Skip to content
1887
Volume 62, Issue 1
  • ISSN: 2056-5135

Abstract

Hexamethylenetetramine (hmta) was chosen as a model ligand. Each of the four nitrogen atoms has a pair of unshared electrons and behaves like an amine base, undergoing protonation and alkylation and being able to form coordination compounds with many inorganic elements. The ligand can be used as an outer coordination sphere modulator of the inner coordination sphere and as a crosslinking agent in dinuclear and multinuclear coordination compounds. It can also be used as a model for bioactive molecules to form a great number of complexes with different inorganic salts containing other molecules. Studies of hmta coordination compounds with different metal salts have therefore attracted much attention. The present review summarises the synthesis, preparation, structure analysis and applications of coordination compounds of hmta with different metal salts.

Loading

Article metrics loading...

/content/journals/10.1595/205651317X696621
2018-01-01
2024-12-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/1/Jia_16a_Imp.html?itemId=/content/journals/10.1595/205651317X696621&mimeType=html&fmt=ahah

References

  1. G. R. Hatfield, G. E. Maciel, Macromolecules, 1987, 20, (3), 608 LINK https://doi.org/10.1021/ma00169a024 [Google Scholar]
  2. S. Kim, H.-J. Kim, J. Adhesion Sci. Technol., 2003, 17, (10), 1369 LINK https://doi.org/10.1163/156856103769172797 [Google Scholar]
  3. F. Devlieghere, L. Vermeiren, M. Jacobs, J. Debevere, Packaging Technol. Sci., 2000, 13, (3), 117 LINK https://doi.org/10.1002/1099-1522(200005)13:33.0.CO;2-B [Google Scholar]
  4. W.-B. Yi, C. Cai, J. Hazardous Mater., 2008, 150, (3), 839 LINK https://doi.org/10.1016/j.jhazmat.2007.10.040 [Google Scholar]
  5. A. M. Kirillov, Coord. Chem. Rev., 2011, 255, (15–16), 1603 LINK https://doi.org/10.1016/j.ccr.2011.01.023 [Google Scholar]
  6. S.-L. Zheng, M.-L. Tong, X.-M. Chen, Coord. Chem. Rev., 2003, 246, (1–2), 185 LINK https://doi.org/10.1016/S0010-8545(03)00116-4 [Google Scholar]
  7. P. T. Ndifon, M. O. Agwara, A. G. Paboudam, D. M. Yufanyi, J. Ngoune, A. Galindo, E. Álvarez, A. Mohamadou, Trans. Met. Chem., 2009, 34, (7), 745 LINK https://doi.org/10.1007/s11243-009-9257-1 [Google Scholar]
  8. R. Kruszynski, T. Sieranski, A. Bilinska, T. Bernat, E. Czubacka, Struct. Chem., 2012, 23, (5), 1643 LINK https://doi.org/10.1007/s11224-012-9961-x [Google Scholar]
  9. G. Singh, B. P. Baranwal, I. P. S. Kapoor, D. Kumar, R. Fröhlich, J. Phys. Chem. A, 2007, 111, (50), 12972 LINK https://doi.org/10.1021/jp077278z [Google Scholar]
  10. Y. C. Guo, S. R. Luan, Y. R. Chen, X. S. Zang, Y. Q. Jia, G. Q. Zhong, S. K. Ruan, J. Therm. Anal. Calorim., 2002, 68, (3), 1025 LINK https://doi.org/10.1023/A:1016163111068 [Google Scholar]
  11. Y.-H. Cai, R.-F. Peng, S.-J. Chu, J.-B. Yin, Asian J. Chem., 2010, 22, (8), 5835 LINK http://www.asianjournalofchemistry.co.in/user/journal/viewarticle.aspx?ArticleID=22_8_5 [Google Scholar]
  12. Y.-H. Cai, D.-M. Mab, R.-F. Peng, S.-J. Chu, South African J. Chem., 2008, 61, (1), 112 LINK https://journals.co.za/content/chem/61/1/EJC24436 [Google Scholar]
  13. L. Debucquet, L. Velluz, Bull. Soc. Chim. Fr., 1933, 53, 1288 [Google Scholar]
  14. F. Dahan, Acta Cryst., 1974, B30, (1), 22 LINK https://doi.org/10.1107/S0567740874002147 [Google Scholar]
  15. T. Sieranski, R. Kruszynski, J. Therm. Anal. Calorim., 2012, 109, (1), 141 LINK https://doi.org/10.1007/s10973-011-1693-4 [Google Scholar]
  16. S. S. Khandolkar, P. Raghavaiah, B. R. Srinivasan, J. Chem. Sci., 2015, 127, (9), 1581 LINK https://doi.org/10.1007/s12039-015-0918-7 [Google Scholar]
  17. J.-M. Tanco Salas, SL Quimversion, “Aluminium and Hexamethylenetetramine Complex and the Applications Thereof”, European Appl., 1,475,381; 2004 [Google Scholar]
  18. T. Sierański, R. Kruszynski, J. Coord. Chem., 2013, 66, (1), 42 LINK https://doi.org/10.1080/00958972.2012.744835 [Google Scholar]
  19. R. Kruszynski, T. Sieranski, M. Swiatkowski, M. Zielak, J. Wojciechowski, M. Dzierzawska, E. Czubacka, J. Chem. Crystall., 2015, 45, (10–12), 484 LINK https://doi.org/10.1007/s10870-015-0618-7 [Google Scholar]
  20. E. Czubacka, R. Kruszynski, T. Sieranski, Struct. Chem., 2012, 23, (2), 451 LINK https://doi.org/10.1007/s11224-011-9888-7 [Google Scholar]
  21. A. Trzesowska, R. Kruszynski, J. Coord. Chem., 2008, 61, (13), 2167 LINK https://doi.org/10.1080/00958970801901311 [Google Scholar]
  22. J. Pickardt, J. Kahler, N. Rautenberg, E. Riedel, Z. Naturforsch. B, 1984, 39, (9), 1162 LINK https://doi.org/10.1515/znb-1984-0902 [Google Scholar]
  23. H.-J. Meyer, J. Pickardt, Z. Naturforsch. B, 1988, 43, (9), 1161 LINK https://doi.org/10.1515/znb-1988-0913 [Google Scholar]
  24. H.-J. Meyer, J. Pickardt, Z. Naturforsch. B, 1988, 43, (2), 135 LINK https://doi.org/10.1515/znb-1988-0201 [Google Scholar]
  25. F. Dahan, Acta Crystallog. B, 1975, B31, (2), 423 LINK https://doi.org/10.1107/S0567740875002944 [Google Scholar]
  26. H. Meyer, J. Pickardt, Z. Naturforsch. B, 1989, 44, (5), 519 LINK https://doi.org/10.1515/znb-1989-0503 [Google Scholar]
  27. W.-L. Chen, B.-W. Chen, Y.-G. Li, Y.-H. Wang, E.-B. Wang, Inorg. Chim. Acta, 2009, 362, (14), 5043 LINK https://doi.org/10.1016/j.ica.2009.08.014 [Google Scholar]
  28. W. Chen, Y. Li, Y. Wang, E. Wang, Z. Zhang, Dalton Trans., 2008, (7), 865 LINK https://doi.org/10.1039/B717419E [Google Scholar]
  29. T. Duraisamy, A. Ramanan, J. J. Vittal, Cryst. Eng., 2000, 3, (4), 237 LINK https://doi.org/10.1016/S1463-0184(00)00043-5 [Google Scholar]
  30. J. R. Allan, D. H. Brown, M. Lappin, J. Inorg. Nuclear Chem., 1970, 32, (7), 2287 LINK https://doi.org/10.1016/0022-1902(70)80508-5 [Google Scholar]
  31. I. S. Ahuja, R. Singh, C. L. Yadava, Spectrochim. Acta, A: Molec. Spectr., 1981, 37, (6), 407 LINK https://doi.org/10.1016/0584-8539(81)80112-2 [Google Scholar]
  32. M. O. Agwara, P. T. Ndifon, M. K. Ndikontar, Bull. Chem. Soc. Ethiopia, 2004, 18, (2), 143 LINK http://www.ingentaconnect.com/content/cse/bcse/2004/00000018/00000002/art00003 [Google Scholar]
  33. M. O. Agwara, M. D. Yufanyi, J. N. Foba-Tendo, M. A. Atamba, D. T. Ndinteh, J. Chem. Pharm. Res., 2011, 3, (3), 196 LINK http://www.jocpr.com/articles/synthesis-characterisation-and-biological-activities-of-mnii-coii-and-niii-complexes-of-hexamethylenetetramine.pdf [Google Scholar]
  34. D. Kumar, I. P. S. Kapoor, G. Singh, N. Goel, U. P. Singh, Solid State Sci., 2012, 14, (4), 495 LINK https://doi.org/10.1016/j.solidstatesciences.2012.01.021 [Google Scholar]
  35. I. A Salem, J. Molec. Catal., 1994, 87, (1), 25 LINK https://doi.org/10.1016/0304-5102(93)E0188-M [Google Scholar]
  36. A. G. Paboudam, C. Gérard, A. Mohamadou, M. O. Agwara, M. A. Conde, P. T. Ndifon, Int. J. Inorg. Chem., 2014, 397132 LINK http://dx.doi.org/10.1155/2014/397132 [Google Scholar]
  37. Y.-H. Cai, Y.-H. Zhang, L.-P. Ren, J. Macromol. Sci. B, 2016, 55, (5), 547 LINK https://doi.org/10.1080/00222348.2016.1171071 [Google Scholar]
  38. F. B. Stocker, Inorg. Chem., 1991, 30, (7), 1472 LINK https://doi.org/10.1021/ic00007a009 [Google Scholar]
  39. A. Grodzicki, M. Chrzaszcz, K. Krajewski, E. Szłyk, J. Kontek, Trans. Met. Chem., 1991, 16, (4), 413 LINK https://doi.org/10.1007/BF01129453 [Google Scholar]
  40. S. Hazra, S. Naiya, B. Sarkar, M. G. B. Drew, A. Ghosh, Polyhedron, 2013, 65, 193 LINK https://doi.org/10.1016/j.poly.2013.08.022 [Google Scholar]
  41. B. Degagsa, G. Faye, N. Fernandez, World J. Pharm. Pharm. Sci., 2013, 2, (6), 6391 LINK http://www.wjpps.com/wjpps_controller/abstract_id/660 [Google Scholar]
  42. L. Carlucci, G. Ciani, D. M. Proserpio, A. Sironi, Inorg. Chem., 1997, 36, (9), 1736 LINK https://doi.org/10.1021/ic970043p [Google Scholar]
  43. E. Plotnikov, V. Pehenko, V. Plotnikov, Physiol. Pharmacol., 2015, 19, (4), 247 LINK http://phypha.ir/ppj/article-1-1135-en.html [Google Scholar]
  44. H.-L. Zhu, D.-S. Xia, Q.-F. Zeng, Z.-G. Wang, D.-Q. Wang, Acta Crystallog. E, 2003, E59, (11), m1020 LINK https://doi.org/10.1107/S160053680302316X [Google Scholar]
  45. G. Singh, B. P. Baranwal, I. P. S. Kapoor, D. Kumar, C. P. Singh, R. Fröhlich, J. Therm. Anal. Calorim., 2008, 91, (3), 971 LINK https://doi.org/10.1007/s10973-007-8615-5 [Google Scholar]
  46. Z. Yi, X. Yu, W. Xia, L. Zhao, C. Yang, Q. Chen, X. Wang, X. Xua, X. Zhang, CrystEngComm, 2010, 12, (1), 242 LINK https://doi.org/10.1039/B916793P [Google Scholar]
  47. Y.-K. Lv, Z.-G. Jiang, L.-H. Gan, M.-X. Liu, Y.-L. Feng, CrystEngComm, 2012, 14, (1), 314 LINK https://doi.org/10.1039/C1CE05605K [Google Scholar]
  48. T. Duraisamy, N. Ojha, A. Ramanan, J. J. Vittal, Chem. Mater., 1999, 11, (9), 2339 LINK https://doi.org/10.1021/cm980646e [Google Scholar]
  49. D. Chopra, P. Dagur, A. S. Prakash, T. N. Guru Row, M. S. Hegde, J. Cryst. Growth, 2005, 275, (1–2), e2049 LINK https://doi.org/10.1016/j.jcrysgro.2004.11.195 [Google Scholar]
  50. D. Chopra, P. Dagur, A. S. Prakash, T. N. Guru Row, M. S. Hegde, Acta Crystallog. E, 2004, E60, (4), m348 LINK https://doi.org/10.1107/S1600536804004337 [Google Scholar]
  51. B. J. Frost, C. M. Bautista, R. Huang, J. Shearer, Inorg. Chem., 2006, 45, (9), 3481 LINK https://doi.org/10.1021/ic060322p [Google Scholar]
  52. J. Hong, M. Cheng, Q. Liu, W. Han, Y. Zhang, Y. Ji, X. Jia, Z. Li, Trans. Met. Chem., 2013, 38, (4), 385 LINK https://doi.org/10.1007/s11243-013-9702-z [Google Scholar]
  53. X. Ge, J. Sun, Y.-Q. Zheng, Z. Kristallog. – New Cryst. Struct., 2004, 219, (1–4), 257 LINK https://doi.org/10.1524/ncrs.2004.219.14.257 [Google Scholar]
  54. Y.-Q. Zheng, E.-B. Ying, J. Coord. Chem., 2005, 58, (5), 453 LINK https://doi.org/10.1080/00958970412331336349 [Google Scholar]
  55. P. Afanasiev, S. Chouzier, T. Czeri, G. Pilet, C. Pichon, M. Roy, M. Vrinat, Inorg. Chem., 2008, 47, (7), 2303 LINK https://doi.org/10.1021/ic7013013 [Google Scholar]
  56. S. Konar, P. S. Mukherjee, M. G. B. Drew, J. Ribas, N. R. Chaudhuri, Inorg. Chem., 2003, 42, (8), 2545 LINK https://doi.org/10.1021/ic020549u [Google Scholar]
  57. S. Saha, R. K. Kottalanka, T. K. Panda, K. Harms, S. Dehnen, H. P. Nayek, J. Organomet. Chem., 2013, 745–746, 329 LINK https://doi.org/10.1016/j.jorganchem.2013.08.022 [Google Scholar]
  58. C. H. Ng, S. G. Teoh, N. Moris, S. Y. Yap, J. Coord. Chem., 2004, 57, (12), 1037 LINK https://doi.org/10.1080/00958970412331281791 [Google Scholar]
  59. J.-L. Ma, X.-Y. Qiu, S.-C. Shao, S. S. Yang, L. Sun, H.-L. Zhu, Z. Kristallog. – New Cryst. Struct., 2003, 218, (JG), 533 LINK https://doi.org/10.1524/ncrs.2003.218.jg.533 [Google Scholar]
  60. H.-L. Zhu, L. Sun, S. Yang, X.-Y. Qiu, S.-C. Shao, J.-L. Ma, Z. Kristallog. – New Cryst. Struct., 2003, 218, (JG), 549 LINK https://doi.org/10.1524/ncrs.2003.218.jg.549 [Google Scholar]
  61. S. Banerjee, A. R. Choudhury, T. N. Guru Row, S. Chaudhuri, A. Ghosh, Polyhedron, 2007, 26, (1), 24 LINK https://doi.org/10.1016/j.poly.2006.07.019 [Google Scholar]
  62. S. Hazra, S. Biswas, A. M. Kirillov, A. Ghosh, Polyhedron, 2014, 79, 66 LINK https://doi.org/10.1016/j.poly.2014.04.038 [Google Scholar]
  63. H. Lin, Y.-L. Feng, Chin. J. Struct. Chem., 2005, 24, (5), 573 [Google Scholar]
  64. J. Pickardt, N. Rautenberg, Z. Naturforsch. B, 1982, 37, (12), 1569 LINK https://doi.org/10.1515/znb-1982-1216 [Google Scholar]
  65. R. Kruszynski, T. Sierański, M. Świtkowski, M. Zielak, J. Wojciechowski, M. Dzierżawska, B. Lewiński, J. Coord. Chem., 2014, 67, (8), 1332 LINK https://doi.org/10.1080/00958972.2014.915524 [Google Scholar]
  66. S. Hazra, B. Sarkar, S. Naiya, M. G. B. Drew, A. Ghosh, Polyhedron, 2012, 46, (1), 8 LINK https://doi.org/10.1016/j.poly.2012.07.068 [Google Scholar]
  67. Q. Fang, G. Zhu, M. Xue, J. Sun, G. Tian, G. Wu, S. Qiu, Dalton Trans., 2004, (14), 2202 LINK https://doi.org/10.1039/B402715A [Google Scholar]
  68. Y. Bai, W.-L. Shang, D.-B. Dang, J.-D. Sun, H. Gao, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2009, 72, (2), 407 LINK https://doi.org/10.1016/j.saa.2008.10.033 [Google Scholar]
  69. Q. Fang, G. Zhu, M. Xue, J. Sun, Y. Wei, S. Qiu, R. Xu, Angew. Chem. Int. Ed., 2005, 44, (25), 3845 LINK https://doi.org/10.1002/anie.200462260 [Google Scholar]
  70. S. Chen, M. Cheng, Y. Ren, L. Tang, X. Liu, C. Zai, Q. Liu, Z. Anorg. Allgem. Chem., 2015, 641, (3–4), 610 LINK https://doi.org/10.1002/zaac.201400484 [Google Scholar]
  71. S. Hazra, B. Sarkar, S. Naiya, M. G. B. Drew, A. Ghosh, Inorg. Chim. Acta, 2013, 402, (7), 12 LINK https://doi.org/10.1016/j.ica.2013.03.023 [Google Scholar]
  72. H. Wu, X.-W. Dong, H.-Y. Liu, J.-F. Ma, Y.-Y. Liu, Y.-Y. Liu, J. Yang, Inorg. Chim. Acta, 2011, 373, (1), 19 LINK https://doi.org/10.1016/j.ica.2011.03.041 [Google Scholar]
  73. S.-L. Zheng, M.-L. Tong, X.-M. Chen, S. W. Ng, J. Chem. Soc., Dalton Trans., 2002, (3), 360 LINK https://doi.org/10.1039/b106925j [Google Scholar]
  74. S.-L. Zheng, J.-P. Zhang, X.-M. Chen, S.-W. Ng, J. Solid State Chem., 2003, 172, (1), 45 LINK https://doi.org/10.1016/S0022-4596(02)00089-0 [Google Scholar]
  75. S.-L. Zheng, M.-L. Tong, R.-W. Fu, X.-M. Chen, S.-W. Ng, Inorg. Chem., 2001, 40, (14), 3562 LINK https://doi.org/10.1021/ic001237z [Google Scholar]
  76. W.-H. Bi, D.-F. Sun, R. Cao, X. Li, Q. Shi, M.-C. Hong, Chinese J. Chem., 2003, 21, (6), 655 LINK https://doi.org/10.1002/cjoc.20030210615 [Google Scholar]
  77. L. Carlucci, G. Ciani, D. M. Proserpio, S. Rizzato, J. Solid State Chem., 2000, 152, (1), 211 LINK https://doi.org/10.1006/jssc.2000.8684 [Google Scholar]
  78. P. Afanasiev, J. Solid State Chem., 2016, 239, 69 LINK https://doi.org/10.1016/j.jssc.2016.04.012 [Google Scholar]
  79. J. Pickardt, T. Schendler, Z. Naturforsch. B, 1982, 37, (7), 930 LINK https://doi.org/10.1515/znb-1982-0727 [Google Scholar]
  80. T. C. W. Mak, Y.-K. Wu, Inorg. Chim. Acta, 1985, 104, (3), 149 LINK https://doi.org/10.1016/S0020-1693(00)86764-X [Google Scholar]
  81. S. R. Batten, A. R. Harris, K. S. Murray, J. P. Smith, Crystal Growth & Design, 2002, 2, (2), 87 LINK https://doi.org/10.1021/cg0155696 [Google Scholar]
  82. M. Zalewicz, Thermochim. Acta, 1989, 149, 133 LINK https://doi.org/10.1016/0040-6031(89)85274-8 [Google Scholar]
  83. M. Zalewicz, Thermochim. Acta, 1990, 171, 131 LINK https://doi.org/10.1016/0040-6031(90)87014-4 [Google Scholar]
  84. M. Zalewicz, A. Trzesowska, J. Thermal Anal. Calorim., 2004, 78, (2), 525 LINK https://doi.org/10.1023/B:JTAN.0000046116.43443.36 [Google Scholar]
  85. B. P. Baranwal Nibha, G. Singh, C. P. Singh, C. G. Daniliuc, P. K. Soni, Y. Nath, J. Mol. Struct., 2014, 1076, 539 LINK https://doi.org/10.1016/j.molstruc.2014.08.009 [Google Scholar]
  86. A. Trzesowska, R. Kruszynski, Trans. Met. Chem., 2007, 32, (5), 625 LINK https://doi.org/10.1007/s11243-007-0224-4 [Google Scholar]
  87. A. Trzesowska, R. Kruszynski, T. J. Bartczak, M. Zalewicz, Acta Crystallog. E, 2005, E61, (4), m625 LINK https://doi.org/10.1107/S160053680500615X [Google Scholar]
  88. M. Zalewicz, B. Goliński, J. Chem. Crystallog., 1998, 28, (12), 879 LINK https://doi.org/10.1023/A:1022846402229 [Google Scholar]
  89. S. A. Stoian, C. Paraschiv, N. Kiritsakas, F. Lloret, E. Münck, E. L. Bominaar, M. Andruh, Inorg. Chem., 2010, 49, (7), 3387 LINK https://doi.org/10.1021/ic902516r [Google Scholar]
  90. A. Trzesowska-Kruszynska, R. Kruszynski, M. Zalewicz, T. J. Bartczak, J. Coord. Chem., 2010, 63, (6), 1013 LINK https://doi.org/10.1080/00958971003682006 [Google Scholar]
  91. Y. Fu, J. Coord. Chem., 2010, 63, (11), 1856 LINK https://doi.org/10.1080/00958972.2010.494725 [Google Scholar]
  92. J. Jiang, M. J. Sarsfield, J. C. Renshaw, F. R. Livens, D. Collison, J. M. Charnock, M. Helliwell, H. Eccles, Inorg. Chem., 2002, 41, (10), 2799 LINK https://doi.org/10.1021/ic020121v [Google Scholar]
/content/journals/10.1595/205651317X696621
Loading
/content/journals/10.1595/205651317X696621
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test