Skip to content
1887
Volume 62, Issue 3
  • ISSN: 2056-5135

Abstract

The improvement of catalytic processes is strongly related to the better performance of catalysts (higher conversion, selectivity, yield and stability). Additionally, the desired catalysts should meet the requirements of being low cost as well as environmentally and user-friendly. All these requirements can only be met by catalyst development and optimisation following new approaches in design and synthesis. This article discusses three major approaches in the design and development of catalysts: (a) high-throughput synthesis; (b) reaction kinetic studies; (c) and spectroscopy for studying catalysts under process conditions. In contrast to approaches based on high-throughput synthesis and reaction kinetic studies, an emerging approach of studying catalysts under process conditions using and spectroscopy and transferring the gained knowledge to design of new catalysts or the optimisation of existing catalysts is not yet widely employed in the chemical industry. In this article, examples of using or spectroscopy for studying the surface and bulk of catalysts under process conditions are discussed, with an overview of applying X-ray absorption spectroscopy (XAS), infrared (IR) spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) for monitoring the bulk and surface composition of PdZn/ZnO and PdGa/GaO methanol steam reforming catalysts.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X15234323420569
2018-01-01
2024-02-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/3/Foettinger_16a_Imp.html?itemId=/content/journals/10.1595/205651318X15234323420569&mimeType=html&fmt=ahah

References

  1. Rodemerck U., Baerns M., ‘High-Throughput Experimentation in the Development of Heterogeneous Catalysts: Tools for Synthesis and Testing of Catalytic Materials and Data Analysis’, in “Basic Principles in Applied Catalysis”, ed. and Baerns M. 75, Springer-Verlag, Berlin, Germany, 2004, pp. 259–279 LINK https://doi.org/10.1007/978-3-662-05981-4_7 [Google Scholar]
  2. Paciello R. A., Beller M., ‘High Throughput Screening of Homogeneous Catalysts: Selected Trends and Applications in Process Development’, in “Applied Homogeneous Catalysis with Organometallic Compounds”, 3rd Edn., eds. Cornils B., Hermann W. A., and Paciello R. 1–4, Ch. 16, Wiley-VCH Verlag GmbH and Co KGaA, Weinheim, Germany, 2018, pp. 1085–1096 LINK https://doi.org/10.1002/9783527651733.ch16 [Google Scholar]
  3. Yaccato K., Carhart R., Hagemeyer A., Herrmann M., Lesik A., Strasser P., Volpe A., Turner H., Weinberg H., Grasselli R. K., Brooks C. J., and Pigos J. M. Comb. Chem. High Throughput Screening, 2010, 13, (4), 318 LINK https://doi.org/10.2174/138620710791054286 [Google Scholar]
  4. Hagemeyer A., Lesik A., Streukens G., Volpe A. F., Turner H. W., Weinberg W. H., Yaccato K., and Brooks C. Comb. Chem. High Throughput Screening, 2007, 10, (2), 135 LINK https://doi.org/10.2174/138620707779940965 [Google Scholar]
  5. Cypes S., Hagemeyer A., Hogan Z., Lesik A., Streukens G., Volpe A. F., Weinberg W. H., and Yaccato K. Comb. Chem. High Throughput Screening, 2007, 10, (1), 25 LINK https://doi.org/10.2174/138620707779802788 [Google Scholar]
  6. Wennemers H. Comb. Chem. High Throughput Screening, 2001, 4, (3), 273 LINK https://doi.org/10.2174/1386207013331138 [Google Scholar]
  7. Zheng Z. Q., and Zhou X. P. Comb. Chem. High Throughput Screening, 2011, 14, (3), 147 LINK https://doi.org/10.2174/138620711794728725 [Google Scholar]
  8. Fonseca M. H., and List B. Curr. Opin. Chem. Biol., 2004, 8, (3), 319 LINK https://doi.org/10.1016/j.cbpa.2004.04.013 [Google Scholar]
  9. Reyniers M.-F., and Marin G. B. Annu. Rev. Chem. Biomol. Eng., 2014, 5, 563 LINK https://doi.org/10.1146/annurev-chembioeng-060713-040032 [Google Scholar]
  10. Blackmond D. G. Angew. Chem. Int. Ed., 2005, 44, (28), 4302 LINK https://doi.org/10.1002/anie.200462544 [Google Scholar]
  11. Langmuir I. Trans. Faraday Soc., 1922, 17, 621 LINK https://doi.org/10.1039/TF9221700621 [Google Scholar]
  12. Berger R. J., Stitt E. H., Marin G. B., Kapteijn F., and Moulijn J. A. CATTECH, 2001, 5, (1), 36 LINK https://doi.org/10.1023/A:1011928218694 [Google Scholar]
  13. Weinberg W. H. Acc. Chem. Res., 1996, 29, (10), 479 LINK https://doi.org/10.1021/ar9500980 [Google Scholar]
  14. Doornkamp C., and Ponec V. J. Mol. Catal. A: Chem., 2000, 162, (1–2), 19 LINK https://doi.org/10.1016/S1381-1169(00)00319-8 [Google Scholar]
  15. van Veen A. C., Farrusseng D., Rebeilleau M., Decamp T., Holzwarth A., Schuurman Y., and Mirodatos C. J. Catal., 2003, 216, (1–2), 135 LINK https://doi.org/10.1016/S0021-9517(02)00100-8 [Google Scholar]
  16. Hakeem A. A., Vásquez R. S., Rajendran J., Li M., Berger R. J., Delgado J. J., Kapteijn F., and Makkee M. J. Catal., 2014, 313, 34 LINK https://doi.org/10.1016/j.jcat.2014.02.010 [Google Scholar]
  17. Hakeem A. A., Li M., Berger R. J., Kapteijn F., and Makkee M. Chem. Eng. J., 2015, 263, 427 LINK https://doi.org/10.1016/j.cej.2014.10.104 [Google Scholar]
  18. Wilkinson S. K., van de Water L. G. A., Miller B., Simmons M. J. H., Stitt E. H., and Watson M. J. J. Catal., 2016, 337, 208 LINK https://doi.org/10.1016/j.jcat.2016.01.025 [Google Scholar]
  19. Weckhuysen B. M. Phys. Chem. Chem. Phys., 2003, 5, (20), 4351 LINK https://doi.org/10.1039/B309650P [Google Scholar]
  20. Foster A. J., and Lobo R. F. Chem. Soc. Rev., 2010, 39, (12), 4783 LINK https://doi.org/10.1039/C0CS00016G [Google Scholar]
  21. Raja R., Potter M. E., and Newland S. H. Chem. Commun., 2014, 50, (45), 5940 LINK https://doi.org/10.1039/C4CC00834K [Google Scholar]
  22. Weckhuysen B. M. Nat. Sci. Rev., 2015, 2, (2), 147 LINK https://doi.org/10.1093/nsr/nwv020 [Google Scholar]
  23. Weckhuysen B. M. Chem. Commun., 2002, (2), 97 LINK https://doi.org/10.1039/B107686H [Google Scholar]
  24. Weckhuysen B. M. Phys. Chem. Chem. Phys., 2003, 5, (20), vi LINK https://doi.org/10.1039/B309654H [Google Scholar]
  25. Bañares M. A. Catal. Today, 2005, 100, (1–2), 71 LINK https://doi.org/10.1016/j.cattod.2004.12.017 [Google Scholar]
  26. Bañares M. A., Guerrero-Pérez M. O., Fierro J. L. G., and Cortez G. G. J. Mater. Chem., 2002, 12, (11), 3337 LINK https://doi.org/10.1039/B204494C [Google Scholar]
  27. Espinosa-Alonso L., O’Brien M. G., Jacques S. D. M., Beale A. M., de Jong K. P., Barnes P., and Weckhuysen B. M. J. Am. Chem. Soc., 2009, 131, (46), 16932 LINK https://doi.org/10.1021/ja907329j [Google Scholar]
  28. Keturakis C. J., Zhu M., Gibson E. K., Daturi M., Tao F., Frenkel A. I., and Wachs I. E. ACS Catal., 2016, 6, (7), 4786 LINK https://doi.org/10.1021/acscatal.6b01281 [Google Scholar]
  29. Zhu M., Rocha T. C. R., Lunkenbein T., Knop-Gericke A., Schlögl R., and Wachs I. E. ACS Catal., 2016, 6, (7), 4455 LINK https://doi.org/10.1021/acscatal.6b00698 [Google Scholar]
  30. Lukashuk L., Föttinger K., Kolar E., Rameshan C., Teschner D., Hävecker M., Knop-Gericke A., Yigit N., Li H., McDermott E., Stöger-Pollach M., and Rupprechter G. J. Catal., 2016, 344, 1 LINK https://doi.org/10.1016/j.jcat.2016.09.002 [Google Scholar]
  31. Wezendonk T. A., Santos V. P., Nasalevich M. A., Warringa Q. S. E., Dugulan A. I., Chojecki A., Koeken A. C. J., Ruitenbeek M., Meima G., Islam H.-U., Sankar G., Makkee M., Kapteijn F., and Gascon J. ACS Catal., 2016, 6, (5), 3236 LINK https://doi.org/10.1021/acscatal.6b00426 [Google Scholar]
  32. Föttinger K., and Rupprechter G. Acc. Chem. Res., 2014, 47, (10), 3071 LINK https://doi.org/10.1021/ar500220v [Google Scholar]
  33. Brückner A., and Kondratenko E. Catal. Today, 2006, 113, (1–2), 16 LINK https://doi.org/10.1016/j.cattod.2005.11.006 [Google Scholar]
  34. Brandhorst M., Cristol S., Capron M., Dujardin C., Vezin H., Le bourdon G, and Payen E. Catal. Today, 2006, 113, (1–2), 34 LINK https://doi.org/10.1016/j.cattod.2005.11.008 [Google Scholar]
  35. Anderson J. A., Liu Z., and García M. F. Catal. Today, 2006, 113, (1–2), 25 LINK https://doi.org/10.1016/j.cattod.2005.11.007 [Google Scholar]
  36. ‘Station Bending Magnet 31: BM 31’, European Synchrotron Radiation Facility, Grenoble, France:http://www.esrf.eu/UsersAndScience/Experiments/CRG/BM01/bm01b (Accessed on 14th May 2018)
  37. Chiarello G. L., Nachtegaal M., Marchionni V., Quaroni L., and Ferri D. Rev. Sci. Instrum., 2014, 85, (7), 074102 LINK https://doi.org/10.1063/1.4890668 [Google Scholar]
  38. Tinnemans S. J., Mesu J. G., Kervinen K., Visser T., Nijhuis T. A., Beale A. M., Keller D. E., van der Eerden A. M. J., and Weckhuysen B. M. Catal. Today, 2006, 113, (1–2), 3 LINK https://doi.org/10.1016/j.cattod.2005.11.076 [Google Scholar]
  39. Vimont A., Thibault-Starzyk F., and Daturi M. Chem. Soc. Rev., 2010, 39, (12), 4928 LINK https://doi.org/10.1039/B919543M [Google Scholar]
  40. Chakrabarti A., Ford M. E., Gregory D., Hu R., Keturakis C. J., Lwin S., Tang Y., Yang Z., Zhu M., Bañares M. A., and Wachs I. E. Catal. Today, 2017, 283, 27 LINK https://doi.org/10.1016/j.cattod.2016.12.012 [Google Scholar]
  41. Dou J., Sun Z., Opalade A. A., Wang N., Fu W., and Tao F. Chem. Soc. Rev., 2017, 46, (7), 2001 LINK https://doi.org/10.1039/C6CS00931J [Google Scholar]
  42. Karim W., Kleibert A., Hartfelder U., Balan A., Gobrecht J., van Bokhoven J. A., and Ekinci Y. Sci. Rep., 2016, 6, 18818 LINK https://doi.org/10.1038/srep18818 [Google Scholar]
  43. Edwards M. A., Whittle D. M., Rhodes C., Ward A. M., Rohan D., Shannon M. D., Hutchings G. J., and Kiely C. J. Phys. Chem. Chem. Phys., 2002, 4, (15), 3902 LINK https://doi.org/10.1039/B202347B [Google Scholar]
  44. Marie O., Bazin P., Daturi M., ‘Vibrational Spectroscopic Studies of Catalytic Processes on Oxide Surfaces’, in “Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications”, eds. Yarwood J., Douthwaite R., and Duckett S. B. 42, The Royal Society of Chemistry, Cambridge, UK, 2012, pp. 34–103 LINK https://doi.org/10.1039/9781849732833-00034 [Google Scholar]
  45. Siegbahn K., Nording C. N., Fahlman A., Nordberg R., Hamrin K., Hedman J., Johansson G., Bermark T., Karlsson S. E., Lindgren I., and Lindberg B. “ESCA: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy”, Almquist and Wiksell, Uppsala, Sweden, 1967 [Google Scholar]
  46. Siegbahn K., and Edvarson K. Nucl. Phys., 1956, 1, (3), 137 LINK https://doi.org/10.1016/0029-5582(56)90015-3 [Google Scholar]
  47. Siegbahn H., and Siegbahn K. J. Electron Spectrosc. Relat. Phenom., 1973, 2, (3), 319 LINK https://doi.org/10.1016/0368-2048(73)80023-4 [Google Scholar]
  48. Siegbahn K. Rev. Mod. Phys., 1982, 54, (3), 709 LINK https://doi.org/10.1103/RevModPhys.54.709 [Google Scholar]
  49. Joyner R. W., Wyn Roberts M., and Yates K. Surf. Sci., 1979, 87, (2), 501 LINK https://doi.org/10.1016/0039-6028(79)90544-2 [Google Scholar]
  50. Knop-Gericke A., Kleimenov E., Hävecker M., Blume R., Teschner D., Zafeiratos S., Schlögl R., Bukhtiyarov V. I., Kaichev V. V., Prosvirin I. P., Nizovskii A. I., Bluhm H., Barinov A., Dudin P., and Kiskinova M. ‘X-Ray Photoelectron Spectroscopy for Investigation of Heterogeneous Catalytic Processes’, in “Advances in Catalysis”, Ch. 4, Vol. 52, Elsevier Inc, Amsterdam, The Netherlands, 2009, pp. 213–272 LINK https://doi.org/10.1016/S0360-0564(08)00004-7 [Google Scholar]
  51. ‘ISISS Station: Innovative Station for In Situ Spectroscopy’, Helmholtz Center Berlin for Materials and Energy, Berlin, Germany:https://www.helmholtz-berlin.de/pubbin/igama_output?modus=einzel&sprache=en&gid=1671 (Accessed on 15th May, 2018)
  52. Karslýođlu O., Bluhm H., ‘Ambient-Pressure X-ray Photoelectron Spectroscopy (APXPS)’, in “Operando Research in Heterogeneous Catalysis”, eds. Frenken J., and Groot I. Springer International Publishing, Switzerland, 2017, pp. 31–57 [Google Scholar]
  53. Salmeron M., and Schlögl R. Surf. Sci. Rep., 2008, 63, (4), 169 LINK https://doi.org/10.1016/j.surfrep.2008.01.001 [Google Scholar]
  54. Bluhm H., Hävecker M., Knop-Gericke A., Kiskinova M., Schlögl R., and Salmeron M. MRS Bull., 2007, 32, (12), 1022 LINK https://doi.org/10.1557/mrs2007.211 [Google Scholar]
  55. Starr D. E., Liu Z., Hävecker M., Knop-Gericke A., and Bluhm H. Chem. Soc. Rev., 2013, 42, (13), 5833 LINK https://doi.org/10.1039/C3CS60057B [Google Scholar]
  56. Tao F., Zhang S., Nguyen L., and Zhang X. Chem. Soc. Rev., 2012, 41, (24), 7980 LINK https://doi.org/10.1039/C2CS35185D [Google Scholar]
  57. Starr D. E., Bluhm H., Liu Z., Knop-Gericke A., Hävecker M., ‘Application of Ambient-Pressure X-ray Photoelectron Spectroscopy for the In-situ Investigation of Heterogeneous Catalytic Reactions’, in, In-Situ Characterization of Heterogeneous Catalysts”, eds. Rodriguez J. A., Hanson J. C., and Chupas P. J. John Wiley and Sons Inc, Hoboken, USA, 2013, pp. 315–343 LINK https://doi.org/10.1002/9781118355923.ch12 [Google Scholar]
  58. Wolfbeisser A., Klötzer B., Mayr L., Rameshan R., Zemlyanov D., Bernardi J., Fottinger K., and Rupprechter G. Catal. Sci. Technol., 2015, 5, (2), 967 LINK https://doi.org/10.1039/C4CY00988F [Google Scholar]
  59. Wolfbeisser A., Kovács G., Kozlov S. M., Föttinger K., Bernardi J., Klötzer B., Neyman K. M., and Rupprechter G. Catal. Today, 2017, 283, 134 LINK https://doi.org/10.1016/j.cattod.2016.04.022 [Google Scholar]
  60. Föttinger K., and Rupprechter G. Acc. Chem. Res., 2014, 47, (10), 3071 LINK https://doi.org/10.1021/ar500220v [Google Scholar]
  61. Föttinger K. Catal. Today, 2013, 208, 106 LINK https://doi.org/10.1016/j.cattod.2012.12.004 [Google Scholar]
  62. Föttinger K., van Bokhoven J. A., Nachtegaal M., and Rupprechter G. J. Phys. Chem. Lett., 2011, 2, (5), 428 LINK https://doi.org/10.1021/jz101751s [Google Scholar]
  63. Haghofer A., Föttinger K., Girgsdies F., Teschner D., Knop-Gericke A., Schlögl R., and Rupprechter G. J. Catal., 2012, 286, 13 LINK https://doi.org/10.1016/j.jcat.2011.10.007 [Google Scholar]
  64. Haghofer A., Ferri D., Föttinger K., and Rupprechter G. ACS Catal., 2012, 2, (11), 2305 LINK https://doi.org/10.1021/cs300480c [Google Scholar]
  65. Haghofer A., Föttinger K., Nachtegaal M., Armbrüster M., and Rupprechter G. J. Phys. Chem. C, 2012, 116, (41), 21816 LINK https://doi.org/10.1021/jp3061224 [Google Scholar]
  66. Fottinger K., ‘PdZn Based Catalysts: Connecting Electronic and Geometric Structure with Catalytic Performance’, in “Catalysis”, eds. Spivey J. J., Han Y.-F., and Dooley K. M. 25, The Royal Society of Chemistry, Cambridge, UK, 2013, pp. 77–117 LINK https://doi.org/10.1039/9781849737203-00077 [Google Scholar]
  67. Weilach C., Kozlov S. M., Holzapfel H. H., Föttinger K., Neyman K. M., and Rupprechter G. J. Phys. Chem. C, 2012, 116, (35), 18768 LINK https://doi.org/10.1021/jp304556s [Google Scholar]
  68. Armbrüster M., Behrens M., Föttinger K., Friedrich M., Gaudry É., Matam S. K., and Sharma H. R. Catal. Rev.: Sci. Eng., 2013, 55, (3), 289 LINK https://doi.org/10.1080/01614940.2013.796192 [Google Scholar]
  69. Li L., Zhang B., Kunkes E., Föttinger K., Armbrüster M., Su D. S., Wei W., Schlögl R., and Behrens M. ChemCatChem, 2012, 4, (11), 1764 LINK https://doi.org/10.1002/cctc.201200268 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651318X15234323420569
Loading
/content/journals/10.1595/205651318X15234323420569
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error