Skip to content
1887
Volume 61, Issue 2
  • ISSN: 2056-5135
  • oa Iridium Coating: Processes, Properties and Application. Part II

    Analysis of the coatings against high-temperature oxidation and corrosion

  • Authors: Wang-ping Wu1 and Zhao-feng Chen1
  • Affiliations: 1 School of Mechanical Engineering, Institute of Energy Chemical Equipment and Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou UniversityChangzhou 213164P.R. China 2 International Laboratory for Insulation and Energy Efficiency Materials, College of Material Science and Technology, Nanjing University of Aeronautics and AstronauticsNanjing 210016P.R. China
  • Source: Johnson Matthey Technology Review, Volume 61, Issue 2, Apr 2017, p. 93 - 110
  • DOI: https://doi.org/10.1595/205651317X695064
    • Published online: 01 Jan 2017

Abstract

Iridium as a barrier coating is an important area of high-temperature application. In Part I, the introduction was presented and the different deposition processes were reviewed (1). This paper, Part II, describes the texture and structure evolution, mechanical properties, growth mechanisms and applications of Ir coatings. The mechanisms of micropore formation after high-temperature treatment are also investigated in some detail.

Loading

Article metrics loading...

/content/journals/10.1595/205651317X695064
2017-01-01
2024-12-25
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/61/2/JMTR-61-2-Wu-ED-pt2.html?itemId=/content/journals/10.1595/205651317X695064&mimeType=html&fmt=ahah

References

  1. W.-P. Wu, Z.-F. Chen, Johnson Matthey Technol. Rev., 2017, 61, (1), 16 LINK http://www.technology.matthey.com/article/61/1/16-28/ [Google Scholar]
  2. J.-P. Zhao, X. Wang, Z.-Y. Chen, S.-Q. Yang, T.-S. Shi, X.-H. Liu, J. Phys. D: Appl. Phys., 1997, 30, (1), 5 LINK http://dx.doi.org/10.1088/0022-3727/30/1/002 [Google Scholar]
  3. S. Eroglu, B. Gallois, J. Phys. IV France, 1993, 3, C3-177 LINK http://dx.doi.org/10.1051/jp4:1993322 [Google Scholar]
  4. H. Osamura, ‘Development of Long Life and High Ignitability Iridium Spark Plug’, Seoul 2000 FISITA World Automotive Congress, Seoul, South Korea, 12th–15th June, 2000, F2000A144 LINK http://210.101.116.115/fisita/pdf/A144.pdf [Google Scholar]
  5. F. Hörmann, H.-Y. Peng, Th. Bauer, Q. Li, M. Schreck, Y. Lifshitz, S.-T. Lee, B. Stritzker, Surf. Sci., 2002, 513, (3), 525 LINK http://dx.doi.org/10.1016/S0039-6028(02)01852-6 [Google Scholar]
  6. H. Murakami, T. Yano, S. Sodeoka, Mater. Trans., 2004, 45, (9), 2886 LINK http://dx.doi.org/10.2320/matertrans.45.2886 [Google Scholar]
  7. M. Hecq, A. Hecq, J. Vac. Sci. Technol., 1981, 18, (2), 219 LINK http://dx.doi.org/10.1116/1.570727 [Google Scholar]
  8. D.-Y. Park, D.-S. Lee, H.-J. Woo, D.-I. Chun, E.-J. Yoon, Tong Yang Cement Corp,, US Patent 6,025,205; 2000 [Google Scholar]
  9. B. Wessling, W. Mokwa, U. Schnakenberg, J. Electrochem. Soc., 2008, 155, (5), F61 LINK http://dx.doi.org/10.1149/1.2844805 [Google Scholar]
  10. B. Wessling, D. Lüsebrink, W. Mokwa, U. Schnakenberg, J. Electrochem. Soc., 2008, 155, (5), F66 LINK http://dx.doi.org/10.1149/1.2844818 [Google Scholar]
  11. L. Zhu, S. Bai, H. Zhang, Y. Ye, Appl. Surf. Sci., 2013, 265, 537 LINK http://dx.doi.org/10.1016/j.apsusc.2012.11.041 [Google Scholar]
  12. W.-P. Wu, Z.-F. Chen, X.-W. Cheng, Y.-W. Wang, Nucl. Instr. Meth. Phys. Res. Sect. B: Beam Int. Mater. Atoms, 2013, 307, 315 LINK http://dx.doi.org/10.1016/j.nimb.2012.12.069 [Google Scholar]
  13. L.-B. Wang, Z.-F. Chen, P.-Z. Zhang, W.-P. Wu, Y. Zhang, J. Coat. Technol. Res., 2009, 6, (4), 517 LINK http://dx.doi.org/10.1007/s11998-008-9123-7 [Google Scholar]
  14. Z. Zhao, C. Wang, M. Li, L. Wang, L. Kong, Appl. Surf. Sci., 2006, 252, (12), 4257 LINK http://dx.doi.org/10.1016/j.apsusc.2005.07.005 [Google Scholar]
  15. V. G. Beshenkov, L. A. Fomin, D. V. Irzhak, V. A. Marchenko, V. I. Nikolaichik, A. G. Znamenskii, Thin Solid Films, 2012, 520, (23), 6888 LINK http://dx.doi.org/10.1016/j.tsf.2012.07.033 [Google Scholar]
  16. C. V. Thompson, R. Carel, Mater. Sci. Eng. B, 1995, 32, (3), 211 LINK http://dx.doi.org/10.1016/0921-5107(95)03011-5 [Google Scholar]
  17. J. Goswami, C.-G. Wang, P. Majhi, Y.-W. Shin, S. K. Dey, J. Mater. Res., 2001, 16, (8), 2192 LINK http://dx.doi.org/10.1557/JMR.2001.0300 [Google Scholar]
  18. C. V. Thompson, Ann. Rev. Mater. Sci., 2000, 30, 159 LINK http://dx.doi.org/10.1146/annurev.matsci.30.1.159 [Google Scholar]
  19. C. V. Thompson, Ann. Rev. Mater. Sci., 1990, 20, 245 LINK http://dx.doi.org/10.1146/annurev.ms.20.080190.001333 [Google Scholar]
  20. I. V. Markov, “Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy”, 2nd Edn., World Scientific Publishing Co Pte Ltd, Singapore, 2003 [Google Scholar]
  21. C. R. M. Grovenor, H. T. G. Hentzell, D. A. Smith, Acta Metall., 1984, 32, (5), 773 LINK http://dx.doi.org/10.1016/0001-6160(84)90150-0 [Google Scholar]
  22. W.-P. Wu, Z.-F. Chen, X. Lin, B.-B. Li, X.-N. Cong, Vacuum, 2011, 86, (4), 429 LINK http://dx.doi.org/10.1016/j.vacuum.2011.09.003 [Google Scholar]
  23. K. Mumtaz, J. Echigoya, T. Hirai, Y. Shindo, Mater. Sci. Eng.: A, 1993, 167, (1–2), 187 LINK http://dx.doi.org/10.1016/0921-5093(93)90353-G [Google Scholar]
  24. H. Levinstein, J. Appl. Phys., 1949, 20, (4), 306 LINK http://dx.doi.org/10.1063/1.1698362 [Google Scholar]
  25. S. M. Sabol, B. T. Randall, J. D. Edington, C. J. Larkin, B. J. Close, “Barrier Coatings for Refractory Metals and Superalloys”, B-MT-(SPME)-25, TRN: US0603658, Bettis Atomic Power Laboratory (BAPL), Pennsylvania, USA, 2006, pp. 128 LINK http://dx.doi.org/10.2172/884669 [Google Scholar]
  26. H.-U. Kim, D.-H. Cha, H.-J. Kim, J.-H. Kim, Int. J. Prec. Eng. Manuf., 2009, 10, (3), 19 LINK http://dx.doi.org/10.1007/s12541-009-0042-z [Google Scholar]
  27. L.-A. Zhu, S.-X. Bai, H. Zhang, Surf. Coat. Technol., 2011, 206, (6), 1351 LINK http://dx.doi.org/10.1016/j.surfcoat.2011.08.058 [Google Scholar]
  28. W.-P. Wu, X. Lin, Z.-F. Chen, Z. Chen, X.-N. Cong, T.-Z. Xu, J.-L. Qiu, Plasma Chem. Plasma Proc., 2011, 31, (3), 465 LINK http://dx.doi.org/10.1007/s11090-011-9293-4 [Google Scholar]
  29. S.-C. Tjong, H. Chen, Mater. Sci. Eng.: R: Reports, 2004, 45, (1–2), 1 LINK http://dx.doi.org/10.1016/j.mser.2004.07.001 [Google Scholar]
  30. T. Hanamura, H. Qiu, ‘Ultra-Fine Grained Steel: Relationship Between Grain Size and Tensile Properties’, in “Analysis of Fracture Toughness Mechanism in Ultra-Fine-Grained Steels”, NIMS Monographs, Springer, Japan, 2014, pp. 925 LINK http://dx.doi.org/10.1007/978-4-431-54499-9_2 [Google Scholar]
  31. P. Kuppusami, H. Murakami, T. Ohmura, J. Vac. Sci. Technol. A, 2004, 22, (4), 1208 LINK http://dx.doi.org/10.1116/1.1763913 [Google Scholar]
  32. J. Hagen, F. Burmeister, A. Fromm, P. Manns, G. Kleer, Plasma Process. Polym., 2009, 6, (S1), 678 LINK http://dx.doi.org/10.1002/ppap.200931701 [Google Scholar]
  33. H.-J. Li, H. Xue, Q.-G. Fu, Y.-L. Zhang, X.-H. Shi, K.-Z. Li, J. Inorg. Mater., 2010, 25, 337 LINK http://dx.doi.org/10.3724/SP.J.1077.2010.00337 [Google Scholar]
  34. Y.-L. Huang, S.-X. Bai, H. Zhang, Y.-C. Ye, Int. J. Refract. Metals Hard Mater., 2015, 50, 204 LINK http://dx.doi.org/10.1016/j.ijrmhm.2015.01.009 [Google Scholar]
  35. Y. Ritterhaus, T. Hur’yeva, M. Lisker, E. P. Burte, Chem. Vap. Deposition, 2007, 13, (12), 698 LINK http://dx.doi.org/10.1002/cvde.200706630 [Google Scholar]
  36. M. A. El Khakani, M. Chaker, B. Le Drogoff, J. Vac. Sci. Technol. A, 1998, 16, (2), 885 LINK http://dx.doi.org/10.1116/1.581029 [Google Scholar]
  37. Y.-S. Gong, C.-B. Wang, Q. Shen, L.-M. Zhang, Vacuum, 2008, 82, (6), 594 LINK http://dx.doi.org/10.1016/j.vacuum.2007.09.003 [Google Scholar]
  38. T. D. Khoa, S. Horii, S. Horita, Thin Solid Films, 2002, 419, (1–2), 88 LINK http://dx.doi.org/10.1016/S0040-6090(02)00761-7 [Google Scholar]
  39. S. Hogmark, S. Jacobson, M. Larsson, Wear, 2000, 246, (1–2), 20 LINK http://dx.doi.org/10.1016/S0043-1648(00)00505-6 [Google Scholar]
  40. Z.-F. Chen, W.-P. Wu, X.-N. Cong, L.-B. Wang, Adv. Mater. Res., 2011, 314–316, 214 LINK http://dx.doi.org/10.4028/www.scientific.net/AMR.314-316.214 [Google Scholar]
  41. J. A. Venables, “Introduction to Surface and Thin Film Processes”, Cambridge University Press, Cambridge, UK, 2000 LINK http://dx.doi.org/10.1017/CBO9780511755651 [Google Scholar]
  42. T.-L. Chen, X.-M. Li, S. Zhang, X. Zhang, Appl. Phys. A, 2005, 80, (1), 73 LINK http://dx.doi.org/10.1007/s00339-004-2978-2 [Google Scholar]
  43. E. Bauer, J. H. van der Merwe, Phys. Rev. B, 1986, 33, (6), 3657 LINK http://dx.doi.org/10.1103/PhysRevB.33.3657 [Google Scholar]
  44. J. A. Venables, G. D. T. Spiller, M. Hanbucken, Rep. Prog. Phys., 1984, 47, (4), 399 LINK http://dx.doi.org/10.1088/0034-4885/47/4/002 [Google Scholar]
  45. N. Kaiser, Appl. Optics, 2002, 41, (16), 3053 LINK http://dx.doi.org/10.1364/AO.41.003053 [Google Scholar]
  46. T. Gerfin, W. J. Hälg, F. Atamny, K.-H. Dahmen, Thin Solid Films, 1994, 241, (1–2), 352 LINK http://dx.doi.org/10.1016/0040-6090(94)90456-1 [Google Scholar]
  47. Z.-F. Chen, W.-P. Wu, L.-B. Wang, Y. Zhang, Surf. Eng., 2011, 27, (4), 242 LINK http://www.tandfonline.com/doi/full/10.1179/174329409X397787 [Google Scholar]
  48. Y.-M. Sun, J. P. Endle, K. Smith, S. Whaley, R. Mahaffy, J. G. Ekerdt, J. M. White, R. L. Hance, Thin Solid Films, 1999, 346, (1–2), 100 LINK http://dx.doi.org/10.1016/S0040-6090(98)01458-8 [Google Scholar]
  49. J. R. V. Garcia, T. Goto, Mater. Trans., 2003, 44, (9), 1717 LINK http://dx.doi.org/10.2320/matertrans.44.1717 [Google Scholar]
  50. T. Goto, R. Vargas, T. Hirai, J. Phys. IV France, 1993, 3, (C3), 297 LINK http://dx.doi.org/10.1051/jp4:1993341 [Google Scholar]
  51. P. P. Semyannikov, N. B. Morozova, K. V. Zherikova, S. V. Trubin, I. K. Igumenov, N. V. Gelfond, ECS Trans., 2009, 25, (8), 887 LINK http://dx.doi.org/10.1149/1.3207682 [Google Scholar]
  52. V. Yu. Vasilyev, N. B. Morozova, T. V. Basova, I. K. Igumenov, A. Hassan, RSC Adv., 2015, 5, (41), 32034 LINK http://dx.doi.org/10.1039/C5RA03566J [Google Scholar]
  53. R. Vargas, T. Goto, W. Zhang, T. Hirai, Appl. Phys. Lett., 1994, 65, (9), 1094 LINK http://dx.doi.org/10.1063/1.112108 [Google Scholar]
  54. N. V. Gelfond, I. K. Igumenov, A. I. Boronin, V. I. Bukhtiyarov, M. Yu. Smirnov, I. P. Prosvirin, R. I. Kwon, Surf. Sci., 1992, 275, (3), 323 LINK http://dx.doi.org/10.1016/0039-6028(92)90804-F [Google Scholar]
  55. S.-I. Song, J.-H. Lee, B.-H. Choi, H.-K. Lee, D.-C. Shin, J.-W. Lee, Surf. Coat. Technol., 2012, 211, 14 LINK http://dx.doi.org/10.1016/j.surfcoat.2011.09.074 [Google Scholar]
  56. K. Knapas, M. Ritala, Chem. Mater., 2011, 23, (11), 2766 LINK http://dx.doi.org/10.1021/cm103490v [Google Scholar]
  57. T. Aaltonen, M. Ritala, V. Sammelselg, M. Leskelä, J. Electrochem. Soc., 2004, 151, (8), G489 LINK http://dx.doi.org/10.1149/1.1761011 [Google Scholar]
  58. S. T. Christensen, J. W. Elam, Chem. Mater., 2010, 22, (8), 2517 LINK http://dx.doi.org/10.1021/cm9031978 [Google Scholar]
  59. C.-M. Chang, C.-M. Wei, S.-P. Chen, Phys. Rev. B, 1996, 54, (23), 17083 LINK http://dx.doi.org/10.1103/PhysRevB.54.17083 [Google Scholar]
  60. D. A. Toenshoff, R. D. Lanam, J. Ragaini, A. Shchetkovskiy, A. Smirnov, ‘Iridium Coated Rhenium Rocket Chambers Produced by Electroforming’, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, USA, 24th–28th July, 2000 LINK http://dx.doi.org/10.2514/6.2000-3166 [Google Scholar]
  61. W.-P. Wu, Z.-F. Chen, Acta Metall. Sin. (Engl. Lett.), 2012, 25, (6), 469 LINK http://dx.doi.org/10.11890/1006-7191-126-469 [Google Scholar]
  62. M. J. Aziz, Appl. Phys. A, 2008, 93, (3), 579 LINK http://dx.doi.org/10.1007/s00339-008-4696-7 [Google Scholar]
  63. T. Chen, X.-M. Li, X. Zhang, J. Cryst. Growth, 2004, 267, (1–2), 80 LINK http://dx.doi.org/10.1016/j.jcrysgro.2004.03.005 [Google Scholar]
  64. Z.-F. Chen, W.-P. Wu, X.-N. Cong, J. Mater. Sci. Technol., 2014, 30, (3), 268 LINK http://dx.doi.org/10.1016/j.jmst.2013.06.002 [Google Scholar]
  65. W.-P. Wu, Z.-F. Chen, X. N. Cong, L.-B. Wang, Rare Metal Mater. Eng., 2013, 42, (2), 435 (In Chinese) LINK http://caod.oriprobe.com/articles/31751798/Review_on_High_Temperature_Oxidation_Resistant_Iridium_Coating_for_Ref.htm [Google Scholar]
  66. Z.-W. Zhang, Z.-H. Xu, J.-M. Wang, W.-P. Wu, Z.-F. Chen, J. Mater. Eng. Perf., 2012, 21, (10), 2085 LINK http://dx.doi.org/10.1007/s11665-012-0133-3 [Google Scholar]
  67. W.-P. Wu, Z.-F. Chen, J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2012, 27, (4), 652 LINK http://dx.doi.org/10.1007/s11595-012-0522-3 [Google Scholar]
  68. W.-P. Wu, Z.-F. Chen, X. Lin, Adv. Mater. Res., 2011, 189–193, 688 LINK http://dx.doi.org/10.4028/www.scientific.net/AMR.189-193.688 [Google Scholar]
  69. W.-P. Wu, Z.-F. Chen, H. Cheng, L.-B. Wang, Y. Zhang, Appl. Surf. Sci., 2011, 257, (16), 7295 LINK http://dx.doi.org/10.1016/j.apsusc.2011.03.108 [Google Scholar]
  70. W.-P. Wu, Z.-F. Chen, L.-B. Wang, Prot. Met. Phys. Chem. Surf., 2015, 51, (4), 607 LINK http://dx.doi.org/10.1134/S2070205115040358 [Google Scholar]
  71. W.-P. Wu, J.-J. Jiang, Z.-F. Chen, Acta Astronaut., 2016, 123, 1 LINK http://dx.doi.org/10.1016/j.actaastro.2016.03.004 [Google Scholar]
  72. W.-P. Wu, Z.-F. Chen, Surf. Interface Anal., 2016, 48, (6), 353 LINK http://dx.doi.org/10.1002/sia.5986 [Google Scholar]
  73. J.-M. Wang, Z.-W. Zhang, Z.-H. Xu, X. Lin, W.-P. Wu, Z.-F. Chen, Corros. Eng. Sci. Technol., 2011, 46, (6), 732 LINK http://dx.doi.org/10.1179/1743278210Y.0000000023 [Google Scholar]
  74. B. D. Reed, J. A. Biaglow, S. J. Schneider, Mater. Manuf. Proc., 1998, 13, (5), 757 LINK http://dx.doi.org/10.1080/10426919808935297 [Google Scholar]
  75. K. Mumtaz, J. Echigoya, H. Enoki, T. Hirai, Y. Shindo, J. Mater. Sci., 1995, 30, (2), 465 LINK http://dx.doi.org/10.1007/BF00354413 [Google Scholar]
  76. D. H. Lowndes, D. B. Geohegan, A. A. Puretzky, D. P. Norton, C. M. Rouleau, Science, 1996, 273, (5277), 898 LINK http://dx.doi.org/10.1126/science.273.5277.898 [Google Scholar]
  77. W.-B. Yang, L.-T. Zhang, Y.-F. Hua, L.-F. Cheng, Int. J. Refract. Metals Hard Mater., 2009, 27, (1), 33 LINK http://dx.doi.org/10.1016/j.ijrmhm.2008.02.001 [Google Scholar]
  78. Y.-L. Huang, S.-X. Bai, H. Zhang, Y.-C. Ye, Appl. Surf. Sci., 2015, 328, 436 LINK http://dx.doi.org/10.1016/j.apsusc.2014.12.063 [Google Scholar]
  79. K. Mumtaz, J. Echigoya, M. Taya, J. Mater. Sci., 1993, 28, (20), 5521 LINK http://dx.doi.org/10.1007/BF00367824 [Google Scholar]
  80. C.-Y. Hu, ‘Study on the CVD Iridium Coated Rhenium Composite’, PhD thesis, Central South University, Changsha, China, Dissertations from CNKI, 2002 (in Chinese) [Google Scholar]
  81. L. Brewer, R. H. Lamoreaux, ‘Molybdenum: Physico-Chemical Properties of its Compounds and Alloy’, Atomic Energy Review, International Atomic Energy Agency, Vienna, Austria, 1980, 7, 263 [Google Scholar]
  82. E. K. Ohriner, E. P. George, J. Alloys Compd., 1991, 177, (2), 219 LINK http://dx.doi.org/10.1016/0925-8388(91)90075-7 [Google Scholar]
  83. J. C. Hamilton, N. Y. C. Yang, W. M. Clift, D. R. Boehme, K. F. McCarty, J. E. Franklin, Metall. Trans. A, 1992, 23, (3), 851 LINK http://dx.doi.org/10.1007/BF02675562 [Google Scholar]
  84. S. Chen, C.-Y. Hu, J.-M. Guo, J.-M. Yang, Rare Metal Mater. Eng., 2005, 34, (6), 916 LINK http://caod.oriprobe.com/articles/9362013/Study_on_Interdiffusion_of_Iridium_Molybdenum.htm [Google Scholar]
  85. J. Hämäläinen, E. Puukilainen, M. Kemell, L. Costelle, M. Ritala, M. Leskelä, Chem. Mater., 2009, 21, (20), 4868 LINK http://dx.doi.org/10.1021/cm901687w [Google Scholar]
  86. R. H. Tuffias, G. J. Melden, J. T. Harding, ‘High Temperature Oxidation-Resistant Thruster Materials, Phase II’, NASA Contractor Report 187205, 1991 LINK http://www.dtic.mil/dtic/tr/fulltext/u2/a293027.pdf [Google Scholar]
  87. K. Mumtaz, J. Echigoya, H. Enoki, T. Hirai, Y. Shindo, J. Alloys Compd., 1994, 209, (1–2), 279 LINK http://dx.doi.org/10.1016/0925-8388(94)91114-2 [Google Scholar]
  88. K. Mumtaz, J. Echigoya, H. Enoki, T. Hirai, Y. Shindo, J. Mater. Sci., 1996, 31, (19), 5247 LINK http://dx.doi.org/10.1007/BF00355932 [Google Scholar]
  89. X.-H. Zhang, F.-T. Xu, Z.-H. Jia, H. Q. Li, K.-M. He, D. Chen, Mater. China, 2013, 32, (4), 203 (in Chinese) LINK http://en.oversea.cnki.net/kcms/detail/detail.aspx?QueryID=25&CurRec=2&dbCode=CJFD&filename=XJKB201304003&dbname=CJFD2013 [Google Scholar]
/content/journals/10.1595/205651317X695064
Loading
/content/journals/10.1595/205651317X695064
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test