Skip to content
Volume 62, Issue 3
  • ISSN: 2056-5135


Despite considerable research efforts, finding a chemically stable electrolyte mixture in the presence of reduced oxygen species remains a great challenge. Previously, dimethyl sulfoxide (DMSO) and sulfolane (tetramethylene sulfone (TMS))-based electrolytes were reported to be stable for lithium air (Li-O) battery applications. Recently lithium hydroxide (LiOH) based chemistries have been demonstrated to involve supressed side reactions in water-added ether- and DMSO-based electrolytes. Herein, we investigate the impact of DMSO-based electrolyte and sulfolane co-solvent on cell chemistry in the presence of water. We found that DMSO-based electrolyte leads to formation of a peroxide-hydroxide mixture as discharge products and the removal of both LiOH and lithium peroxide (LiO) on charging from 3.2–3.6 V ( Li+/Li) is observed. In the presence of sulfolane as co-solvent, a mixture of LiO and LiOH is formed as major discharge products with slightly more LiOH formation than in the absence of sulfolane. The presence of sulfolane has also significant effects on the charging behaviour, exhibiting a clearer 3 e/O oxygen evolution reaction profile during the entire charging process. This work provides insights into understanding the effects of the primary solvent on promoting LiOH formation and decomposition in lithium iodide (LiI) mediated non-aqueous Li-O batteries.


Article metrics loading...

Loading full text...

Full text loading...



  1. Bruce P. G., Freunberger S. A., Hardwick L. J., and Tarascon J.-M. Nature Mater., 2012, 11, (1), 172 LINK [Google Scholar]
  2. Lu Y.-C., Gallant B. M., Kwabi D. G., Harding J. R., Mitchell R. R., Whittingham M. S., and Shao-Horn Y. Energy Environ. Sci., 2013, 6, (6), 750 LINK [Google Scholar]
  3. Zhang X., Wang X.-G., Xie Z., and Zhou Z. Green Energy Environ., 2016, 1, (1), 4 LINK [Google Scholar]
  4. Gallant B. M., Kwabi D. G., Mitchell R. R., Zhou J., Thompson C. V., and Shao-Horn Y. Energy Environ. Sci., 2013, 6, (8), 2518 LINK [Google Scholar]
  5. Mitchell R. R., Gallant B. M., Shao-Horn Y., and Thompson C. V. J. Phys. Chem. Lett., 2013, 4, (7), 1060 LINK [Google Scholar]
  6. Adams B. D., Radtke C., Black R., Trudeau M. L., Zaghib K., and Nazar L. F. Energy Environ. Sci., 2013, 6, (6), 1772 LINK [Google Scholar]
  7. Freunberger S. A., Chen Y., Peng Z., Griffin J. M., Hardwick L. J., Bardé F., Novák P., and Bruce P. G. J. Am. Chem. Soc., 2011, 133, (20), 8040 LINK [Google Scholar]
  8. Ottakam Thotiyl M. M., Freunberger S. A., Peng Z., and Bruce P. G. J. Am. Chem. Soc., 2013, 135, (1), 494 LINK [Google Scholar]
  9. McCloskey B. D., Speidel A., Scheffler R., Miller D. C., Viswanathan V., Hummelshøj J. S., Nørskov J. K., and Luntz A. C. J. Phys. Chem. Lett., 2012, 3, (8), 997 LINK [Google Scholar]
  10. Liu T., Leskes M., Yu W., Moore A. J., Zhou L., Bayley P. M., Kim G., and Grey C. P. Science, 2015, 350, (6260), 530 LINK [Google Scholar]
  11. Liu T., Liu Z., Kim G., Frith J. T., Garcia-Araez N., and Grey C. P. Angew. Chemie Int. Ed., 2017, 56, (50), 16057 LINK [Google Scholar]
  12. Freunberger S. A., Chen Y., Drewett N. E., Hardwick L. J., Bardé F., and Bruce P. G. Angew. Chemie Int. Ed., 2011, 50, (37), 8609 LINK [Google Scholar]
  13. Bardé F., Chen Y., Johnson L., Schaltin S., Fransaer J., and Bruce P. G. J. Phys. Chem. C, 2014, 118, (33), 18892 LINK [Google Scholar]
  14. Peng Z., Freunberger S. A., Chen Y., and Bruce P. G. Science, 2012, 337, (6094), 563 LINK [Google Scholar]
  15. Xu D., Wang Z., Xu J., Zhang L., and Zhang X. Chem. Commun., 2012, 48, (55), 6948 LINK [Google Scholar]
  16. Xu D., Wang Z., Xu J., Zhang L., Wang L., and Zhang X. Chem. Commun., 2012, 48, (95), 11674 LINK [Google Scholar]
  17. Sharon D., Afri M., Noked M., Garsuch A., Frimer A. A., and Aurbach D. J. Phys. Chem. Lett., 2013, 4, (18), 3115 LINK [Google Scholar]
  18. Khan A., and Zhao C. Electrochem. Commun., 2014, 49, 1 LINK [Google Scholar]
  19. Howlett P. C., MacFarlane D. R., and Hollenkamp A. F. Electrochem. Solid-State Lett., 2004, 7, (5), A97 LINK [Google Scholar]
  20. Elia G. A., Hassoun J., Kwak W.-J., Sun Y.-K., Scrosati B., Mueller F., Bresser D., Passerini S., Oberhumer P., Tsiouvaras N., and Reiter J. Nano Lett., 2014, 14, (11), 6572 LINK [Google Scholar]
  21. Kwabi D. G., Batcho T. P., Amanchukwu C. V., Ortiz-Vitoriano N., Hammond P., Thompson C. V., and Shao-Horn Y. J. Phys. Chem. Lett., 2014, 5, (16), 2850 LINK [Google Scholar]
  22. Lim H.-D., Song H., Kim J., Gwon H., Bae Y., Park K.-Y., Hong J., Kim H., Kim T., Kim Y. H., Lepró X., Ovalle-Robles R., Baughman R. H., and Kang K. Angew. Chemie Int. Ed., 2014, 53, (15), 3926 LINK [Google Scholar]
  23. Li Z., Ganapathy S., Xu Y., Heringa J. R., Zhu Q., Chen W., and Wagemaker M. Chem. Mater., 2017, 29, (4), 1577 LINK [Google Scholar]
  24. Leskes M., Moore A. J., Goward G. R., and Grey C. P. J. Phys. Chem. C, 2013, 117, (51), 26929 LINK [Google Scholar]
  25. Schwenke K. U., Herranz J., Gasteiger H. A., and Piana M. J. Electrochem. Soc., 2015, 162, (6), A905 LINK [Google Scholar]
  26. Liu T., Kim G., Carretero-González J., Castillo-Martínez E., and Grey C. P. Science, 2016, 352, (6286), 667 LINK [Google Scholar]
  27. Burke C. M., Black R., Kochetkov I. R., Giordani V., Addison D., Nazar L. F., and McCloskey B. D. ACS Energy Lett., 2016, 1, (4), 747 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error