Skip to content
1887
Volume 62, Issue 4
  • ISSN: 2056-5135

Abstract

Atomic force microscopy (AFM) an analytical technique based on probing a surface or interface with a microcantilever, has become widely used in formulation engineering applications such as consumer goods, food and pharmaceutical products. Its application is not limited to imaging surface topography with nanometre spatial resolution, but is also useful for analysing material properties such as adhesion, hardness and surface chemistry. AFM offers unparalleled advantages over other microscopy techniques when studying colloidal systems. The minimum sample preparation requirements, observation and flexible operational conditions enable it to act as a versatile platform for surface analysis. In this review we will present some applications of AFM, and discuss how it has developed into a repertoire of techniques for analysing formulated products at the nanoscale under native conditions.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X15342609861275
2018-01-01
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/4/Zhang_16a_Imp.html?itemId=/content/journals/10.1595/205651318X15342609861275&mimeType=html&fmt=ahah

References

  1. H. Schubert, K. Ax, O. Behrend, Trends Food Sci. Technol., 2003, 14, (1–2), 9 LINK https://doi.org/10.1016/S0924-2244(02)00245-5 [Google Scholar]
  2. J. M. Álvarez Gómez, J. M. Rodríguez Patino, Ind. Eng. Chem. Res., 2006, 45, (22), 7510 LINK https://doi.org/10.1021/ie060924g [Google Scholar]
  3. A. L. Ellis, A. B. Norton, T. B. Mills, I. T. Norton, Food Hydrocoll., 2017, 73, 222 LINK https://doi.org/10.1016/j.foodhyd.2017.06.038 [Google Scholar]
  4. J. Santos, L. A. Trujillo-Cayado, N. Calero, M. C. Alfaro, J. Muñoz, J. Ind. Eng. Chem., 2016, 36, 90 LINK https://doi.org/10.1016/j.jiec.2016.01.024 [Google Scholar]
  5. B. Huang, M. Bates, X. Zhuang, Annu. Rev. Biochem., 2009, 78, (1), 993 LINK https://doi.org/10.1146/annurev.biochem.77.061906.092014 [Google Scholar]
  6. W. R. Bowen, N. Hilal, “Atomic Force Microscopy in Process Engineering: Introduction to AFM for Improved Processes and Products”, Elsevier Ltd, Oxford, UK, 2009, 304 pp LINK https://doi.org/10.1016/C2009-0-18509-4 [Google Scholar]
  7. G. Binnig, C. F. Quate, Ch. Gerber, Phys. Rev. Lett., 1986, 56, (9), 930 LINK https://doi.org/10.1103/PhysRevLett.56.930 [Google Scholar]
  8. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Appl. Phys. Lett., 1982, 40, (2), 178 LINK https://doi.org/10.1063/1.92999 [Google Scholar]
  9. D. P. Allison, N. P. Mortensen, C. J. Sullivan, M. J. Doktycz, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2010, 2, (6), 618 LINK https://doi.org/10.1002/wnan.104 [Google Scholar]
  10. “Atomic Force Microscopy: Biomedical Methods and Applications”, eds. P. C. Braga, D. Ricci, 242, Humana Press Inc, New Jersey, USA, 2004, 394 pp LINK https://doi.org/10.1385/1592596479 [Google Scholar]
  11. “Atomic Force Microscopy Investigations into Biology: From Cell to Protein”, ed. C. L. Frewin, InTech, Rijeka, Croatia, 2012, 354 pp LINK https://doi.org/10.5772/2092 [Google Scholar]
  12. “Atomic Force Microscopy in Liquid: Biological Applications”, eds. A. M. Baró, R. G. Reifenberger, Wiley-VCH Verlag and Co KGaA, Weinheim, Germany, 2012, 402 pp [Google Scholar]
  13. C. T. Gibson, G. S. Watson, S. Myhra, Wear, 1997, 213, (1–2), 72 LINK https://doi.org/10.1016/S0043-1648(97)00175-0 [Google Scholar]
  14. T. Fukuma, Y. Ueda, S. Yoshioka, H. Asakawa, Phys. Rev. Lett., 2010, 104, (1), 016101 LINK https://doi.org/10.1103/PhysRevLett.104.016101 [Google Scholar]
  15. R. Garcia, R. Proksch, Eur. Polym. J., 2013, 49, (8), 1897 LINK https://doi.org/10.1016/j.eurpolymj.2013.03.037 [Google Scholar]
  16. P. Trtik, J. Kaufmann, U. Volz, Cement Concrete Res., 2012, 42, (1), 215 LINK https://doi.org/10.1016/j.cemconres.2011.08.009 [Google Scholar]
  17. S. B. Kaemmer, ‘Introduction to Bruker’s ScanAsyst and PeakForce Tapping AFM Technology’, Application Note 133, Rev. A0, Bruker Corporation, Santa Barbara, USA, 2011, 12 pp LINK https://www.bruker.com/products/surface-and-dimensional-analysis/atomic-force-microscopes/afm-application-notes/an133-introduction-to-brukers-scanasyst-and-peakforce-tapping.html [Google Scholar]
  18. B. Cappella, G. Dietler, Surf. Sci. Rep., 1999, 34(1), 1 LINK https://doi.org/10.1016/S0167-5729(99)00003-5 [Google Scholar]
  19. H.-J. Butt, B. Cappella, M. Kappl, Surf. Sci. Rep., 2005, 59, (1–6), 1 LINK https://doi.org/10.1016/j.surfrep.2005.08.003 [Google Scholar]
  20. J. L. Hutter, J. Bechhoefer, Rev. Sci. Instrum., 1993, 64, (7), 1868 LINK https://doi.org/10.1063/1.1143970 [Google Scholar]
  21. C. M. Franz, A. Taubenberger, ‘AFM-Based Single-Cell Force Spectroscopy’, in “Atomic Force Microscopy in Liquid: Biological Applications”, eds. A. M. Baró, R. G. Reifenberger, Wiley-VCH Verlag and Co KGaA, Weinheim, Germany, 2012, pp. 307330 LINK https://doi.org/10.1002/9783527649808.ch12 [Google Scholar]
  22. J. E. Sader, J. W. M. Chon, P. Mulvaney, Rev. Sci. Instrum., 1999, 70, (10), 3967 LINK https://doi.org/10.1063/1.1150021 [Google Scholar]
  23. G. Y. Jing, Jun. Ma, D. P. Yu, J. Electron Microsc., 2007, 56, (1), 21 LINK https://doi.org/10.1093/jmicro/dfm001 [Google Scholar]
  24. Y. F. Dufrêne, T. Ando, R. Garcia, D. Alsteens, D. Martinez-Martin, A. Engel, C. Gerber, D. J. Müller, Nature Nanotechnol., 2017, 12, (4), 295 LINK https://doi.org/10.1038/nnano.2017.45 [Google Scholar]
  25. M. Lin, S. H. Tay, H. Yang, B. Yang, H. Li, Food Hydrocoll., 2017, 69, 440 LINK https://doi.org/10.1016/j.foodhyd.2017.03.014 [Google Scholar]
  26. M. Lin, S. H. Tay, H. Yang, B. Yang, H. Li, Food Chem., 2017, 229, 663 LINK https://doi.org/10.1016/j.foodchem.2017.02.132 [Google Scholar]
  27. L. C. Sow, Y. R. Peh, B. N. Pekerti, C. Fu, N. Bansal, H. Yang, LWT – Food Sci. Technol., 2017, 85, (Part A), 137 LINK https://doi.org/10.1016/j.lwt.2017.07.014 [Google Scholar]
  28. Y. Wang, T. H. Hahn, Compos. Sci. Technol., 2007, 67, (1), 92 LINK https://doi.org/10.1016/j.compscitech.2006.03.030 [Google Scholar]
  29. B. Pollard, M. B. Raschke, Beilstein J. Nanotechnol., 2016, 7, 605 LINK https://doi.org/10.3762/bjnano.7.53 [Google Scholar]
  30. M. Lorenzoni, L. Evangelio, S. Verhaeghe, C. Nicolet, C. Navarro, F. Pérez-Murano, Langmuir, 2015, 31, (42), 11630 LINK https://doi.org/10.1021/acs.langmuir.5b02595 [Google Scholar]
  31. L. Cano, D. H. Builes, S. Carrasco-Hernandez, J. Gutierrez, A. Tercjak, Polym. Test., 2017, 57, 38 LINK https://doi.org/10.1016/j.polymertesting.2016.11.009 [Google Scholar]
  32. M. Peruffo, M. M. Mbogoro, M. Adobes-Vidal, P. R. Unwin, J. Phys. Chem. C, 2016, 120, (22), 12100 LINK https://doi.org/10.1021/acs.jpcc.6b03560 [Google Scholar]
  33. C. E. Jones, J. V. Macpherson, P. R. Unwin, J. Phys. Chem. B, 2000, 104, (10), 2351 LINK https://doi.org/10.1021/jp993532e [Google Scholar]
  34. I. P. Seshadri, B. Bhushan, J. Colloid Interface Sci., 2008, 325, (2), 580 LINK https://doi.org/10.1016/j.jcis.2008.06.015 [Google Scholar]
  35. K. V. Hansen, Y. Wu, T. Jacobsen, M. B. Mogensen, L. T. Kuhn, Rev. Sci. Instrum., 2013, 84, (7), 073701 LINK https://doi.org/10.1063/1.4811848 [Google Scholar]
  36. K. V. Hansen, K. Norrman, T. Jacobsen, Ultramicroscopy, 2016, 170, 69 LINK https://doi.org/10.1016/j.ultramic.2016.07.019 [Google Scholar]
  37. J. Rheinlaender, N. A. Geisse, R. Proksch, T. E. Schäffer, Langmuir, 2011, 27, (2), 697 LINK https://doi.org/10.1021/la103275y [Google Scholar]
  38. A. Page, D. Perry, P. R. Unwin, Proc. Royal Soc. A, 2017, 473, (2200) LINK https://doi.org/10.1098/rspa.2016.0889 [Google Scholar]
  39. D. V. Vezenov, A. Noy, P. Ashby, J. Adhes. Sci. Technol., 2005, 19, (3–5), 313 LINK https://doi.org/10.1163/1568561054352702 [Google Scholar]
  40. M. Korte, S. Akari, H. Kühn, N. Baghdadli, H. Möhwald, G. S. Luengo, Langmuir, 2014, 30, (41), 12124 LINK https://doi.org/10.1021/la500461y [Google Scholar]
  41. E. Max, W. Häfner, F. W. Bartels, A. Sugiharto, C. Wood, A. Fery, Ultramicroscopy, 2010, 110, (4), 320 LINK https://doi.org/10.1016/j.ultramic.2010.01.003 [Google Scholar]
  42. S. Gourianova, N. Willenbacher, M. Kutschera, Langmuir, 2005, 21, (12), 5429 LINK https://doi.org/10.1021/la0501379 [Google Scholar]
  43. J. Ally, E. Vittorias, A. Amirfazli, M. Kappl, E. Bonaccurso, C. E. McNamee, H.-J. Butt, Langmuir, 2010, 26, (14), 11797 LINK https://doi.org/10.1021/la1010924 [Google Scholar]
  44. J. Bowen, D. Cheneler, J. W. Andrews, A. R. Avery, Z. Zhang, M. C. L. Ward, M. J. Adams, Langmuir, 2011, 27, (18), 11489 LINK https://doi.org/10.1021/la202060f [Google Scholar]
  45. M. B. Tejedor, N. Nordgren, M. Schuleit, S. Pazesh, G. Alderborn, A. Millqvist-Fureby, M. W. Rutland, Langmuir, 2017, 33, (4), 920 LINK https://doi.org/10.1021/acs.langmuir.6b03969 [Google Scholar]
  46. R. Jones, H. M. Pollock, D. Geldart, A. Verlinden-Luts, Ultramicroscopy, 2004, 100, (1–2), 59 LINK https://doi.org/10.1016/j.ultramic.2004.01.009 [Google Scholar]
  47. R. Jones, H. M. Pollock, J. A. S. Cleaver, C. S. Hodges, Langmuir, 2002, 18, (21), 8045 LINK https://doi.org/10.1021/la0259196 [Google Scholar]
  48. K. R Goode, J. Bowen, N. Akhtar, P. T. Robbins, P. J. Fryer, J. Food Eng., 2013, 118, (4), 371 LINK https://doi.org/10.1016/j.jfoodeng.2013.03.016 [Google Scholar]
  49. M. B. Tejedor, N. Nordgren, M. Schuleit, A. Millqvist-Fureby, M. W. Rutland, Langmuir, 2017, 33, (46), 13180 LINK https://doi.org/10.1021/acs.langmuir.7b02189 [Google Scholar]
  50. R. Álvarez-Asencio, V. Wallqvist, M. Kjellin, M. W. Rutland, A. Camacho, N. Nordgren, G. S. Luengo, J. Mech. Behav. Biomed. Mater., 2016, 54, 185 LINK https://doi.org/10.1016/j.jmbbm.2015.09.014 [Google Scholar]
  51. S. Mettu, C. Wu, R. R. Dagastine, J. Colloid Interface Sci., 2018, 517, 166 LINK https://doi.org/10.1016/j.jcis.2018.01.104 [Google Scholar]
  52. C. Shi, L. Zhang, L. Xie, X. Lu, Q. Liu, J. He, C. A. Mantilla, F. G. A. Van den berg, H. Zeng, Langmuir, 2017, 33, (5), 1265 LINK https://doi.org/10.1021/acs.langmuir.6b04265 [Google Scholar]
  53. J. Wu, F. Liu, G. Chen, X. Wu, D. Ma, Q. Liu, S. Xu, S. Huang, T. Chen, W. Zhang, H. Yang, J. Wang, Energy Fuels, 2016, 30, (1), 273 LINK https://doi.org/10.1021/acs.energyfuels.5b02614 [Google Scholar]
  54. J. Wu, F. Liu, H. Yang, S. Xu, Q. Xie, M. Zhang, T. Chen, G. Hu, J. Wang, J. Ind. Eng. Chem., 2017, 56, 342 LINK https://doi.org/10.1016/j.jiec.2017.07.030 [Google Scholar]
  55. B. Lorenz, M. Ceccato, M. P. Andersson, S. Dobberschütz, J. D. Rodriguez-Blanco, K. N. Dalby, T. Hassenkam, S. L. S. Stipp, Energy Fuels, 2017, 31, (5), 4670 LINK https://doi.org/10.1021/acs.energyfuels.6b02969 [Google Scholar]
  56. B. Sauerer, M. Stukan, W. Abdallah, M. H. Derkani, M. Fedorov, J. Buiting, Z. J. Zhang, J. Colloid Interface Sci., 2016, 472, 237 LINK https://doi.org/10.1016/j.jcis.2016.03.049 [Google Scholar]
  57. L. Xie, J. Wang, C. Shi, X. Cui, J. Huang, H. Zhang, Q. Liu, Q. Liu, H. Zeng, J. Phys. Chem. C., 2017, 121, (10), 5620 LINK https://doi.org/10.1021/acs.jpcc.6b12909 [Google Scholar]
  58. M. Österberg, J. J. Valle-Delgado, Curr. Opin. Colloid Interface Sci., 2017, 27, 33 LINK https://doi.org/10.1016/j.cocis.2016.09.005 [Google Scholar]
  59. R. D. Neuman, J. M. Berg, P. M. Claesson, Nordic Pulp Paper Res. J., 1993, 8, (1), 96 LINK https://doi.org/10.3183/NPPRJ-1993-08-01-p096-104 [Google Scholar]
  60. M. Turesson, T. Åkesson, J. Forsman, J. Colloid Interface Sci., 2009, 329, (1), 67 LINK https://doi.org/10.1016/j.jcis.2008.09.049 [Google Scholar]
  61. D. Wang, T. P. Russell, Macromolecules, 2018, 51, (1), 3 LINK https://doi.org/10.1021/acs.macromol.7b01459 [Google Scholar]
  62. A. Sethuraman, M. Han, R. S. Kane, G. Belfort, Langmuir, 2004, 20, (18), 7779 LINK https://doi.org/10.1021/la049454q [Google Scholar]
  63. L.-C. Xu, C. A. Siedlecki, Biomaterials, 2007, 28, (22), 3273 LINK https://doi.org/10.1016/j.biomaterials.2007.03.032 [Google Scholar]
  64. S. Kidoaki, T. Matsuda, Langmuir, 1999, 15, (22), 7639 LINK https://doi.org/10.1021/la990357k [Google Scholar]
  65. W. Zhang, H. Yang, F. Liu, T. Chen, G. Hu, D. Guo, O. Hou, X. Wu, Y. Su, J. Wang, RSC Adv., 2017, 7, (52), 32518 LINK https://doi.org/10.1039/C7RA04228K [Google Scholar]
  66. N. Kumar, J. Hahm, Langmuir, 2005, 21, (15), 6652 LINK https://doi.org/10.1021/la050331v [Google Scholar]
  67. N. Kumar, O. Parajuli, A. Gupta, J. Hahm, Langmuir, 2008, 24, (6), 2688 LINK https://doi.org/10.1021/la7022456 [Google Scholar]
  68. S. Song, K. Ravensbergen, A. Alabanza, D. Soldin, J. Hahm, ACS Nano, 2014, 8, (5), 5257 LINK https://doi.org/10.1021/nn5013397 [Google Scholar]
  69. S. Song, T. Xie, K. Ravensbergen, J. Hahm, Nanoscale, 2016, 8, (6), 3496 LINK https://doi.org/10.1039/C5NR07465G [Google Scholar]
  70. K. Sakai, T. Yoshimura, K. Esumi, Langmuir, 2003, 19, (4), 1203 LINK https://doi.org/10.1021/la026388o [Google Scholar]
  71. K. Sakai, T. Yoshimura, K. Esumi, Langmuir, 2002, 18, (10), 3993 LINK https://doi.org/10.1021/la011786x [Google Scholar]
  72. J.-F. Liu, G. Min, W. A. Ducker, Langmuir, 2001, 17, (16), 4895 LINK https://doi.org/10.1021/la0017936 [Google Scholar]
  73. J. An, X. Liu, A. Dedinaite, E. Korchagina, F. M. Winnik, P. M. Claesson, J. Colloid Interface Sci., 2017, 487, 88 LINK https://doi.org/10.1016/j.jcis.2016.10.021 [Google Scholar]
  74. A. Raj, M. Wang, C. Liu, L. Ali, N. G. Karlsson, P. M. Claesson, A. Dëdinaitë, J. Colloid Interface Sci., 2017, 495, 200 LINK https://doi.org/10.1016/j.jcis.2017.02.007 [Google Scholar]
  75. A. Naderi, J. Iruthayaraj, T. Pettersson, R. Makuška, P. M. Claesson, Langmuir, 2008, 24, (13), 6676 LINK https://doi.org/10.1021/la800089v [Google Scholar]
  76. N. Nordgren, M. W. Rutland, Nano Lett., 2009, 9, (8), 2984 LINK https://doi.org/10.1021/nl901411e [Google Scholar]
  77. N. Ishida, S. Biggs, Langmuir, 2007, 23, (22), 11083 LINK https://doi.org/10.1021/la701461b [Google Scholar]
  78. S. Gabriel, C. Jérôme, R. Jérôme, C.-A. Fustin, A. Pallandre, J. Plain, A. M. Jonas, A.-S. Duwez, J. Am. Chem. Soc., 2007, 129, (27), 8410 LINK https://doi.org/10.1021/ja071723m [Google Scholar]
  79. N. Willet, S. Gabriel, C. Jérôme, F. E. Du Prez, A.-S. Duwez, Soft Matter., 2014, 10, (37), 7256 LINK https://doi.org/10.1039/C4SM01266F [Google Scholar]
/content/journals/10.1595/205651318X15342609861275
Loading
/content/journals/10.1595/205651318X15342609861275
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test