Skip to content
1887
Volume 62, Issue 1
  • ISSN: 2056-5135

Abstract

Palladium impregnated activated carbon (Pd/C) filters play a major role in air quality management by the removal of toxic carbon monoxide from confined environments. However, Pd is an expensive metal and therefore, recovery and reuse of Pd from spent filter cartridges is highly desirable. The objective of the present study was to biosynthesise Pd nanoparticles (NPs) using green tea as a reducing agent. The source of Pd for the NP synthesis was spent Pd/C. Three different acid based Pd extraction protocols constituting of hydrochloric acid-hydrogen peroxide (HCl-HO), 2 M HCl and were systematically explored. The Pd impregnated carbon was characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), ultraviolet-visible (UV-vis) spectroscopy, X-ray powder diffraction (XRD) and atomic absorption spectrometry (AAS) before and after Pd extraction. It was found that the based extraction protocol was the most efficient among the three chosen acid or acid mixtures with an average absolute yield of 96%. Finally, an attempt was made towards one pot biosynthesis of Pd NPs from the recovered extract by using green tea as a reducing agent. The synthesised NPs were characterised using UV-vis spectroscopy, SEM and XRD.

Loading

Article metrics loading...

/content/journals/10.1595/205651317X696252
2018-01-01
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/1/Sil_16a_Imp.html?itemId=/content/journals/10.1595/205651317X696252&mimeType=html&fmt=ahah

References

  1. R. C. Bansal, M. Goyal, “Activated Carbon Adsorption”, Taylor & Francis Group LLC, Boca Raton, USA, 2005 LINK https://doi.org/10.1201/9781420028812 [Google Scholar]
  2. T. Budinova, E. Ekinci, F. Yardim, A. Grimm, E. Björnbom, V. Minkova, M. Goranova, Fuel Proc. Technol., 2006, 87, (10), 899 LINK https://doi.org/10.1016/j.fuproc.2006.06.005 [Google Scholar]
  3. A. Bhatnagar, W. Hogland, M. Marques, M. Sillanpää, Chem. Eng. J., 2013, 219, 499 LINK https://doi.org/doi:10.1016/j.cej.2012.12.038 [Google Scholar]
  4. Z. A. Al-Othman, R. Ali, M. Naushad, Chem. Eng. J., 2012, 184, 238 LINK https://doi.org/doi:10.1016/j.cej.2012.01.048 [Google Scholar]
  5. J. M. Dias, M. C. M. Alvim-Ferraz, M. F. Almeida, J. Rivera-Utrilla, M. Sánchez-Polo, J. Environ. Manage., 2007, 85, (4), 833 LINK https://doi.org/10.1016/j.jenvman.2007.07.031 [Google Scholar]
  6. M. A. A. Zaini, R. Okayama, M. Machida, J. Hazard. Mater., 2009, 170, (2–3), 1119 LINK https://doi.org/10.1016/j.jhazmat.2009.05.090 [Google Scholar]
  7. D. Mohan, C. U. Pittman Jr., J. Hazard. Mater., 2007, 142, (1–2), 1 LINK https://doi.org/10.1016/j.jhazmat.2007.01.006 [Google Scholar]
  8. J. L. Figueiredo, “Carbon Materials for Catalysis”, eds. P. Serp, John Wiley & Sons Inc, Hoboken, USA, 2009 LINK https://doi.org/10.1002/9780470403709 [Google Scholar]
  9. K.-D. Henning, S. Schäfer, Gas Sep. Purif., 1993, 7, (4), 235 LINK https://doi.org/10.1016/0950-4214(93)80023-P [Google Scholar]
  10. M. Zhang, B. Zhou, K. T. Chuang, Appl. Catal. B: Environ., 1997, 13, (2), 123 LINK https://doi.org/10.1016/S0926-3373(96)00097-5 [Google Scholar]
  11. A. Abdedayem, M. Guiza, A. Ouederni, Comptes Rendus Chimie, 2015, 18, (1), 100 LINK https://doi.org/10.1016/j.crci.2014.07.011 [Google Scholar]
  12. J. C.-S. Wu, T.-Y. Chang, Catal. Today, 1998, 44, (1–4), 111 LINK https://doi.org/10.1016/S0920-5861(98)00179-5 [Google Scholar]
  13. C.-Y. Lu, M.-Y. Wey, Fuel Process. Technol., 2007, 88, (6), 557 LINK https://doi.org/10.1016/j.fuproc.2007.01.004 [Google Scholar]
  14. S. K. Ryu, S. R. Choi, J. Ceram. Soc. Jpn., 2004, 112, Suppl. 112-1, s1539 LINK https://doi.org/10.14852/jcersjsuppl.112.0.S1539.0 [Google Scholar]
  15. H.-H. Tseng, M.-Y. Wey, Y.-S. Liang, K.-H. Chen, Carbon, 2003, 41, (5), 1079 LINK https://doi.org/10.1016/S0008-6223(03)00017-4 [Google Scholar]
  16. L. Yin, J. Liebscher, Chem. Rev., 2007 107, (1), 133 LINK https://doi.org/10.1021/cr0505674 [Google Scholar]
  17. B. Singh, A. Saxena, A. K. Srivastava, R. Vijayaraghavan, Appl. Catal. B: Environ., 2009, 88, (3–4), 257 LINK https://doi.org/10.1016/j.apcatb.2008.11.016 [Google Scholar]
  18. M. Athar, S. B. Vohora, “Heavy Metals and Environment”, New Age International (P) Ltd, New Delhi, India, 1995 [Google Scholar]
  19. J. Butler, “Platinum 2012: Interim Review”, Johnson Matthey Plc, Royston, UK, 2012 LINK http://www.platinum.matthey.com/services/market-research/market-review-archive/platinum-2012-interim-review [Google Scholar]
  20. R. V. Jasra, P. K. Ghosh, H. C. Bajaj, A. B. Boricha, Council of Scientific and Industrial Research,, ‘Process for Recovery of Palladium from Spent Catalyst’,US Patent 7,473,406; 2009 [Google Scholar]
  21. G. P. Demopoulos, G. Pouskouleli, P. J. A. Prud’Homme, Canadian Patents and Development Ltd,, ‘Direct Recovery of Precious Metals by Solvent Extraction and Selective Removal’,US Patent Appl. 1987/4,654,145 [Google Scholar]
  22. K. J. Shanton, R. A. Grant, Matthey Rustenburg Refineries Ltd,, ‘Solvent Extraction Process for the Selective Extraction of Palladium’, US Patent Appl. 1982/4,331,634 [Google Scholar]
  23. Ş. Sarioğlan, Platinum Metals Rev., 2013, 57, (4), 289 LINK http://www.technology.matthey.com/article/57/4/289-296/ [Google Scholar]
  24. D. S. Sheny, D. Philip, J. Mathew, Spectrochim. Acta Part A: Mol. Biomol. Spect., 2012, 91, 35 LINK https://doi.org/10.1016/j.saa.2012.01.063 [Google Scholar]
  25. G. Zhan, J. Huang, M. Du, I. Abdul-Rauf, Y. Ma, Q. Li, Mater. Lett., 2011, 65, (19–20), 2989 LINK https://doi.org/10.1016/j.matlet.2011.06.079 [Google Scholar]
  26. T. Wang, J. Lin, Z. Chen, M. Megharaj, R. Naidu, J. Clean. Prod., 2014, 83, 413 LINK https://doi.org/10.1016/j.jclepro.2014.07.006 [Google Scholar]
  27. T. Sun, Z. Zhang, J. Xiao, C. Chen, F. Xiao, S. Wang, Y. Liu, Sci. Rep., 2013, 3, 2527 LINK https://doi.org/10.1038/srep02527 [Google Scholar]
  28. S. Iravani, Green Chem., 2011, 13, (10), 2638 LINK https://doi.org/10.1039/c1gc15386b [Google Scholar]
  29. S. Lebaschi, M. Hekmati, H. Veisi, J. Colloid Interface Sci., 2017, 485, 223 LINK https://doi.org/10.1016/j.jcis.2016.09.027 [Google Scholar]
  30. M. Reto, M. E. Figueira, H. M. Filipe, C. M. M. Almeida, Plant Foods Hum. Nutr., 2007, 62, 139 LINK https://doi.org/10.1007/s11130-007-0054-8 [Google Scholar]
  31. J. V. Higdon, B. Frei, Crit. Rev. Food Sci. Nutr., 2003, 43, (1), 89 LINK https://doi.org/10.1080/10408690390826464 [Google Scholar]
  32. L. H. Yao, Y. M. Jiang, J. Shi, F. A. Tomás-Barberán, N. Datta, R. Singanusong, S. S. Chen, Plant Foods Hum. Nutr., 2004, 59, (3), 113 LINK https://doi.org/10.1007/s11130-004-0049-7 [Google Scholar]
  33. Y. R. Liang, Z. S. Liu, Y. R. Xu, Y. L. Hu, J. Sci. Food Agric., 1990, 53, (4), 541 LINK https://doi.org/10.1002/jsfa.2740530411 [Google Scholar]
  34. H. N. Graham, Prev. Med., 1992, 21, (3), 334 LINK https://doi.org/10.1016/0091-7435(92)90041-F [Google Scholar]
  35. G. V. Stagg, D. J. Millin, J. Sci. Food Agric., 1975, 26, (10), 1439 LINK https://doi.org/10.1002/jsfa.2740261002 [Google Scholar]
  36. C. Cabrera, R. Giménez, M. C. López, J. Agric. Food Chem., 2003, 51, (15), 4427 LINK https://doi.org/10.1021/jf0300801 [Google Scholar]
  37. J. J. Powell, T. J. Burden, R. P. H. Thompson, Analyst, 1998, 123, (8), 1721 LINK https://doi.org/10.1039/A802131G [Google Scholar]
  38. S.-J. Hope, K. Daniel, K. L. Gleason, S. Comber, M. Nelson, J. J. Powell, Eur. J. Clin. Nutr., 2006, 60, (1), 1 LINK https://doi.org/10.1038/sj.ejcn.1602260 [Google Scholar]
  39. M. Xie, A. von Bohlen, R. Klockenkämper, X. Jian, K. Günther, Z. Lebensm. Unters. Forsch. A, 1998, 207, (1), 31 LINK https://doi.org/10.1007/s002170050291 [Google Scholar]
  40. K. F. Fung, Z. Q. Zhang, J. W. C. Wong, M. H. Wong, Environ. Pollut., 1999, 104, (2), 197 LINK https://doi.org/10.1016/S0269-7491(98)00187-0 [Google Scholar]
  41. H. Matsuura, A. Hokura, F. Katsuki, A. Itoh, H. Haraguchi, Anal. Sci., 2001, 17, (3), 391 LINK https://doi.org/10.2116/analsci.17.391 [Google Scholar]
  42. P. L. Fernández-Cáceres, M. J. Martín, F. Pablos, A. G. González, J. Agric. Food Chem., 2001, 49, (10), 4775 LINK https://doi.org/10.1021/jf0106143 [Google Scholar]
  43. A. Behrendt, V. Oberste, W. E. Wetzel, Caries Res., 2002, 36, (6), 405 LINK https://doi.org/10.1159/000066532 [Google Scholar]
  44. P. L. Fernández, F. Pablos, M. J. Martín, A. G. González, Food Chem., 2002, 76, (4), 483 LINK https://doi.org/10.1016/S0308-8146(01)00312-0 [Google Scholar]
  45. J. W. Drynan, M. N. Clifford, J. Obuchowicz, N. Kuhnert, Nat. Prod. Rep., 2010, 27, (3), 417 LINK https://doi.org/10.1039/B912523J [Google Scholar]
  46. “Generally Recognized as Safe Status of Green Tea Catechin”, Kao Corp,Tokyo, Japan,17th May, 2007 [Google Scholar]
  47. D. A. Balentine, S. A. Wiseman, L. C. M. Bouwens, Crit. Rev. Food Sci. Nutr., 1997, 37, (8), 693 LINK https://doi.org/10.1080/10408399709527797 [Google Scholar]
  48. D. Del Rio, A. J. Stewart, W. Mullen, J. Burns, M. E. J. Lean, F. Brighenti, A. Crozier, J. Agric. Food Chem., 2004, 52, (10), 2807 LINK https://doi.org/10.1021/jf0354848 [Google Scholar]
  49. D. Sarkar, S. Das, A. Pramanik, RSC Adv., 2014, 4, (68), 36196 LINK https://doi.org/10.1039/C4RA04171B [Google Scholar]
  50. S. Karthikeyan, P. Sivakumar, P. N. Palanisamy, E-J. Chem., 2008, 5, (2), 409 LINK https://doi.org/10.1155/2008/902073 [Google Scholar]
  51. K. Qureshi, I. Bhatti, R. Kazi, A. K. Ansari, Int. J. Chem. Biomol. Eng., 2008, 1, (3), 145 [Google Scholar]
  52. S. Mopoung, P. Moonsri, W. Palas, S. Khumpai, Sci. World J., 2015, 415961 LINK https://doi.org/10.1155/2015/415961 [Google Scholar]
  53. C. Saka, J. Anal. Appl. Pyrol., 2012, 95, 21 LINK https://doi.org/10.1016/j.jaap.2011.12.020 [Google Scholar]
  54. Y. Gokce, Z. Aktas, Appl. Surf. Sci., 2014, 313, 352 LINK https://doi.org/10.1016/j.apsusc.2014.05.214 [Google Scholar]
  55. S. Wang, Z. H. Zhu, A. Coomes, F. Haghseresht, G. Q. Lu, J. Colloid Interf. Sci., 2005, 284, (2), 440 LINK https://doi.org/10.1016/j.jcis.2004.10.050 [Google Scholar]
  56. J. Börgel, M. G. Campbell, T. Ritter, J. Chem. Educ., 2016, 93, (1), 118 LINK https://doi.org/10.1021/acs.jchemed.5b00542 [Google Scholar]
  57. Y. Xiong, B. Wiley, J. Chen, Z.-Y. Li, Y. Yin, Y. Xia, Angew. Chem. Int. Ed., 2005, 44, (48), 7913 LINK https://doi.org/10.1002/anie.200502722 [Google Scholar]
  58. L. Espinosa-Alonso, K. P. de Jong, B. M. Weckhuysen, Phys. Chem. Chem. Phys., 2010, 12, (1), 97 LINK https://doi.org/10.1039/b915753k [Google Scholar]
  59. P. Janeiro, A. M. O. Brett, Anal. Chim. Acta, 2004, 518, (1–2), 109 LINK https://doi.org/10.1016/j.aca.2004.05.038 [Google Scholar]
  60. C. Cren-Olivé, P. Hapiot, J. Pinson, C. Rolando, J. Am. Chem. Soc., 2002, 124, (47), 14027 LINK https://doi.org/10.1021/ja0262434 [Google Scholar]
  61. K. Mishra, N. Basavegowda, Y. R. Lee, RSC Adv., 2016, 6, (33), 27974 LINK https://doi.org/10.1039/c6ra03883b [Google Scholar]
  62. M. N. Nadagouda, R. S. Varma, Green Chem., 2008, 10, (8), 859 LINK https://doi.org/10.1039/B804703K [Google Scholar]
  63. F. Arsiya, M. H. Sayadi, S. Sobhani, Mater. Lett., 2017, 186, 113 LINK https://doi.org/10.1016/j.matlet.2016.09.101 [Google Scholar]
  64. M. Gholinejad, C. Najera, F. Hamed, M. Seyedhamzeh, M. Bahrami, M. Kompany-Zareh, Tetrahedron, 2017, 73, (38), 5585 LINK https://doi.org/10.1016/j.tet.2016.11.014 [Google Scholar]
  65. M. Nasrollahzadeh, S. M. Sajadi, A. Rostami-Vartooni, M. Alizadeh, M. Bagherzadeh, J. Colloid Interf. Sci., 2016, 466, 360 LINK https://doi.org/10.1016/j.jcis.2015.12.036 [Google Scholar]
  66. Y. Xie, J. Wang, X. Huang, B. Luo, W. Yu, L. Shao, Electrochem. Commun., 2017, 74, 48 LINK https://doi.org/10.1016/j.elecom.2016.12.001 [Google Scholar]
  67. P. Veerakumar, V. Veeramani, S.-M. Chen, R. Madhu, S.-B. Liu, ACS Appl. Mater. Interfaces, 2016, 8, (2), 1319 LINK https://doi.org/10.1021/acsami.5b10050 [Google Scholar]
/content/journals/10.1595/205651317X696252
Loading
/content/journals/10.1595/205651317X696252
Loading

Data & Media loading...

Supplements

A Facile Green Tea Assisted Synthesis of Palladium Nanoparticles Using Recovered Palladium from Spent Palladium Impregnated Carbon Supplementary Information

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test