmarsh J. M. Micron, 1999, 30, (2), 159 LINK http://dx.doi.org/10.1016/S0968-4328(99)00020-7 [Google Scholar]
  93. Lechner P., Fiorini C., Hartmann R., Kemmer J., Krause N., Leutenegger P., Longoni A., Soltau H., Stötter D., Stötter R., Strüder L., and Weber U. Nucl. Instr. Methods Phys. Res. A., 2001, 458, (1–2), 281 LINK http://dx.doi.org/10.1016/S0168-9002(00)00872-X [Google Scholar]
  94. von Harrach H. S., Dona P., Freitag B., Soltau H., Niculae A., and Rohde M. J. Phys.: Conf. Ser., 2010, 241, (1), 012015 LINK http://dx.doi.org/10.1088/1742-6596/241/1/012015 [Google Scholar]
  95. Phillips P. J., Paulauskas T., Rowlands N., Nicholls A. W., Low K.-B., Bhadare S., and Klie R. F. Microsc. Microanal., 2014, 20, (4), 1046 LINK http://dx.doi.org/10.1017/S1431927614001639 [Google Scholar]
  96. Allen L. J., D’Alfonso A. J., Freitag B., and Klenov D. O. MRS Bull., 2012, 37, (1), 47 LINK http://dx.doi.org/10.1557/mrs.2011.331 [Google Scholar]
  97. Itakura M., Watanabe N., Nishida M., Daio T., and Matsumura S. Jpn. J. Appl. Phys.,52, (5R), 050201 LINK http://dx.doi.org/10.7567/JJAP.52.050201 [Google Scholar]
  98. Kothleitner G., Neish M. J., Lugg N. R., Findlay S. D., Grogger W., Hofer F., and Allen L. J. Phys. Rev. Lett., 2014, 112, (8), 085501 LINK http://dx.doi.org/10.1103/PhysRevLett.112.085501 [Google Scholar]
  99. Kotula P. G., Klenov D. O., and von Harrach H. S. Microsc. Microanal., 2012, 18, (4), 691 LINK http://dx.doi.org/10.1017/S1431927612001201 [Google Scholar]
  100. Slater T. J. A., Camargo P. H. C., Burke M. G., Zaluzec N. J., and Haigh S. J. J. Phys.: Conf. Ser., 2014, 522, 012025 LINK http://dx.doi.org/10.1088/1742-6596/522/1/012025 [Google Scholar]
  101. Tran D. T., Jones I. P., Preece J. A., Johnston R. L., and van den Brom C. R. J. Nanoparticle Res., 2011, 13, (9), 4229 LINK http://dx.doi.org/10.1007/s11051-011-0367-2 [Google Scholar]
  102. Cliff G., and Lorimer G. W. J. Microsc., 1975, 103, (2), 203 LINK http://dx.doi.org/10.1111/j.1365-2818.1975.tb03895.x [Google Scholar]
  103. Watanabe M., Williams D. B., and Tomokiyo Y. Micron, 2003, 34, (3–5), 173 LINK http://dx.doi.org/10.1016/S0968-4328(03)00028-3 [Google Scholar]
  104. Watanabe M., and Williams D. B. J. Microsc., 2006, 221, (2), 89 LINK http://dx.doi.org/10.1111/j.1365-2818.2006.01549.x [Google Scholar]
  105. Watanabe M., Horita Z., and Nemoto M. Ultramicroscopy, 1996, 65, (3–4), 187 LINK http://dx.doi.org/10.1016/S0304-3991(96)00070-8 [Google Scholar]
  106. Watanabe M., Ackland D. W., Kiely C. J., Williams D. B., Kanno M., Hynes R., and Sawada H. JEOL News, 2006, 41, (1), 2 [Google Scholar]
  107. Williams D. B., Papworth A. J., and Watanabe M. J. Electron Microsc., 2002, 51, S113 LINK http://dx.doi.org/10.1093/jmicro/51.Supplement.S113 [Google Scholar]
  108. Lyman C. E., Stenger H. G. Jr., and Michael J. R. Ultramicroscopy, 1987, 22, (1–4), 129 LINK http://dx.doi.org/10.1016/0304-3991(87)90057-X [Google Scholar]
  109. Herzing A. A., Watanabe M., Edwards J. K., Conte M., Tang Z.-R., Hutchings G. J., and Kiely C. J. Faraday Discuss., 2008, 138, 337 LINK http://dx.doi.org/10.1039/B706293C [Google Scholar]
  110. Liu J. J. Electron Microsc., 2005, 54, (3), 251 LINK http://dx.doi.org/10.1093/jmicro/dfi034 [Google Scholar]
  111. Skiff W. M., Carpenter R. W., Lin S. H., and Higgs A. Ultramicroscopy, 1988, 25, (1), 47 LINK http://dx.doi.org/10.1016/0304-3991(88)90406-8 [Google Scholar]
  112. Hofer F. Microsc. Microanal. Microstruct., 1991, 2, (2–3), 215 LINK http://dx.doi.org/10.1051/mmm:0199100202-3021500 [Google Scholar]
  113. Egerton R. F., and Malac M. J. Electron Spectrosc. Relat. Phenomena, 2005, 143, (2–3), 43 LINK http://dx.doi.org/10.1016/j.elspec.2003.12.009 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651316X691186
Loading
/content/journals/10.1595/205651316X691186
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error