Skip to content
Volume 62, Issue 3
  • ISSN: 2056-5135


The improvement of catalytic processes is strongly related to the better performance of catalysts (higher conversion, selectivity, yield and stability). Additionally, the desired catalysts should meet the requirements of being low cost as well as environmentally and user-friendly. All these requirements can only be met by catalyst development and optimisation following new approaches in design and synthesis. This article discusses three major approaches in the design and development of catalysts: (a) high-throughput synthesis; (b) reaction kinetic studies; (c) and spectroscopy for studying catalysts under process conditions. In contrast to approaches based on high-throughput synthesis and reaction kinetic studies, an emerging approach of studying catalysts under process conditions using and spectroscopy and transferring the gained knowledge to design of new catalysts or the optimisation of existing catalysts is not yet widely employed in the chemical industry. In this article, examples of using or spectroscopy for studying the surface and bulk of catalysts under process conditions are discussed, with an overview of applying X-ray absorption spectroscopy (XAS), infrared (IR) spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) for monitoring the bulk and surface composition of PdZn/ZnO and PdGa/GaO methanol steam reforming catalysts.


Article metrics loading...

Loading full text...

Full text loading...



  1. Rodemerck U., Baerns M., ‘High-Throughput Experimentation in the Development of Heterogeneous Catalysts: Tools for Synthesis and Testing of Catalytic Materials and Data Analysis’, in “Basic Principles in Applied Catalysis”, ed. and Baerns M. 75, Springer-Verlag, Berlin, Germany, 2004, pp. 259–279 LINK [Google Scholar]
  2. Paciello R. A., Beller M., ‘High Throughput Screening of Homogeneous Catalysts: Selected Trends and Applications in Process Development’, in “Applied Homogeneous Catalysis with Organometallic Compounds”, 3rd Edn., eds. Cornils B., Hermann W. A., and Paciello R. 1–4, Ch. 16, Wiley-VCH Verlag GmbH and Co KGaA, Weinheim, Germany, 2018, pp. 1085–1096 LINK [Google Scholar]
  3. Yaccato K., Carhart R., Hagemeyer A., Herrmann M., Lesik A., Strasser P., Volpe A., Turner H., Weinberg H., Grasselli R. K., Brooks C. J., and Pigos J. M. Comb. Chem. High Throughput Screening, 2010, 13, (4), 318 LINK [Google Scholar]
  4. Hagemeyer A., Lesik A., Streukens G., Volpe A. F., Turner H. W., Weinberg W. H., Yaccato K., and Brooks C. Comb. Chem. High Throughput Screening, 2007, 10, (2), 135 LINK [Google Scholar]
  5. Cypes S., Hagemeyer A., Hogan Z., Lesik A., Streukens G., Volpe A. F., Weinberg W. H., and Yaccato K. Comb. Chem. High Throughput Screening, 2007, 10, (1), 25 LINK [Google Scholar]
  6. Wennemers H. Comb. Chem. High Throughput Screening, 2001, 4, (3), 273 LINK [Google Scholar]
  7. Zheng Z. Q., and Zhou X. P. Comb. Chem. High Throughput Screening, 2011, 14, (3), 147 LINK [Google Scholar]
  8. Fonseca M. H., and List B. Curr. Opin. Chem. Biol., 2004, 8, (3), 319 LINK [Google Scholar]
  9. Reyniers M.-F., and Marin G. B. Annu. Rev. Chem. Biomol. Eng., 2014, 5, 563 LINK [Google Scholar]
  10. Blackmond D. G. Angew. Chem. Int. Ed., 2005, 44, (28), 4302 LINK [Google Scholar]
  11. Langmuir I. Trans. Faraday Soc., 1922, 17, 621 LINK [Google Scholar]
  12. Berger R. J., Stitt E. H., Marin G. B., Kapteijn F., and Moulijn J. A. CATTECH, 2001, 5, (1), 36 LINK [Google Scholar]
  13. Weinberg W. H. Acc. Chem. Res., 1996, 29, (10), 479 LINK [Google Scholar]
  14. Doornkamp C., and Ponec V. J. Mol. Catal. A: Chem., 2000, 162, (1–2), 19 LINK [Google Scholar]
  15. van Veen A. C., Farrusseng D., Rebeilleau M., Decamp T., Holzwarth A., Schuurman Y., and Mirodatos C. J. Catal., 2003, 216, (1–2), 135 LINK [Google Scholar]
  16. Hakeem A. A., Vásquez R. S., Rajendran J., Li M., Berger R. J., Delgado J. J., Kapteijn F., and Makkee M. J. Catal., 2014, 313, 34 LINK [Google Scholar]
  17. Hakeem A. A., Li M., Berger R. J., Kapteijn F., and Makkee M. Chem. Eng. J., 2015, 263, 427 LINK [Google Scholar]
  18. Wilkinson S. K., van de Water L. G. A., Miller B., Simmons M. J. H., Stitt E. H., and Watson M. J. J. Catal., 2016, 337, 208 LINK [Google Scholar]
  19. Weckhuysen B. M. Phys. Chem. Chem. Phys., 2003, 5, (20), 4351 LINK [Google Scholar]
  20. Foster A. J., and Lobo R. F. Chem. Soc. Rev., 2010, 39, (12), 4783 LINK [Google Scholar]
  21. Raja R., Potter M. E., and Newland S. H. Chem. Commun., 2014, 50, (45), 5940 LINK [Google Scholar]
  22. Weckhuysen B. M. Nat. Sci. Rev., 2015, 2, (2), 147 LINK [Google Scholar]
  23. Weckhuysen B. M. Chem. Commun., 2002, (2), 97 LINK [Google Scholar]
  24. Weckhuysen B. M. Phys. Chem. Chem. Phys., 2003, 5, (20), vi LINK [Google Scholar]
  25. Bañares M. A. Catal. Today, 2005, 100, (1–2), 71 LINK [Google Scholar]
  26. Bañares M. A., Guerrero-Pérez M. O., Fierro J. L. G., and Cortez G. G. J. Mater. Chem., 2002, 12, (11), 3337 LINK [Google Scholar]
  27. Espinosa-Alonso L., O’Brien M. G., Jacques S. D. M., Beale A. M., de Jong K. P., Barnes P., and Weckhuysen B. M. J. Am. Chem. Soc., 2009, 131, (46), 16932 LINK [Google Scholar]
  28. Keturakis C. J., Zhu M., Gibson E. K., Daturi M., Tao F., Frenkel A. I., and Wachs I. E. ACS Catal., 2016, 6, (7), 4786 LINK [Google Scholar]
  29. Zhu M., Rocha T. C. R., Lunkenbein T., Knop-Gericke A., Schlögl R., and Wachs I. E. ACS Catal., 2016, 6, (7), 4455 LINK [Google Scholar]
  30. Lukashuk L., Föttinger K., Kolar E., Rameshan C., Teschner D., Hävecker M., Knop-Gericke A., Yigit N., Li H., McDermott E., Stöger-Pollach M., and Rupprechter G. J. Catal., 2016, 344, 1 LINK [Google Scholar]
  31. Wezendonk T. A., Santos V. P., Nasalevich M. A., Warringa Q. S. E., Dugulan A. I., Chojecki A., Koeken A. C. J., Ruitenbeek M., Meima G., Islam H.-U., Sankar G., Makkee M., Kapteijn F., and Gascon J. ACS Catal., 2016, 6, (5), 3236 LINK [Google Scholar]
  32. Föttinger K., and Rupprechter G. Acc. Chem. Res., 2014, 47, (10), 3071 LINK [Google Scholar]
  33. Brückner A., and Kondratenko E. Catal. Today, 2006, 113, (1–2), 16 LINK [Google Scholar]
  34. Brandhorst M., Cristol S., Capron M., Dujardin C., Vezin H., Le bourdon G, and Payen E. Catal. Today, 2006, 113, (1–2), 34 LINK [Google Scholar]
  35. Anderson J. A., Liu Z., and García M. F. Catal. Today, 2006, 113, (1–2), 25 LINK [Google Scholar]
  36. ‘Station Bending Magnet 31: BM 31’, European Synchrotron Radiation Facility, Grenoble, France: (Accessed on 14th May 2018)
  37. Chiarello G. L., Nachtegaal M., Marchionni V., Quaroni L., and Ferri D. Rev. Sci. Instrum., 2014, 85, (7), 074102 LINK [Google Scholar]
  38. Tinnemans S. J., Mesu J. G., Kervinen K., Visser T., Nijhuis T. A., Beale A. M., Keller D. E., van der Eerden A. M. J., and Weckhuysen B. M. Catal. Today, 2006, 113, (1–2), 3 LINK [Google Scholar]
  39. Vimont A., Thibault-Starzyk F., and Daturi M. Chem. Soc. Rev., 2010, 39, (12), 4928 LINK [Google Scholar]
  40. Chakrabarti A., Ford M. E., Gregory D., Hu R., Keturakis C. J., Lwin S., Tang Y., Yang Z., Zhu M., Bañares M. A., and Wachs I. E. Catal. Today, 2017, 283, 27 LINK [Google Scholar]
  41. Dou J., Sun Z., Opalade A. A., Wang N., Fu W., and Tao F. Chem. Soc. Rev., 2017, 46, (7), 2001 LINK [Google Scholar]
  42. Karim W., Kleibert A., Hartfelder U., Balan A., Gobrecht J., van Bokhoven J. A., and Ekinci Y. Sci. Rep., 2016, 6, 18818 LINK [Google Scholar]
  43. Edwards M. A., Whittle D. M., Rhodes C., Ward A. M., Rohan D., Shannon M. D., Hutchings G. J., and Kiely C. J. Phys. Chem. Chem. Phys., 2002, 4, (15), 3902 LINK [Google Scholar]
  44. Marie O., Bazin P., Daturi M., ‘Vibrational Spectroscopic Studies of Catalytic Processes on Oxide Surfaces’, in “Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications”, eds. Yarwood J., Douthwaite R., and Duckett S. B. 42, The Royal Society of Chemistry, Cambridge, UK, 2012, pp. 34–103 LINK [Google Scholar]
  45. Siegbahn K., Nording C. N., Fahlman A., Nordberg R., Hamrin K., Hedman J., Johansson G., Bermark T., Karlsson S. E., Lindgren I., and Lindberg B. “ESCA: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy”, Almquist and Wiksell, Uppsala, Sweden, 1967 [Google Scholar]
  46. Siegbahn K., and Edvarson K. Nucl. Phys., 1956, 1, (3), 137 LINK [Google Scholar]
  47. Siegbahn H., and Siegbahn K. J. Electron Spectrosc. Relat. Phenom., 1973, 2, (3), 319 LINK [Google Scholar]
  48. Siegbahn K. Rev. Mod. Phys., 1982, 54, (3), 709 LINK [Google Scholar]
  49. Joyner R. W., Wyn Roberts M., and Yates K. Surf. Sci., 1979, 87, (2), 501 LINK [Google Scholar]
  50. Knop-Gericke A., Kleimenov E., Hävecker M., Blume R., Teschner D., Zafeiratos S., Schlögl R., Bukhtiyarov V. I., Kaichev V. V., Prosvirin I. P., Nizovskii A. I., Bluhm H., Barinov A., Dudin P., and Kiskinova M. ‘X-Ray Photoelectron Spectroscopy for Investigation of Heterogeneous Catalytic Processes’, in “Advances in Catalysis”, Ch. 4, Vol. 52, Elsevier Inc, Amsterdam, The Netherlands, 2009, pp. 213–272 LINK [Google Scholar]
  51. ‘ISISS Station: Innovative Station for In Situ Spectroscopy’, Helmholtz Center Berlin for Materials and Energy, Berlin, Germany: (Accessed on 15th May, 2018)
  52. Karslýođlu O., Bluhm H., ‘Ambient-Pressure X-ray Photoelectron Spectroscopy (APXPS)’, in “Operando Research in Heterogeneous Catalysis”, eds. Frenken J., and Groot I. Springer International Publishing, Switzerland, 2017, pp. 31–57 [Google Scholar]
  53. Salmeron M., and Schlögl R. Surf. Sci. Rep., 2008, 63, (4), 169 LINK [Google Scholar]
  54. Bluhm H., Hävecker M., Knop-Gericke A., Kiskinova M., Schlögl R., and Salmeron M. MRS Bull., 2007, 32, (12), 1022 LINK [Google Scholar]
  55. Starr D. E., Liu Z., Hävecker M., Knop-Gericke A., and Bluhm H. Chem. Soc. Rev., 2013, 42, (13), 5833 LINK [Google Scholar]
  56. Tao F., Zhang S., Nguyen L., and Zhang X. Chem. Soc. Rev., 2012, 41, (24), 7980 LINK [Google Scholar]
  57. Starr D. E., Bluhm H., Liu Z., Knop-Gericke A., Hävecker M., ‘Application of Ambient-Pressure X-ray Photoelectron Spectroscopy for the In-situ Investigation of Heterogeneous Catalytic Reactions’, in, In-Situ Characterization of Heterogeneous Catalysts”, eds. Rodriguez J. A., Hanson J. C., and Chupas P. J. John Wiley and Sons Inc, Hoboken, USA, 2013, pp. 315–343 LINK [Google Scholar]
  58. Wolfbeisser A., Klötzer B., Mayr L., Rameshan R., Zemlyanov D., Bernardi J., Fottinger K., and Rupprechter G. Catal. Sci. Technol., 2015, 5, (2), 967 LINK [Google Scholar]
  59. Wolfbeisser A., Kovács G., Kozlov S. M., Föttinger K., Bernardi J., Klötzer B., Neyman K. M., and Rupprechter G. Catal. Today, 2017, 283, 134 LINK [Google Scholar]
  60. Föttinger K., and Rupprechter G. Acc. Chem. Res., 2014, 47, (10), 3071 LINK [Google Scholar]
  61. Föttinger K. Catal. Today, 2013, 208, 106 LINK [Google Scholar]
  62. Föttinger K., van Bokhoven J. A., Nachtegaal M., and Rupprechter G. J. Phys. Chem. Lett., 2011, 2, (5), 428 LINK [Google Scholar]
  63. Haghofer A., Föttinger K., Girgsdies F., Teschner D., Knop-Gericke A., Schlögl R., and Rupprechter G. J. Catal., 2012, 286, 13 LINK [Google Scholar]
  64. Haghofer A., Ferri D., Föttinger K., and Rupprechter G. ACS Catal., 2012, 2, (11), 2305 LINK [Google Scholar]
  65. Haghofer A., Föttinger K., Nachtegaal M., Armbrüster M., and Rupprechter G. J. Phys. Chem. C, 2012, 116, (41), 21816 LINK [Google Scholar]
  66. Fottinger K., ‘PdZn Based Catalysts: Connecting Electronic and Geometric Structure with Catalytic Performance’, in “Catalysis”, eds. Spivey J. J., Han Y.-F., and Dooley K. M. 25, The Royal Society of Chemistry, Cambridge, UK, 2013, pp. 77–117 LINK [Google Scholar]
  67. Weilach C., Kozlov S. M., Holzapfel H. H., Föttinger K., Neyman K. M., and Rupprechter G. J. Phys. Chem. C, 2012, 116, (35), 18768 LINK [Google Scholar]
  68. Armbrüster M., Behrens M., Föttinger K., Friedrich M., Gaudry É., Matam S. K., and Sharma H. R. Catal. Rev.: Sci. Eng., 2013, 55, (3), 289 LINK [Google Scholar]
  69. Li L., Zhang B., Kunkes E., Föttinger K., Armbrüster M., Su D. S., Wei W., Schlögl R., and Behrens M. ChemCatChem, 2012, 4, (11), 1764 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error