Skip to content
1887
Volume 62, Issue 3
  • ISSN: 2056-5135
  • oa Cycling Non-Aqueous Lithium-Air Batteries with Dimethyl Sulfoxide and Sulfolane Co-Solvent

    Evaluating influence of sulfolane on cell chemistry

  • Authors: Gunwoo Kim1,2, Tao Liu1, Israel Temprano1, Enrico A. Petrucco3, Nathan Barrow3 and Clare P. Grey1
  • Affiliations: 1 Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EWUK 2 Cambridge Graphene Centre, University of CambridgeCambridge, CB3 0FAUK 3 Johnson MattheyBlounts Court Road, Sonning Common, Reading, RG4 9NHUK
  • Source: Johnson Matthey Technology Review, Volume 62, Issue 3, Jul 2018, p. 332 - 340
  • DOI: https://doi.org/10.1595/205651318X15233499272318
    • Published online: 01 Jan 2018

Abstract

Despite considerable research efforts, finding a chemically stable electrolyte mixture in the presence of reduced oxygen species remains a great challenge. Previously, dimethyl sulfoxide (DMSO) and sulfolane (tetramethylene sulfone (TMS))-based electrolytes were reported to be stable for lithium air (Li-O) battery applications. Recently lithium hydroxide (LiOH) based chemistries have been demonstrated to involve supressed side reactions in water-added ether- and DMSO-based electrolytes. Herein, we investigate the impact of DMSO-based electrolyte and sulfolane co-solvent on cell chemistry in the presence of water. We found that DMSO-based electrolyte leads to formation of a peroxide-hydroxide mixture as discharge products and the removal of both LiOH and lithium peroxide (LiO) on charging from 3.2–3.6 V ( Li+/Li) is observed. In the presence of sulfolane as co-solvent, a mixture of LiO and LiOH is formed as major discharge products with slightly more LiOH formation than in the absence of sulfolane. The presence of sulfolane has also significant effects on the charging behaviour, exhibiting a clearer 3 e/O oxygen evolution reaction profile during the entire charging process. This work provides insights into understanding the effects of the primary solvent on promoting LiOH formation and decomposition in lithium iodide (LiI) mediated non-aqueous Li-O batteries.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X15233499272318
2018-01-01
2024-12-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/3/Kim_16a_Imp.html?itemId=/content/journals/10.1595/205651318X15233499272318&mimeType=html&fmt=ahah

References

  1. P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Nature Mater., 2012, 11, (1), 172 LINK https://doi.org/10.1038/nmat3237 [Google Scholar]
  2. Y.-C. Lu, B. M. Gallant, D. G. Kwabi, J. R. Harding, R. R. Mitchell, M. S. Whittingham, Y. Shao-Horn, Energy Environ. Sci., 2013, 6, (6), 750 LINK https://doi.org/10.1039/C3EE23966G [Google Scholar]
  3. X. Zhang, X.-G. Wang, Z. Xie, Z. Zhou, Green Energy Environ., 2016, 1, (1), 4 LINK https://doi.org/10.1016/j.gee.2016.04.004 [Google Scholar]
  4. B. M. Gallant, D. G. Kwabi, R. R. Mitchell, J. Zhou, C. V. Thompson, Y. Shao-Horn, Energy Environ. Sci., 2013, 6, (8), 2518 LINK https://doi.org/10.1039/C3EE40998H [Google Scholar]
  5. R. R. Mitchell, B. M. Gallant, Y. Shao-Horn, C. V. Thompson, J. Phys. Chem. Lett., 2013, 4, (7), 1060 LINK https://doi.org/10.1021/jz4003586 [Google Scholar]
  6. B. D. Adams, C. Radtke, R. Black, M. L. Trudeau, K. Zaghib, L. F. Nazar, Energy Environ. Sci., 2013, 6, (6), 1772 LINK https://doi.org/10.1039/C3EE40697K [Google Scholar]
  7. S. A. Freunberger, Y. Chen, Z. Peng, J. M. Griffin, L. J. Hardwick, F. Bardé, P. Novák, P. G. Bruce, J. Am. Chem. Soc., 2011, 133, (20), 8040 LINK https://doi.org/10.1021/ja2021747 [Google Scholar]
  8. M. M. Ottakam Thotiyl, S. A. Freunberger, Z. Peng, P. G. Bruce, J. Am. Chem. Soc., 2013, 135, (1), 494 LINK https://doi.org/10.1021/ja310258x [Google Scholar]
  9. B. D. McCloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshøj, J. K. Nørskov, A. C. Luntz, J. Phys. Chem. Lett., 2012, 3, (8), 997 LINK https://doi.org/10.1021/jz300243r [Google Scholar]
  10. T. Liu, M. Leskes, W. Yu, A. J. Moore, L. Zhou, P. M. Bayley, G. Kim, C. P. Grey, Science, 2015, 350, (6260), 530 LINK https://doi.org/10.1126/science.aac7730 [Google Scholar]
  11. T. Liu, Z. Liu, G. Kim, J. T. Frith, N. Garcia-Araez, C. P. Grey, Angew. Chemie Int. Ed., 2017, 56, (50), 16057 LINK https://doi.org/10.1002/anie.201709886 [Google Scholar]
  12. S. A. Freunberger, Y. Chen, N. E. Drewett, L. J. Hardwick, F. Bardé, P. G. Bruce, Angew. Chemie Int. Ed., 2011, 50, (37), 8609 LINK https://doi.org/10.1002/anie.201102357 [Google Scholar]
  13. F. Bardé, Y. Chen, L. Johnson, S. Schaltin, J. Fransaer, P. G. Bruce, J. Phys. Chem. C, 2014, 118, (33), 18892 LINK https://doi.org/10.1021/jp5048198 [Google Scholar]
  14. Z. Peng, S. A. Freunberger, Y. Chen, P. G. Bruce, Science, 2012, 337, (6094), 563 LINK https://doi.org/10.1126/science.1223985 [Google Scholar]
  15. D. Xu, Z. Wang, J. Xu, L. Zhang, X. Zhang, Chem. Commun., 2012, 48, (55), 6948 LINK https://doi.org/10.1039/C2CC32844E [Google Scholar]
  16. D. Xu, Z. Wang, J. Xu, L. Zhang, L. Wang, X. Zhang, Chem. Commun., 2012, 48, (95), 11674 LINK https://doi.org/10.1039/C2CC36815C [Google Scholar]
  17. D. Sharon, M. Afri, M. Noked, A. Garsuch, A. A. Frimer, D. Aurbach, J. Phys. Chem. Lett., 2013, 4, (18), 3115 LINK https://doi.org/10.1021/jz4017188 [Google Scholar]
  18. A. Khan, C. Zhao, Electrochem. Commun., 2014, 49, 1 LINK https://doi.org/10.1016/j.elecom.2014.09.014 [Google Scholar]
  19. P. C. Howlett, D. R. MacFarlane, A. F. Hollenkamp, Electrochem. Solid-State Lett., 2004, 7, (5), A97 LINK https://doi.org/10.1149/1.1664051 [Google Scholar]
  20. G. A. Elia, J. Hassoun, W.-J. Kwak, Y.-K. Sun, B. Scrosati, F. Mueller, D. Bresser, S. Passerini, P. Oberhumer, N. Tsiouvaras, J. Reiter, Nano Lett., 2014, 14, (11), 6572 LINK https://doi.org/10.1021/nl5031985 [Google Scholar]
  21. D. G. Kwabi, T. P. Batcho, C. V. Amanchukwu, N. Ortiz-Vitoriano, P. Hammond, C. V. Thompson, Y. Shao-Horn, J. Phys. Chem. Lett., 2014, 5, (16), 2850 LINK https://doi.org/10.1021/jz5013824 [Google Scholar]
  22. H.-D. Lim, H. Song, J. Kim, H. Gwon, Y. Bae, K.-Y. Park, J. Hong, H. Kim, T. Kim, Y. H. Kim, X. Lepró, R. Ovalle-Robles, R. H. Baughman, K. Kang, Angew. Chemie Int. Ed., 2014, 53, (15), 3926 LINK https://doi.org/10.1002/anie.201400711 [Google Scholar]
  23. Z. Li, S. Ganapathy, Y. Xu, J. R. Heringa, Q. Zhu, W. Chen, M. Wagemaker, Chem. Mater., 2017, 29, (4), 1577 LINK https://doi.org/10.1021/acs.chemmater.6b04370 [Google Scholar]
  24. M. Leskes, A. J. Moore, G. R. Goward, C. P. Grey, J. Phys. Chem. C, 2013, 117, (51), 26929 LINK https://doi.org/10.1021/jp410429k [Google Scholar]
  25. K. U. Schwenke, J. Herranz, H. A. Gasteiger, M. Piana, J. Electrochem. Soc., 2015, 162, (6), A905 LINK https://doi.org/10.1149/2.0241506jes [Google Scholar]
  26. T. Liu, G. Kim, J. Carretero-González, E. Castillo-Martínez, C. P. Grey, Science, 2016, 352, (6286), 667 LINK https://doi.org/10.1126/science.aaf1652 [Google Scholar]
  27. C. M. Burke, R. Black, I. R. Kochetkov, V. Giordani, D. Addison, L. F. Nazar, B. D. McCloskey, ACS Energy Lett., 2016, 1, (4), 747 LINK https://doi.org/10.1021/acsenergylett.6b00328 [Google Scholar]
/content/journals/10.1595/205651318X15233499272318
Loading
/content/journals/10.1595/205651318X15233499272318
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test