Skip to content
Volume 62, Issue 1
  • ISSN: 2056-5135


Palladium impregnated activated carbon (Pd/C) filters play a major role in air quality management by the removal of toxic carbon monoxide from confined environments. However, Pd is an expensive metal and therefore, recovery and reuse of Pd from spent filter cartridges is highly desirable. The objective of the present study was to biosynthesise Pd nanoparticles (NPs) using green tea as a reducing agent. The source of Pd for the NP synthesis was spent Pd/C. Three different acid based Pd extraction protocols constituting of hydrochloric acid-hydrogen peroxide (HCl-HO), 2 M HCl and were systematically explored. The Pd impregnated carbon was characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), ultraviolet-visible (UV-vis) spectroscopy, X-ray powder diffraction (XRD) and atomic absorption spectrometry (AAS) before and after Pd extraction. It was found that the based extraction protocol was the most efficient among the three chosen acid or acid mixtures with an average absolute yield of 96%. Finally, an attempt was made towards one pot biosynthesis of Pd NPs from the recovered extract by using green tea as a reducing agent. The synthesised NPs were characterised using UV-vis spectroscopy, SEM and XRD.


Article metrics loading...

Loading full text...

Full text loading...



  1. Bansal R. C., and Goyal M. “Activated Carbon Adsorption”, Taylor & Francis Group LLC, Boca Raton, USA, 2005 LINK [Google Scholar]
  2. Budinova T., Ekinci E., Yardim F., Grimm A., Björnbom E., Minkova V., and Goranova M. Fuel Proc. Technol., 2006, 87, (10), 899 LINK [Google Scholar]
  3. Bhatnagar A., Hogland W., Marques M., and Sillanpää M. Chem. Eng. J., 2013, 219, 499 LINK [Google Scholar]
  4. Al-Othman Z. A., Ali R., and Naushad M. Chem. Eng. J., 2012, 184, 238 LINK [Google Scholar]
  5. Dias J. M., Alvim-Ferraz M. C. M., Almeida M. F., Rivera-Utrilla J., and Sánchez-Polo M. J. Environ. Manage., 2007, 85, (4), 833 LINK [Google Scholar]
  6. Zaini M. A. A., Okayama R., and Machida M. J. Hazard. Mater., 2009, 170, (2–3), 1119 LINK [Google Scholar]
  7. Mohan D., and Pittman C. U. Jr. J. Hazard. Mater., 2007, 142, (1–2), 1 LINK [Google Scholar]
  8. and Figueiredo J. L. “Carbon Materials for Catalysis”, eds. Serp P., John Wiley & Sons Inc, Hoboken, USA, 2009 LINK [Google Scholar]
  9. Henning K.-D., and Schäfer S. Gas Sep. Purif., 1993, 7, (4), 235 LINK [Google Scholar]
  10. Zhang M., Zhou B., and Chuang K. T. Appl. Catal. B: Environ., 1997, 13, (2), 123 LINK [Google Scholar]
  11. Abdedayem A., Guiza M., and Ouederni A. Comptes Rendus Chimie, 2015, 18, (1), 100 LINK [Google Scholar]
  12. Wu J. C.-S., and Chang T.-Y. Catal. Today, 1998, 44, (1–4), 111 LINK [Google Scholar]
  13. Lu C.-Y., and Wey M.-Y. Fuel Process. Technol., 2007, 88, (6), 557 LINK [Google Scholar]
  14. Ryu S. K., and Choi S. R. J. Ceram. Soc. Jpn., 2004, 112, Suppl. 112-1, s1539 LINK [Google Scholar]
  15. Tseng H.-H., Wey M.-Y., Liang Y.-S., and Chen K.-H. Carbon, 2003, 41, (5), 1079 LINK [Google Scholar]
  16. Yin L., and Liebscher J. Chem. Rev., 2007 107, (1), 133 LINK [Google Scholar]
  17. Singh B., Saxena A., Srivastava A. K., and Vijayaraghavan R. Appl. Catal. B: Environ., 2009, 88, (3–4), 257 LINK [Google Scholar]
  18. Athar M., and Vohora S. B. “Heavy Metals and Environment”, New Age International (P) Ltd, New Delhi, India, 1995 [Google Scholar]
  19. Butler J. “Platinum 2012: Interim Review”, Johnson Matthey Plc, Royston, UK, 2012 LINK [Google Scholar]
  20. Jasra R. V., Ghosh P. K., Bajaj H. C., and Boricha A. B. Council of Scientific and Industrial Research, ‘Process for Recovery of Palladium from Spent Catalyst’,US Patent 7,473,406; 2009 [Google Scholar]
  21. Demopoulos G. P., Pouskouleli G., and Prud’Homme P. J. A. Canadian Patents and Development Ltd, ‘Direct Recovery of Precious Metals by Solvent Extraction and Selective Removal’,US Patent Appl. 1987/4,654,145 [Google Scholar]
  22. Shanton K. J., and Grant R. A. Matthey Rustenburg Refineries Ltd, ‘Solvent Extraction Process for the Selective Extraction of Palladium’, US Patent Appl. 1982/4,331,634 [Google Scholar]
  23. Sarioğlan Ş. Platinum Metals Rev., 2013, 57, (4), 289 LINK [Google Scholar]
  24. Sheny D. S., Philip D., and Mathew J. Spectrochim. Acta Part A: Mol. Biomol. Spect., 2012, 91, 35 LINK [Google Scholar]
  25. Zhan G., Huang J., Du M., Abdul-Rauf I., Ma Y., and Li Q. Mater. Lett., 2011, 65, (19–20), 2989 LINK [Google Scholar]
  26. Wang T., Lin J., Chen Z., Megharaj M., and Naidu R. J. Clean. Prod., 2014, 83, 413 LINK [Google Scholar]
  27. Sun T., Zhang Z., Xiao J., Chen C., Xiao F., Wang S., and Liu Y. Sci. Rep., 2013, 3, 2527 LINK [Google Scholar]
  28. Iravani S. Green Chem., 2011, 13, (10), 2638 LINK [Google Scholar]
  29. Lebaschi S., Hekmati M., and Veisi H. J. Colloid Interface Sci., 2017, 485, 223 LINK [Google Scholar]
  30. Reto M., Figueira M. E., Filipe H. M., and Almeida C. M. M. Plant Foods Hum. Nutr., 2007, 62, 139 LINK [Google Scholar]
  31. Higdon J. V., and Frei B. Crit. Rev. Food Sci. Nutr., 2003, 43, (1), 89 LINK [Google Scholar]
  32. Yao L. H., Jiang Y. M., Shi J., Tomás-Barberán F. A., Datta N., Singanusong R., and Chen S. S. Plant Foods Hum. Nutr., 2004, 59, (3), 113 LINK [Google Scholar]
  33. Liang Y. R., Liu Z. S., Xu Y. R., and Hu Y. L. J. Sci. Food Agric., 1990, 53, (4), 541 LINK [Google Scholar]
  34. Graham H. N. Prev. Med., 1992, 21, (3), 334 LINK [Google Scholar]
  35. Stagg G. V., and Millin D. J. J. Sci. Food Agric., 1975, 26, (10), 1439 LINK [Google Scholar]
  36. Cabrera C., Giménez R., and López M. C. J. Agric. Food Chem., 2003, 51, (15), 4427 LINK [Google Scholar]
  37. Powell J. J., Burden T. J., and Thompson R. P. H. Analyst, 1998, 123, (8), 1721 LINK [Google Scholar]
  38. Hope S.-J., Daniel K., Gleason K. L., Comber S., Nelson M., and Powell J. J. Eur. J. Clin. Nutr., 2006, 60, (1), 1 LINK [Google Scholar]
  39. Xie M., von Bohlen A., Klockenkämper R., Jian X., and Günther K. Z. Lebensm. Unters. Forsch. A, 1998, 207, (1), 31 LINK [Google Scholar]
  40. Fung K. F., Zhang Z. Q., Wong J. W. C., and Wong M. H. Environ. Pollut., 1999, 104, (2), 197 LINK [Google Scholar]
  41. Matsuura H., Hokura A., Katsuki F., Itoh A., and Haraguchi H. Anal. Sci., 2001, 17, (3), 391 LINK [Google Scholar]
  42. Fernández-Cáceres P. L., Martín M. J., Pablos F., and González A. G. J. Agric. Food Chem., 2001, 49, (10), 4775 LINK [Google Scholar]
  43. Behrendt A., Oberste V., and Wetzel W. E. Caries Res., 2002, 36, (6), 405 LINK [Google Scholar]
  44. Fernández P. L., Pablos F., Martín M. J., and González A. G. Food Chem., 2002, 76, (4), 483 LINK [Google Scholar]
  45. Drynan J. W., Clifford M. N., Obuchowicz J., and Kuhnert N. Nat. Prod. Rep., 2010, 27, (3), 417 LINK [Google Scholar]
  46. “Generally Recognized as Safe Status of Green Tea Catechin”, Kao Corp,Tokyo, Japan,17th May, 2007 [Google Scholar]
  47. Balentine D. A., Wiseman S. A., and Bouwens L. C. M. Crit. Rev. Food Sci. Nutr., 1997, 37, (8), 693 LINK [Google Scholar]
  48. Del Rio D., Stewart A. J., Mullen W., Burns J., Lean M. E. J., Brighenti F., and Crozier A. J. Agric. Food Chem., 2004, 52, (10), 2807 LINK [Google Scholar]
  49. Sarkar D., Das S., and Pramanik A. RSC Adv., 2014, 4, (68), 36196 LINK [Google Scholar]
  50. Karthikeyan S., Sivakumar P., and Palanisamy P. N. E-J. Chem., 2008, 5, (2), 409 LINK [Google Scholar]
  51. Qureshi K., Bhatti I., Kazi R., and Ansari A. K. Int. J. Chem. Biomol. Eng., 2008, 1, (3), 145 [Google Scholar]
  52. Mopoung S., Moonsri P., Palas W., and Khumpai S. Sci. World J., 2015, 415961 LINK [Google Scholar]
  53. Saka C. J. Anal. Appl. Pyrol., 2012, 95, 21 LINK [Google Scholar]
  54. Gokce Y., and Aktas Z. Appl. Surf. Sci., 2014, 313, 352 LINK [Google Scholar]
  55. Wang S., Zhu Z. H., Coomes A., Haghseresht F., and Lu G. Q. J. Colloid Interf. Sci., 2005, 284, (2), 440 LINK [Google Scholar]
  56. Börgel J., Campbell M. G., and Ritter T. J. Chem. Educ., 2016, 93, (1), 118 LINK [Google Scholar]
  57. Xiong Y., Wiley B., Chen J., Li Z.-Y., Yin Y., and Xia Y. Angew. Chem. Int. Ed., 2005, 44, (48), 7913 LINK [Google Scholar]
  58. Espinosa-Alonso L., de Jong K. P., and Weckhuysen B. M. Phys. Chem. Chem. Phys., 2010, 12, (1), 97 LINK [Google Scholar]
  59. Janeiro P., and Brett A. M. O. Anal. Chim. Acta, 2004, 518, (1–2), 109 LINK [Google Scholar]
  60. Cren-Olivé C., Hapiot P., Pinson J., and Rolando C. J. Am. Chem. Soc., 2002, 124, (47), 14027 LINK [Google Scholar]
  61. Mishra K., Basavegowda N., and Lee Y. R. RSC Adv., 2016, 6, (33), 27974 LINK [Google Scholar]
  62. Nadagouda M. N., and Varma R. S. Green Chem., 2008, 10, (8), 859 LINK [Google Scholar]
  63. Arsiya F., Sayadi M. H., and Sobhani S. Mater. Lett., 2017, 186, 113 LINK [Google Scholar]
  64. Gholinejad M., Najera C., Hamed F., Seyedhamzeh M., Bahrami M., and Kompany-Zareh M. Tetrahedron, 2017, 73, (38), 5585 LINK [Google Scholar]
  65. Nasrollahzadeh M., Sajadi S. M., Rostami-Vartooni A., Alizadeh M., and Bagherzadeh M. J. Colloid Interf. Sci., 2016, 466, 360 LINK [Google Scholar]
  66. Xie Y., Wang J., Huang X., Luo B., Yu W., and Shao L. Electrochem. Commun., 2017, 74, 48 LINK [Google Scholar]
  67. Veerakumar P., Veeramani V., Chen S.-M., Madhu R., and Liu S.-B. ACS Appl. Mater. Interfaces, 2016, 8, (2), 1319 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error