Skip to content
1887
Volume 61, Issue 2
  • ISSN: 2056-5135

Abstract

Iridium as a barrier coating is an important area of high-temperature application. In Part I, the introduction was presented and the different deposition processes were reviewed (1). This paper, Part II, describes the texture and structure evolution, mechanical properties, growth mechanisms and applications of Ir coatings. The mechanisms of micropore formation after high-temperature treatment are also investigated in some detail.

Loading

Article metrics loading...

/content/journals/10.1595/205651317X695064
2017-01-01
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/61/2/JMTR-61-2-Wu-ED-pt2.html?itemId=/content/journals/10.1595/205651317X695064&mimeType=html&fmt=ahah

References

  1. Wu W.-P., and Chen Z.-F. Johnson Matthey Technol. Rev., 2017, 61, (1), 16 LINK http://www.technology.matthey.com/article/61/1/16-28/ [Google Scholar]
  2. Zhao J.-P., Wang X., Chen Z.-Y., Yang S.-Q., Shi T.-S., and Liu X.-H. J. Phys. D: Appl. Phys., 1997, 30, (1), 5 LINK http://dx.doi.org/10.1088/0022-3727/30/1/002 [Google Scholar]
  3. Eroglu S., and Gallois B. J. Phys. IV France, 1993, 3, C3-177 LINK http://dx.doi.org/10.1051/jp4:1993322 [Google Scholar]
  4. Osamura H. ‘Development of Long Life and High Ignitability Iridium Spark Plug’, Seoul 2000 FISITA World Automotive Congress, Seoul, South Korea, 12th–15th June, 2000, F2000A144 LINK http://210.101.116.115/fisita/pdf/A144.pdf [Google Scholar]
  5. Hörmann F., Peng H.-Y., Bauer Th., Li Q., Schreck M., Lifshitz Y., Lee S.-T., and Stritzker B. Surf. Sci., 2002, 513, (3), 525 LINK http://dx.doi.org/10.1016/S0039-6028(02)01852-6 [Google Scholar]
  6. Murakami H., Yano T., and Sodeoka S. Mater. Trans., 2004, 45, (9), 2886 LINK http://dx.doi.org/10.2320/matertrans.45.2886 [Google Scholar]
  7. Hecq M., and Hecq A. J. Vac. Sci. Technol., 1981, 18, (2), 219 LINK http://dx.doi.org/10.1116/1.570727 [Google Scholar]
  8. Park D.-Y., Lee D.-S., Woo H.-J., Chun D.-I., and Yoon E.-J. Tong Yang Cement Corp, US Patent 6,025,205; 2000 [Google Scholar]
  9. Wessling B., Mokwa W., and Schnakenberg U. J. Electrochem. Soc., 2008, 155, (5), F61 LINK http://dx.doi.org/10.1149/1.2844805 [Google Scholar]
  10. Wessling B., Lüsebrink D., Mokwa W., and Schnakenberg U. J. Electrochem. Soc., 2008, 155, (5), F66 LINK http://dx.doi.org/10.1149/1.2844818 [Google Scholar]
  11. Zhu L., Bai S., Zhang H., and Ye Y. Appl. Surf. Sci., 2013, 265, 537 LINK http://dx.doi.org/10.1016/j.apsusc.2012.11.041 [Google Scholar]
  12. Wu W.-P., Chen Z.-F., Cheng X.-W., and Wang Y.-W. Nucl. Instr. Meth. Phys. Res. Sect. B: Beam Int. Mater. Atoms, 2013, 307, 315 LINK http://dx.doi.org/10.1016/j.nimb.2012.12.069 [Google Scholar]
  13. Wang L.-B., Chen Z.-F., Zhang P.-Z., Wu W.-P., and Zhang Y. J. Coat. Technol. Res., 2009, 6, (4), 517 LINK http://dx.doi.org/10.1007/s11998-008-9123-7 [Google Scholar]
  14. Zhao Z., Wang C., Li M., Wang L., and Kong L. Appl. Surf. Sci., 2006, 252, (12), 4257 LINK http://dx.doi.org/10.1016/j.apsusc.2005.07.005 [Google Scholar]
  15. Beshenkov V. G., Fomin L. A., Irzhak D. V., Marchenko V. A., Nikolaichik V. I., and Znamenskii A. G. Thin Solid Films, 2012, 520, (23), 6888 LINK http://dx.doi.org/10.1016/j.tsf.2012.07.033 [Google Scholar]
  16. Thompson C. V., and Carel R. Mater. Sci. Eng. B, 1995, 32, (3), 211 LINK http://dx.doi.org/10.1016/0921-5107(95)03011-5 [Google Scholar]
  17. Goswami J., Wang C.-G., Majhi P., Shin Y.-W., and Dey S. K. J. Mater. Res., 2001, 16, (8), 2192 LINK http://dx.doi.org/10.1557/JMR.2001.0300 [Google Scholar]
  18. Thompson C. V. Ann. Rev. Mater. Sci., 2000, 30, 159 LINK http://dx.doi.org/10.1146/annurev.matsci.30.1.159 [Google Scholar]
  19. Thompson C. V. Ann. Rev. Mater. Sci., 1990, 20, 245 LINK http://dx.doi.org/10.1146/annurev.ms.20.080190.001333 [Google Scholar]
  20. Markov I. V. “Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy”, 2nd Edn., World Scientific Publishing Co Pte Ltd, Singapore, 2003 [Google Scholar]
  21. Grovenor C. R. M., Hentzell H. T. G., and Smith D. A. Acta Metall., 1984, 32, (5), 773 LINK http://dx.doi.org/10.1016/0001-6160(84)90150-0 [Google Scholar]
  22. Wu W.-P., Chen Z.-F., Lin X., Li B.-B., and Cong X.-N. Vacuum, 2011, 86, (4), 429 LINK http://dx.doi.org/10.1016/j.vacuum.2011.09.003 [Google Scholar]
  23. Mumtaz K., Echigoya J., Hirai T., and Shindo Y. Mater. Sci. Eng.: A, 1993, 167, (1–2), 187 LINK http://dx.doi.org/10.1016/0921-5093(93)90353-G [Google Scholar]
  24. Levinstein H. J. Appl. Phys., 1949, 20, (4), 306 LINK http://dx.doi.org/10.1063/1.1698362 [Google Scholar]
  25. Sabol S. M., Randall B. T., Edington J. D., Larkin C. J., and Close B. J. “Barrier Coatings for Refractory Metals and Superalloys”, B-MT-(SPME)-25, TRN: US0603658, Bettis Atomic Power Laboratory (BAPL), Pennsylvania, USA, 2006, pp. 128 LINK http://dx.doi.org/10.2172/884669 [Google Scholar]
  26. Kim H.-U., Cha D.-H., Kim H.-J., and Kim J.-H. Int. J. Prec. Eng. Manuf., 2009, 10, (3), 19 LINK http://dx.doi.org/10.1007/s12541-009-0042-z [Google Scholar]
  27. Zhu L.-A., Bai S.-X., and Zhang H. Surf. Coat. Technol., 2011, 206, (6), 1351 LINK http://dx.doi.org/10.1016/j.surfcoat.2011.08.058 [Google Scholar]
  28. Wu W.-P., Lin X., Chen Z.-F., Chen Z., Cong X.-N., Xu T.-Z., and Qiu J.-L. Plasma Chem. Plasma Proc., 2011, 31, (3), 465 LINK http://dx.doi.org/10.1007/s11090-011-9293-4 [Google Scholar]
  29. Tjong S.-C., and Chen H. Mater. Sci. Eng.: R: Reports, 2004, 45, (1–2), 1 LINK http://dx.doi.org/10.1016/j.mser.2004.07.001 [Google Scholar]
  30. Hanamura T., and Qiu H. ‘Ultra-Fine Grained Steel: Relationship Between Grain Size and Tensile Properties’, in “Analysis of Fracture Toughness Mechanism in Ultra-Fine-Grained Steels”, NIMS Monographs, Springer, Japan, 2014, pp. 925 LINK http://dx.doi.org/10.1007/978-4-431-54499-9_2 [Google Scholar]
  31. Kuppusami P., Murakami H., and Ohmura T. J. Vac. Sci. Technol. A, 2004, 22, (4), 1208 LINK http://dx.doi.org/10.1116/1.1763913 [Google Scholar]
  32. Hagen J., Burmeister F., Fromm A., Manns P., and Kleer G. Plasma Process. Polym., 2009, 6, (S1), 678 LINK http://dx.doi.org/10.1002/ppap.200931701 [Google Scholar]
  33. Li H.-J., Xue H., Fu Q.-G., Zhang Y.-L., Shi X.-H., and Li K.-Z. J. Inorg. Mater., 2010, 25, 337 LINK http://dx.doi.org/10.3724/SP.J.1077.2010.00337 [Google Scholar]
  34. Huang Y.-L., Bai S.-X., Zhang H., and Ye Y.-C. Int. J. Refract. Metals Hard Mater., 2015, 50, 204 LINK http://dx.doi.org/10.1016/j.ijrmhm.2015.01.009 [Google Scholar]
  35. Ritterhaus Y., Hur’yeva T., Lisker M., and Burte E. P. Chem. Vap. Deposition, 2007, 13, (12), 698 LINK http://dx.doi.org/10.1002/cvde.200706630 [Google Scholar]
  36. El Khakani M. A., Chaker M., and Le Drogoff B. J. Vac. Sci. Technol. A, 1998, 16, (2), 885 LINK http://dx.doi.org/10.1116/1.581029 [Google Scholar]
  37. Gong Y.-S., Wang C.-B., Shen Q., and Zhang L.-M. Vacuum, 2008, 82, (6), 594 LINK http://dx.doi.org/10.1016/j.vacuum.2007.09.003 [Google Scholar]
  38. Khoa T. D., Horii S., and Horita S. Thin Solid Films, 2002, 419, (1–2), 88 LINK http://dx.doi.org/10.1016/S0040-6090(02)00761-7 [Google Scholar]
  39. Hogmark S., Jacobson S., and Larsson M. Wear, 2000, 246, (1–2), 20 LINK http://dx.doi.org/10.1016/S0043-1648(00)00505-6 [Google Scholar]
  40. Chen Z.-F., Wu W.-P., Cong X.-N., and Wang L.-B. Adv. Mater. Res., 2011, 314–316, 214 LINK http://dx.doi.org/10.4028/www.scientific.net/AMR.314-316.214 [Google Scholar]
  41. Venables J. A. “Introduction to Surface and Thin Film Processes”, Cambridge University Press, Cambridge, UK, 2000 LINK http://dx.doi.org/10.1017/CBO9780511755651 [Google Scholar]
  42. Chen T.-L., Li X.-M., Zhang S., and Zhang X. Appl. Phys. A, 2005, 80, (1), 73 LINK http://dx.doi.org/10.1007/s00339-004-2978-2 [Google Scholar]
  43. Bauer E., and van der Merwe J. H. Phys. Rev. B, 1986, 33, (6), 3657 LINK http://dx.doi.org/10.1103/PhysRevB.33.3657 [Google Scholar]
  44. Venables J. A., Spiller G. D. T., and Hanbucken M. Rep. Prog. Phys., 1984, 47, (4), 399 LINK http://dx.doi.org/10.1088/0034-4885/47/4/002 [Google Scholar]
  45. Kaiser N. Appl. Optics, 2002, 41, (16), 3053 LINK http://dx.doi.org/10.1364/AO.41.003053 [Google Scholar]
  46. Gerfin T., Hälg W. J., Atamny F., and Dahmen K.-H. Thin Solid Films, 1994, 241, (1–2), 352 LINK http://dx.doi.org/10.1016/0040-6090(94)90456-1 [Google Scholar]
  47. Chen Z.-F., Wu W.-P., Wang L.-B., and Zhang Y. Surf. Eng., 2011, 27, (4), 242 LINK http://www.tandfonline.com/doi/full/10.1179/174329409X397787 [Google Scholar]
  48. Sun Y.-M., Endle J. P., Smith K., Whaley S., Mahaffy R., Ekerdt J. G., White J. M., and Hance R. L. Thin Solid Films, 1999, 346, (1–2), 100 LINK http://dx.doi.org/10.1016/S0040-6090(98)01458-8 [Google Scholar]
  49. Garcia J. R. V., and Goto T. Mater. Trans., 2003, 44, (9), 1717 LINK http://dx.doi.org/10.2320/matertrans.44.1717 [Google Scholar]
  50. Goto T., Vargas R., and Hirai T. J. Phys. IV France, 1993, 3, (C3), 297 LINK http://dx.doi.org/10.1051/jp4:1993341 [Google Scholar]
  51. Semyannikov P. P., Morozova N. B., Zherikova K. V., Trubin S. V., Igumenov I. K., and Gelfond N. V. ECS Trans., 2009, 25, (8), 887 LINK http://dx.doi.org/10.1149/1.3207682 [Google Scholar]
  52. Vasilyev V. Yu., Morozova N. B., Basova T. V., Igumenov I. K., and Hassan A. RSC Adv., 2015, 5, (41), 32034 LINK http://dx.doi.org/10.1039/C5RA03566J [Google Scholar]
  53. Vargas R., Goto T., Zhang W., and Hirai T. Appl. Phys. Lett., 1994, 65, (9), 1094 LINK http://dx.doi.org/10.1063/1.112108 [Google Scholar]
  54. Gelfond N. V., Igumenov I. K., Boronin A. I., Bukhtiyarov V. I., Smirnov M. Yu., Prosvirin I. P., and Kwon R. I. Surf. Sci., 1992, 275, (3), 323 LINK http://dx.doi.org/10.1016/0039-6028(92)90804-F [Google Scholar]
  55. Song S.-I., Lee J.-H., Choi B.-H., Lee H.-K., Shin D.-C., and Lee J.-W. Surf. Coat. Technol., 2012, 211, 14 LINK http://dx.doi.org/10.1016/j.surfcoat.2011.09.074 [Google Scholar]
  56. Knapas K., and Ritala M. Chem. Mater., 2011, 23, (11), 2766 LINK http://dx.doi.org/10.1021/cm103490v [Google Scholar]
  57. Aaltonen T., Ritala M., Sammelselg V., and Leskelä M. J. Electrochem. Soc., 2004, 151, (8), G489 LINK http://dx.doi.org/10.1149/1.1761011 [Google Scholar]
  58. Christensen S. T., and Elam J. W. Chem. Mater., 2010, 22, (8), 2517 LINK http://dx.doi.org/10.1021/cm9031978 [Google Scholar]
  59. Chang C.-M., Wei C.-M., and Chen S.-P. Phys. Rev. B, 1996, 54, (23), 17083 LINK http://dx.doi.org/10.1103/PhysRevB.54.17083 [Google Scholar]
  60. Toenshoff D. A., Lanam R. D., Ragaini J., Shchetkovskiy A., and Smirnov A. ‘Iridium Coated Rhenium Rocket Chambers Produced by Electroforming’, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, USA, 24th–28th July, 2000 LINK http://dx.doi.org/10.2514/6.2000-3166 [Google Scholar]
  61. Wu W.-P., and Chen Z.-F. Acta Metall. Sin. (Engl. Lett.), 2012, 25, (6), 469 LINK http://dx.doi.org/10.11890/1006-7191-126-469 [Google Scholar]
  62. Aziz M. J. Appl. Phys. A, 2008, 93, (3), 579 LINK http://dx.doi.org/10.1007/s00339-008-4696-7 [Google Scholar]
  63. Chen T., Li X.-M., and Zhang X. J. Cryst. Growth, 2004, 267, (1–2), 80 LINK http://dx.doi.org/10.1016/j.jcrysgro.2004.03.005 [Google Scholar]
  64. Chen Z.-F., Wu W.-P., and Cong X.-N. J. Mater. Sci. Technol., 2014, 30, (3), 268 LINK http://dx.doi.org/10.1016/j.jmst.2013.06.002 [Google Scholar]
  65. Wu W.-P., Chen Z.-F., Cong X. N., and Wang L.-B. Rare Metal Mater. Eng., 2013, 42, (2), 435 (In Chinese) LINK http://caod.oriprobe.com/articles/31751798/Review_on_High_Temperature_Oxidation_Resistant_Iridium_Coating_for_Ref.htm [Google Scholar]
  66. Zhang Z.-W., Xu Z.-H., Wang J.-M., Wu W.-P., and Chen Z.-F. J. Mater. Eng. Perf., 2012, 21, (10), 2085 LINK http://dx.doi.org/10.1007/s11665-012-0133-3 [Google Scholar]
  67. Wu W.-P., and Chen Z.-F. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2012, 27, (4), 652 LINK http://dx.doi.org/10.1007/s11595-012-0522-3 [Google Scholar]
  68. Wu W.-P., Chen Z.-F., and Lin X. Adv. Mater. Res., 2011, 189–193, 688 LINK http://dx.doi.org/10.4028/www.scientific.net/AMR.189-193.688 [Google Scholar]
  69. Wu W.-P., Chen Z.-F., Cheng H., Wang L.-B., and Zhang Y. Appl. Surf. Sci., 2011, 257, (16), 7295 LINK http://dx.doi.org/10.1016/j.apsusc.2011.03.108 [Google Scholar]
  70. Wu W.-P., Chen Z.-F., and Wang L.-B. Prot. Met. Phys. Chem. Surf., 2015, 51, (4), 607 LINK http://dx.doi.org/10.1134/S2070205115040358 [Google Scholar]
  71. Wu W.-P., Jiang J.-J., and Chen Z.-F. Acta Astronaut., 2016, 123, 1 LINK http://dx.doi.org/10.1016/j.actaastro.2016.03.004 [Google Scholar]
  72. Wu W.-P., and Chen Z.-F. Surf. Interface Anal., 2016, 48, (6), 353 LINK http://dx.doi.org/10.1002/sia.5986 [Google Scholar]
  73. Wang J.-M., Zhang Z.-W., Xu Z.-H., Lin X., Wu W.-P., and Chen Z.-F. Corros. Eng. Sci. Technol., 2011, 46, (6), 732 LINK http://dx.doi.org/10.1179/1743278210Y.0000000023 [Google Scholar]
  74. Reed B. D., Biaglow J. A., and Schneider S. J. Mater. Manuf. Proc., 1998, 13, (5), 757 LINK http://dx.doi.org/10.1080/10426919808935297 [Google Scholar]
  75. Mumtaz K., Echigoya J., Enoki H., Hirai T., and Shindo Y. J. Mater. Sci., 1995, 30, (2), 465 LINK http://dx.doi.org/10.1007/BF00354413 [Google Scholar]
  76. Lowndes D. H., Geohegan D. B., Puretzky A. A., Norton D. P., and Rouleau C. M. Science, 1996, 273, (5277), 898 LINK http://dx.doi.org/10.1126/science.273.5277.898 [Google Scholar]
  77. Yang W.-B., Zhang L.-T., Hua Y.-F., and Cheng L.-F. Int. J. Refract. Metals Hard Mater., 2009, 27, (1), 33 LINK http://dx.doi.org/10.1016/j.ijrmhm.2008.02.001 [Google Scholar]
  78. Huang Y.-L., Bai S.-X., Zhang H., and Ye Y.-C. Appl. Surf. Sci., 2015, 328, 436 LINK http://dx.doi.org/10.1016/j.apsusc.2014.12.063 [Google Scholar]
  79. Mumtaz K., Echigoya J., and Taya M. J. Mater. Sci., 1993, 28, (20), 5521 LINK http://dx.doi.org/10.1007/BF00367824 [Google Scholar]
  80. Hu C.-Y. ‘Study on the CVD Iridium Coated Rhenium Composite’, PhD thesis, Central South University, Changsha, China, Dissertations from CNKI, 2002 (in Chinese) [Google Scholar]
  81. Brewer L., and Lamoreaux R. H. ‘Molybdenum: Physico-Chemical Properties of its Compounds and Alloy’, Atomic Energy Review, International Atomic Energy Agency, Vienna, Austria, 1980, 7, 263 [Google Scholar]
  82. Ohriner E. K., and George E. P. J. Alloys Compd., 1991, 177, (2), 219 LINK http://dx.doi.org/10.1016/0925-8388(91)90075-7 [Google Scholar]
  83. Hamilton J. C., Yang N. Y. C., Clift W. M., Boehme D. R., McCarty K. F., and Franklin J. E. Metall. Trans. A, 1992, 23, (3), 851 LINK http://dx.doi.org/10.1007/BF02675562 [Google Scholar]
  84. Chen S., Hu C.-Y., Guo J.-M., and Yang J.-M. Rare Metal Mater. Eng., 2005, 34, (6), 916 LINK http://caod.oriprobe.com/articles/9362013/Study_on_Interdiffusion_of_Iridium_Molybdenum.htm [Google Scholar]
  85. Hämäläinen J., Puukilainen E., Kemell M., Costelle L., Ritala M., and Leskelä M. Chem. Mater., 2009, 21, (20), 4868 LINK http://dx.doi.org/10.1021/cm901687w [Google Scholar]
  86. Tuffias R. H., Melden G. J., and Harding J. T. ‘High Temperature Oxidation-Resistant Thruster Materials, Phase II’, NASA Contractor Report 187205, 1991 LINK http://www.dtic.mil/dtic/tr/fulltext/u2/a293027.pdf [Google Scholar]
  87. Mumtaz K., Echigoya J., Enoki H., Hirai T., and Shindo Y. J. Alloys Compd., 1994, 209, (1–2), 279 LINK http://dx.doi.org/10.1016/0925-8388(94)91114-2 [Google Scholar]
  88. Mumtaz K., Echigoya J., Enoki H., Hirai T., and Shindo Y. J. Mater. Sci., 1996, 31, (19), 5247 LINK http://dx.doi.org/10.1007/BF00355932 [Google Scholar]
  89. Zhang X.-H., Xu F.-T., Jia Z.-H., Li H. Q., He K.-M., and Chen D. Mater. China, 2013, 32, (4), 203 (in Chinese) LINK http://en.oversea.cnki.net/kcms/detail/detail.aspx?QueryID=25&CurRec=2&dbCode=CJFD&filename=XJKB201304003&dbname=CJFD2013 [Google Scholar]
/content/journals/10.1595/205651317X695064
Loading
/content/journals/10.1595/205651317X695064
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error