Skip to content
1887
Volume 62, Issue 1
  • ISSN: 2056-5135

Abstract

Hexamethylenetetramine (hmta) was chosen as a model ligand. Each of the four nitrogen atoms has a pair of unshared electrons and behaves like an amine base, undergoing protonation and alkylation and being able to form coordination compounds with many inorganic elements. The ligand can be used as an outer coordination sphere modulator of the inner coordination sphere and as a crosslinking agent in dinuclear and multinuclear coordination compounds. It can also be used as a model for bioactive molecules to form a great number of complexes with different inorganic salts containing other molecules. Studies of hmta coordination compounds with different metal salts have therefore attracted much attention. The present review summarises the synthesis, preparation, structure analysis and applications of coordination compounds of hmta with different metal salts.

Loading

Article metrics loading...

/content/journals/10.1595/205651317X696621
2018-01-01
2024-05-18
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/1/Jia_16a_Imp.html?itemId=/content/journals/10.1595/205651317X696621&mimeType=html&fmt=ahah

References

  1. Hatfield G. R., and Maciel G. E. Macromolecules, 1987, 20, (3), 608 LINK https://doi.org/10.1021/ma00169a024 [Google Scholar]
  2. Kim S., and Kim H.-J. J. Adhesion Sci. Technol., 2003, 17, (10), 1369 LINK https://doi.org/10.1163/156856103769172797 [Google Scholar]
  3. Devlieghere F., Vermeiren L., Jacobs M., and Debevere J. Packaging Technol. Sci., 2000, 13, (3), 117 LINK https://doi.org/10.1002/1099-1522(200005)13:33.0.CO;2-B [Google Scholar]
  4. Yi W.-B., and Cai C. J. Hazardous Mater., 2008, 150, (3), 839 LINK https://doi.org/10.1016/j.jhazmat.2007.10.040 [Google Scholar]
  5. Kirillov A. M. Coord. Chem. Rev., 2011, 255, (15–16), 1603 LINK https://doi.org/10.1016/j.ccr.2011.01.023 [Google Scholar]
  6. Zheng S.-L., Tong M.-L., and Chen X.-M. Coord. Chem. Rev., 2003, 246, (1–2), 185 LINK https://doi.org/10.1016/S0010-8545(03)00116-4 [Google Scholar]
  7. Ndifon P. T., Agwara M. O., Paboudam A. G., Yufanyi D. M., Ngoune J., Galindo A., Álvarez E., and Mohamadou A. Trans. Met. Chem., 2009, 34, (7), 745 LINK https://doi.org/10.1007/s11243-009-9257-1 [Google Scholar]
  8. Kruszynski R., Sieranski T., Bilinska A., Bernat T., and Czubacka E. Struct. Chem., 2012, 23, (5), 1643 LINK https://doi.org/10.1007/s11224-012-9961-x [Google Scholar]
  9. Singh G., Baranwal B. P., Kapoor I. P. S., Kumar D., and Fröhlich R. J. Phys. Chem. A, 2007, 111, (50), 12972 LINK https://doi.org/10.1021/jp077278z [Google Scholar]
  10. Guo Y. C., Luan S. R., Chen Y. R., Zang X. S., Jia Y. Q., Zhong G. Q., and Ruan S. K. J. Therm. Anal. Calorim., 2002, 68, (3), 1025 LINK https://doi.org/10.1023/A:1016163111068 [Google Scholar]
  11. Cai Y.-H., Peng R.-F., Chu S.-J., and Yin J.-B. Asian J. Chem., 2010, 22, (8), 5835 LINK http://www.asianjournalofchemistry.co.in/user/journal/viewarticle.aspx?ArticleID=22_8_5 [Google Scholar]
  12. Cai Y.-H., Mab D.-M., Peng R.-F., and Chu S.-J. South African J. Chem., 2008, 61, (1), 112 LINK https://journals.co.za/content/chem/61/1/EJC24436 [Google Scholar]
  13. Debucquet L., and Velluz L. Bull. Soc. Chim. Fr., 1933, 53, 1288 [Google Scholar]
  14. Dahan F. Acta Cryst., 1974, B30, (1), 22 LINK https://doi.org/10.1107/S0567740874002147 [Google Scholar]
  15. Sieranski T., and Kruszynski R. J. Therm. Anal. Calorim., 2012, 109, (1), 141 LINK https://doi.org/10.1007/s10973-011-1693-4 [Google Scholar]
  16. Khandolkar S. S., Raghavaiah P., and Srinivasan B. R. J. Chem. Sci., 2015, 127, (9), 1581 LINK https://doi.org/10.1007/s12039-015-0918-7 [Google Scholar]
  17. Tanco Salas J.-M., and Quimversion SL “Aluminium and Hexamethylenetetramine Complex and the Applications Thereof”, European Appl., 1,475,381; 2004 [Google Scholar]
  18. Sierański T., and Kruszynski R. J. Coord. Chem., 2013, 66, (1), 42 LINK https://doi.org/10.1080/00958972.2012.744835 [Google Scholar]
  19. Kruszynski R., Sieranski T., Swiatkowski M., Zielak M., Wojciechowski J., Dzierzawska M., and Czubacka E. J. Chem. Crystall., 2015, 45, (10–12), 484 LINK https://doi.org/10.1007/s10870-015-0618-7 [Google Scholar]
  20. Czubacka E., Kruszynski R., and Sieranski T. Struct. Chem., 2012, 23, (2), 451 LINK https://doi.org/10.1007/s11224-011-9888-7 [Google Scholar]
  21. Trzesowska A., and Kruszynski R. J. Coord. Chem., 2008, 61, (13), 2167 LINK https://doi.org/10.1080/00958970801901311 [Google Scholar]
  22. Pickardt J., Kahler J., Rautenberg N., and Riedel E. Z. Naturforsch. B, 1984, 39, (9), 1162 LINK https://doi.org/10.1515/znb-1984-0902 [Google Scholar]
  23. Meyer H.-J., and Pickardt J. Z. Naturforsch. B, 1988, 43, (9), 1161 LINK https://doi.org/10.1515/znb-1988-0913 [Google Scholar]
  24. Meyer H.-J., and Pickardt J. Z. Naturforsch. B, 1988, 43, (2), 135 LINK https://doi.org/10.1515/znb-1988-0201 [Google Scholar]
  25. Dahan F. Acta Crystallog. B, 1975, B31, (2), 423 LINK https://doi.org/10.1107/S0567740875002944 [Google Scholar]
  26. Meyer H., and Pickardt J. Z. Naturforsch. B, 1989, 44, (5), 519 LINK https://doi.org/10.1515/znb-1989-0503 [Google Scholar]
  27. Chen W.-L., Chen B.-W., Li Y.-G., Wang Y.-H., and Wang E.-B. Inorg. Chim. Acta, 2009, 362, (14), 5043 LINK https://doi.org/10.1016/j.ica.2009.08.014 [Google Scholar]
  28. Chen W., Li Y., Wang Y., Wang E., and Zhang Z. Dalton Trans., 2008, (7), 865 LINK https://doi.org/10.1039/B717419E [Google Scholar]
  29. Duraisamy T., Ramanan A., and Vittal J. J. Cryst. Eng., 2000, 3, (4), 237 LINK https://doi.org/10.1016/S1463-0184(00)00043-5 [Google Scholar]
  30. Allan J. R., Brown D. H., and Lappin M. J. Inorg. Nuclear Chem., 1970, 32, (7), 2287 LINK https://doi.org/10.1016/0022-1902(70)80508-5 [Google Scholar]
  31. Ahuja I. S., Singh R., and Yadava C. L. Spectrochim. Acta, A: Molec. Spectr., 1981, 37, (6), 407 LINK https://doi.org/10.1016/0584-8539(81)80112-2 [Google Scholar]
  32. Agwara M. O., Ndifon P. T., and Ndikontar M. K. Bull. Chem. Soc. Ethiopia, 2004, 18, (2), 143 LINK http://www.ingentaconnect.com/content/cse/bcse/2004/00000018/00000002/art00003 [Google Scholar]
  33. Agwara M. O., Yufanyi M. D., Foba-Tendo J. N., Atamba M. A., and Ndinteh D. T. J. Chem. Pharm. Res., 2011, 3, (3), 196 LINK http://www.jocpr.com/articles/synthesis-characterisation-and-biological-activities-of-mnii-coii-and-niii-complexes-of-hexamethylenetetramine.pdf [Google Scholar]
  34. Kumar D., Kapoor I. P. S., Singh G., Goel N., and Singh U. P. Solid State Sci., 2012, 14, (4), 495 LINK https://doi.org/10.1016/j.solidstatesciences.2012.01.021 [Google Scholar]
  35. Salem I. A J. Molec. Catal., 1994, 87, (1), 25 LINK https://doi.org/10.1016/0304-5102(93)E0188-M [Google Scholar]
  36. Paboudam A. G., Gérard C., Mohamadou A., Agwara M. O., Conde M. A., and Ndifon P. T. Int. J. Inorg. Chem., 2014, 397132 LINK http://dx.doi.org/10.1155/2014/397132 [Google Scholar]
  37. Cai Y.-H., Zhang Y.-H., and Ren L.-P. J. Macromol. Sci. B, 2016, 55, (5), 547 LINK https://doi.org/10.1080/00222348.2016.1171071 [Google Scholar]
  38. Stocker F. B. Inorg. Chem., 1991, 30, (7), 1472 LINK https://doi.org/10.1021/ic00007a009 [Google Scholar]
  39. Grodzicki A., Chrzaszcz M., Krajewski K., Szłyk E., and Kontek J. Trans. Met. Chem., 1991, 16, (4), 413 LINK https://doi.org/10.1007/BF01129453 [Google Scholar]
  40. Hazra S., Naiya S., Sarkar B., Drew M. G. B., and Ghosh A. Polyhedron, 2013, 65, 193 LINK https://doi.org/10.1016/j.poly.2013.08.022 [Google Scholar]
  41. Degagsa B., Faye G., and Fernandez N. World J. Pharm. Pharm. Sci., 2013, 2, (6), 6391 LINK http://www.wjpps.com/wjpps_controller/abstract_id/660 [Google Scholar]
  42. Carlucci L., Ciani G., Proserpio D. M., and Sironi A. Inorg. Chem., 1997, 36, (9), 1736 LINK https://doi.org/10.1021/ic970043p [Google Scholar]
  43. Plotnikov E., Pehenko V., and Plotnikov V. Physiol. Pharmacol., 2015, 19, (4), 247 LINK http://phypha.ir/ppj/article-1-1135-en.html [Google Scholar]
  44. Zhu H.-L., Xia D.-S., Zeng Q.-F., Wang Z.-G., and Wang D.-Q. Acta Crystallog. E, 2003, E59, (11), m1020 LINK https://doi.org/10.1107/S160053680302316X [Google Scholar]
  45. Singh G., Baranwal B. P., Kapoor I. P. S., Kumar D., Singh C. P., and Fröhlich R. J. Therm. Anal. Calorim., 2008, 91, (3), 971 LINK https://doi.org/10.1007/s10973-007-8615-5 [Google Scholar]
  46. Yi Z., Yu X., Xia W., Zhao L., Yang C., Chen Q., Wang X., Xua X., and Zhang X. CrystEngComm, 2010, 12, (1), 242 LINK https://doi.org/10.1039/B916793P [Google Scholar]
  47. Lv Y.-K., Jiang Z.-G., Gan L.-H., Liu M.-X., and Feng Y.-L. CrystEngComm, 2012, 14, (1), 314 LINK https://doi.org/10.1039/C1CE05605K [Google Scholar]
  48. Duraisamy T., Ojha N., Ramanan A., and Vittal J. J. Chem. Mater., 1999, 11, (9), 2339 LINK https://doi.org/10.1021/cm980646e [Google Scholar]
  49. Chopra D., Dagur P., Prakash A. S., Guru Row T. N., and Hegde M. S. J. Cryst. Growth, 2005, 275, (1–2), e2049 LINK https://doi.org/10.1016/j.jcrysgro.2004.11.195 [Google Scholar]
  50. Chopra D., Dagur P., Prakash A. S., Guru Row T. N., and Hegde M. S. Acta Crystallog. E, 2004, E60, (4), m348 LINK https://doi.org/10.1107/S1600536804004337 [Google Scholar]
  51. Frost B. J., Bautista C. M., Huang R., and Shearer J. Inorg. Chem., 2006, 45, (9), 3481 LINK https://doi.org/10.1021/ic060322p [Google Scholar]
  52. Hong J., Cheng M., Liu Q., Han W., Zhang Y., Ji Y., Jia X., and Li Z. Trans. Met. Chem., 2013, 38, (4), 385 LINK https://doi.org/10.1007/s11243-013-9702-z [Google Scholar]
  53. Ge X., Sun J., and Zheng Y.-Q. Z. Kristallog. – New Cryst. Struct., 2004, 219, (1–4), 257 LINK https://doi.org/10.1524/ncrs.2004.219.14.257 [Google Scholar]
  54. Zheng Y.-Q., and Ying E.-B. J. Coord. Chem., 2005, 58, (5), 453 LINK https://doi.org/10.1080/00958970412331336349 [Google Scholar]
  55. Afanasiev P., Chouzier S., Czeri T., Pilet G., Pichon C., Roy M., and Vrinat M. Inorg. Chem., 2008, 47, (7), 2303 LINK https://doi.org/10.1021/ic7013013 [Google Scholar]
  56. Konar S., Mukherjee P. S., Drew M. G. B., Ribas J., and Chaudhuri N. R. Inorg. Chem., 2003, 42, (8), 2545 LINK https://doi.org/10.1021/ic020549u [Google Scholar]
  57. Saha S., Kottalanka R. K., Panda T. K., Harms K., Dehnen S., and Nayek H. P. J. Organomet. Chem., 2013, 745–746, 329 LINK https://doi.org/10.1016/j.jorganchem.2013.08.022 [Google Scholar]
  58. Ng C. H., Teoh S. G., Moris N., and Yap S. Y. J. Coord. Chem., 2004, 57, (12), 1037 LINK https://doi.org/10.1080/00958970412331281791 [Google Scholar]
  59. Ma J.-L., Qiu X.-Y., Shao S.-C., Yang S. S., Sun L., and Zhu H.-L. Z. Kristallog. – New Cryst. Struct., 2003, 218, (JG), 533 LINK https://doi.org/10.1524/ncrs.2003.218.jg.533 [Google Scholar]
  60. Zhu H.-L., Sun L., Yang S., Qiu X.-Y., Shao S.-C., and Ma J.-L. Z. Kristallog. – New Cryst. Struct., 2003, 218, (JG), 549 LINK https://doi.org/10.1524/ncrs.2003.218.jg.549 [Google Scholar]
  61. Banerjee S., Choudhury A. R., Guru Row T. N., Chaudhuri S., and Ghosh A. Polyhedron, 2007, 26, (1), 24 LINK https://doi.org/10.1016/j.poly.2006.07.019 [Google Scholar]
  62. Hazra S., Biswas S., Kirillov A. M., and Ghosh A. Polyhedron, 2014, 79, 66 LINK https://doi.org/10.1016/j.poly.2014.04.038 [Google Scholar]
  63. Lin H., and Feng Y.-L. Chin. J. Struct. Chem., 2005, 24, (5), 573 [Google Scholar]
  64. Pickardt J., and Rautenberg N. Z. Naturforsch. B, 1982, 37, (12), 1569 LINK https://doi.org/10.1515/znb-1982-1216 [Google Scholar]
  65. Kruszynski R., Sierański T., Świtkowski M., Zielak M., Wojciechowski J., Dzierżawska M., and Lewiński B. J. Coord. Chem., 2014, 67, (8), 1332 LINK https://doi.org/10.1080/00958972.2014.915524 [Google Scholar]
  66. Hazra S., Sarkar B., Naiya S., Drew M. G. B., and Ghosh A. Polyhedron, 2012, 46, (1), 8 LINK https://doi.org/10.1016/j.poly.2012.07.068 [Google Scholar]
  67. Fang Q., Zhu G., Xue M., Sun J., Tian G., Wu G., and Qiu S. Dalton Trans., 2004, (14), 2202 LINK https://doi.org/10.1039/B402715A [Google Scholar]
  68. Bai Y., Shang W.-L., Dang D.-B., Sun J.-D., and Gao H. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2009, 72, (2), 407 LINK https://doi.org/10.1016/j.saa.2008.10.033 [Google Scholar]
  69. Fang Q., Zhu G., Xue M., Sun J., Wei Y., Qiu S., and Xu R. Angew. Chem. Int. Ed., 2005, 44, (25), 3845 LINK https://doi.org/10.1002/anie.200462260 [Google Scholar]
  70. Chen S., Cheng M., Ren Y., Tang L., Liu X., Zai C., and Liu Q. Z. Anorg. Allgem. Chem., 2015, 641, (3–4), 610 LINK https://doi.org/10.1002/zaac.201400484 [Google Scholar]
  71. Hazra S., Sarkar B., Naiya S., Drew M. G. B., and Ghosh A. Inorg. Chim. Acta, 2013, 402, (7), 12 LINK https://doi.org/10.1016/j.ica.2013.03.023 [Google Scholar]
  72. Wu H., Dong X.-W., Liu H.-Y., Ma J.-F., Liu Y.-Y., Liu Y.-Y., and Yang J. Inorg. Chim. Acta, 2011, 373, (1), 19 LINK https://doi.org/10.1016/j.ica.2011.03.041 [Google Scholar]
  73. Zheng S.-L., Tong M.-L., Chen X.-M., and Ng S. W. J. Chem. Soc., Dalton Trans., 2002, (3), 360 LINK https://doi.org/10.1039/b106925j [Google Scholar]
  74. Zheng S.-L., Zhang J.-P., Chen X.-M., and Ng S.-W. J. Solid State Chem., 2003, 172, (1), 45 LINK https://doi.org/10.1016/S0022-4596(02)00089-0 [Google Scholar]
  75. Zheng S.-L., Tong M.-L., Fu R.-W., Chen X.-M., and Ng S.-W. Inorg. Chem., 2001, 40, (14), 3562 LINK https://doi.org/10.1021/ic001237z [Google Scholar]
  76. Bi W.-H., Sun D.-F., Cao R., Li X., Shi Q., and Hong M.-C. Chinese J. Chem., 2003, 21, (6), 655 LINK https://doi.org/10.1002/cjoc.20030210615 [Google Scholar]
  77. Carlucci L., Ciani G., Proserpio D. M., and Rizzato S. J. Solid State Chem., 2000, 152, (1), 211 LINK https://doi.org/10.1006/jssc.2000.8684 [Google Scholar]
  78. Afanasiev P. J. Solid State Chem., 2016, 239, 69 LINK https://doi.org/10.1016/j.jssc.2016.04.012 [Google Scholar]
  79. Pickardt J., and Schendler T. Z. Naturforsch. B, 1982, 37, (7), 930 LINK https://doi.org/10.1515/znb-1982-0727 [Google Scholar]
  80. Mak T. C. W., and Wu Y.-K. Inorg. Chim. Acta, 1985, 104, (3), 149 LINK https://doi.org/10.1016/S0020-1693(00)86764-X [Google Scholar]
  81. Batten S. R., Harris A. R., Murray K. S., and Smith J. P. Crystal Growth & Design, 2002, 2, (2), 87 LINK https://doi.org/10.1021/cg0155696 [Google Scholar]
  82. Zalewicz M. Thermochim. Acta, 1989, 149, 133 LINK https://doi.org/10.1016/0040-6031(89)85274-8 [Google Scholar]
  83. Zalewicz M. Thermochim. Acta, 1990, 171, 131 LINK https://doi.org/10.1016/0040-6031(90)87014-4 [Google Scholar]
  84. Zalewicz M., and Trzesowska A. J. Thermal Anal. Calorim., 2004, 78, (2), 525 LINK https://doi.org/10.1023/B:JTAN.0000046116.43443.36 [Google Scholar]
  85. Nibha B. P. Baranwal, Singh G., Singh C. P., Daniliuc C. G., Soni P. K., and Nath Y. J. Mol. Struct., 2014, 1076, 539 LINK https://doi.org/10.1016/j.molstruc.2014.08.009 [Google Scholar]
  86. Trzesowska A., and Kruszynski R. Trans. Met. Chem., 2007, 32, (5), 625 LINK https://doi.org/10.1007/s11243-007-0224-4 [Google Scholar]
  87. Trzesowska A., Kruszynski R., Bartczak T. J., and Zalewicz M. Acta Crystallog. E, 2005, E61, (4), m625 LINK https://doi.org/10.1107/S160053680500615X [Google Scholar]
  88. Zalewicz M., and Goliński B. J. Chem. Crystallog., 1998, 28, (12), 879 LINK https://doi.org/10.1023/A:1022846402229 [Google Scholar]
  89. Stoian S. A., Paraschiv C., Kiritsakas N., Lloret F., Münck E., Bominaar E. L., and Andruh M. Inorg. Chem., 2010, 49, (7), 3387 LINK https://doi.org/10.1021/ic902516r [Google Scholar]
  90. Trzesowska-Kruszynska A., Kruszynski R., Zalewicz M., and Bartczak T. J. J. Coord. Chem., 2010, 63, (6), 1013 LINK https://doi.org/10.1080/00958971003682006 [Google Scholar]
  91. Fu Y. J. Coord. Chem., 2010, 63, (11), 1856 LINK https://doi.org/10.1080/00958972.2010.494725 [Google Scholar]
  92. Jiang J., Sarsfield M. J., Renshaw J. C., Livens F. R., Collison D., Charnock J. M., Helliwell M., and Eccles H. Inorg. Chem., 2002, 41, (10), 2799 LINK https://doi.org/10.1021/ic020121v [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651317X696621
Loading
/content/journals/10.1595/205651317X696621
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error