Skip to content
Volume 62, Issue 4
  • ISSN: 2056-5135


Atomic force microscopy (AFM) an analytical technique based on probing a surface or interface with a microcantilever, has become widely used in formulation engineering applications such as consumer goods, food and pharmaceutical products. Its application is not limited to imaging surface topography with nanometre spatial resolution, but is also useful for analysing material properties such as adhesion, hardness and surface chemistry. AFM offers unparalleled advantages over other microscopy techniques when studying colloidal systems. The minimum sample preparation requirements, observation and flexible operational conditions enable it to act as a versatile platform for surface analysis. In this review we will present some applications of AFM, and discuss how it has developed into a repertoire of techniques for analysing formulated products at the nanoscale under native conditions.


Article metrics loading...

Loading full text...

Full text loading...



  1. Schubert H., Ax K., and Behrend O. Trends Food Sci. Technol., 2003, 14, (1–2), 9 LINK [Google Scholar]
  2. Álvarez Gómez J. M., and Rodríguez Patino J. M. Ind. Eng. Chem. Res., 2006, 45, (22), 7510 LINK [Google Scholar]
  3. Ellis A. L., Norton A. B., Mills T. B., and Norton I. T. Food Hydrocoll., 2017, 73, 222 LINK [Google Scholar]
  4. Santos J., Trujillo-Cayado L. A., Calero N., Alfaro M. C., and Muñoz J. J. Ind. Eng. Chem., 2016, 36, 90 LINK [Google Scholar]
  5. Huang B., Bates M., and Zhuang X. Annu. Rev. Biochem., 2009, 78, (1), 993 LINK [Google Scholar]
  6. Bowen W. R., and Hilal N. “Atomic Force Microscopy in Process Engineering: Introduction to AFM for Improved Processes and Products”, Elsevier Ltd, Oxford, UK, 2009, 304 pp LINK [Google Scholar]
  7. Binnig G., Quate C. F., and Gerber Ch. Phys. Rev. Lett., 1986, 56, (9), 930 LINK [Google Scholar]
  8. Binnig G., Rohrer H., Gerber Ch., and Weibel E. Appl. Phys. Lett., 1982, 40, (2), 178 LINK [Google Scholar]
  9. Allison D. P., Mortensen N. P., Sullivan C. J., and Doktycz M. J. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2010, 2, (6), 618 LINK [Google Scholar]
  10. “Atomic Force Microscopy: Biomedical Methods and Applications”, eds. Braga P. C., and Ricci D. 242, Humana Press Inc, New Jersey, USA, 2004, 394 pp LINK [Google Scholar]
  11. “Atomic Force Microscopy Investigations into Biology: From Cell to Protein”, ed. Frewin C. L. InTech, Rijeka, Croatia, 2012, 354 pp LINK [Google Scholar]
  12. “Atomic Force Microscopy in Liquid: Biological Applications”, eds. Baró A. M., and Reifenberger R. G. Wiley-VCH Verlag and Co KGaA, Weinheim, Germany, 2012, 402 pp [Google Scholar]
  13. Gibson C. T., Watson G. S., and Myhra S. Wear, 1997, 213, (1–2), 72 LINK [Google Scholar]
  14. Fukuma T., Ueda Y., Yoshioka S., and Asakawa H. Phys. Rev. Lett., 2010, 104, (1), 016101 LINK [Google Scholar]
  15. Garcia R., and Proksch R. Eur. Polym. J., 2013, 49, (8), 1897 LINK [Google Scholar]
  16. Trtik P., Kaufmann J., and Volz U. Cement Concrete Res., 2012, 42, (1), 215 LINK [Google Scholar]
  17. Kaemmer S. B. ‘Introduction to Bruker’s ScanAsyst and PeakForce Tapping AFM Technology’, Application Note 133, Rev. A0, Bruker Corporation, Santa Barbara, USA, 2011, 12 pp LINK [Google Scholar]
  18. Cappella B., and Dietler G. Surf. Sci. Rep., 1999, 34(1), 1 LINK [Google Scholar]
  19. Butt H.-J., Cappella B., and Kappl M. Surf. Sci. Rep., 2005, 59, (1–6), 1 LINK [Google Scholar]
  20. Hutter J. L., and Bechhoefer J. Rev. Sci. Instrum., 1993, 64, (7), 1868 LINK [Google Scholar]
  21. Franz C. M., Taubenberger A., ‘AFM-Based Single-Cell Force Spectroscopy’, in “Atomic Force Microscopy in Liquid: Biological Applications”, eds. Baró A. M., and Reifenberger R. G. Wiley-VCH Verlag and Co KGaA, Weinheim, Germany, 2012, pp. 307330 LINK [Google Scholar]
  22. Sader J. E., Chon J. W. M., and Mulvaney P. Rev. Sci. Instrum., 1999, 70, (10), 3967 LINK [Google Scholar]
  23. Jing G. Y., Ma Jun., and Yu D. P. J. Electron Microsc., 2007, 56, (1), 21 LINK [Google Scholar]
  24. Dufrêne Y. F., Ando T., Garcia R., Alsteens D., Martinez-Martin D., Engel A., Gerber C., and Müller D. J. Nature Nanotechnol., 2017, 12, (4), 295 LINK [Google Scholar]
  25. Lin M., Tay S. H., Yang H., Yang B., and Li H. Food Hydrocoll., 2017, 69, 440 LINK [Google Scholar]
  26. Lin M., Tay S. H., Yang H., Yang B., and Li H. Food Chem., 2017, 229, 663 LINK [Google Scholar]
  27. Sow L. C., Peh Y. R., Pekerti B. N., Fu C., Bansal N., and Yang H. LWT – Food Sci. Technol., 2017, 85, (Part A), 137 LINK [Google Scholar]
  28. Wang Y., and Hahn T. H. Compos. Sci. Technol., 2007, 67, (1), 92 LINK [Google Scholar]
  29. Pollard B., and Raschke M. B. Beilstein J. Nanotechnol., 2016, 7, 605 LINK [Google Scholar]
  30. Lorenzoni M., Evangelio L., Verhaeghe S., Nicolet C., Navarro C., and Pérez-Murano F. Langmuir, 2015, 31, (42), 11630 LINK [Google Scholar]
  31. Cano L., Builes D. H., Carrasco-Hernandez S., Gutierrez J., and Tercjak A. Polym. Test., 2017, 57, 38 LINK [Google Scholar]
  32. Peruffo M., Mbogoro M. M., Adobes-Vidal M., and Unwin P. R. J. Phys. Chem. C, 2016, 120, (22), 12100 LINK [Google Scholar]
  33. Jones C. E., Macpherson J. V., and Unwin P. R. J. Phys. Chem. B, 2000, 104, (10), 2351 LINK [Google Scholar]
  34. Seshadri I. P., and Bhushan B. J. Colloid Interface Sci., 2008, 325, (2), 580 LINK [Google Scholar]
  35. Hansen K. V., Wu Y., Jacobsen T., Mogensen M. B., and Kuhn L. T. Rev. Sci. Instrum., 2013, 84, (7), 073701 LINK [Google Scholar]
  36. Hansen K. V., Norrman K., and Jacobsen T. Ultramicroscopy, 2016, 170, 69 LINK [Google Scholar]
  37. Rheinlaender J., Geisse N. A., Proksch R., and Schäffer T. E. Langmuir, 2011, 27, (2), 697 LINK [Google Scholar]
  38. Page A., Perry D., and Unwin P. R. Proc. Royal Soc. A, 2017, 473, (2200) LINK [Google Scholar]
  39. Vezenov D. V., Noy A., and Ashby P. J. Adhes. Sci. Technol., 2005, 19, (3–5), 313 LINK [Google Scholar]
  40. Korte M., Akari S., Kühn H., Baghdadli N., Möhwald H., and Luengo G. S. Langmuir, 2014, 30, (41), 12124 LINK [Google Scholar]
  41. Max E., Häfner W., Bartels F. W., Sugiharto A., Wood C., and Fery A. Ultramicroscopy, 2010, 110, (4), 320 LINK [Google Scholar]
  42. Gourianova S., Willenbacher N., and Kutschera M. Langmuir, 2005, 21, (12), 5429 LINK [Google Scholar]
  43. Ally J., Vittorias E., Amirfazli A., Kappl M., Bonaccurso E., McNamee C. E., and Butt H.-J. Langmuir, 2010, 26, (14), 11797 LINK [Google Scholar]
  44. Bowen J., Cheneler D., Andrews J. W., Avery A. R., Zhang Z., Ward M. C. L., and Adams M. J. Langmuir, 2011, 27, (18), 11489 LINK [Google Scholar]
  45. Tejedor M. B., Nordgren N., Schuleit M., Pazesh S., Alderborn G., Millqvist-Fureby A., and Rutland M. W. Langmuir, 2017, 33, (4), 920 LINK [Google Scholar]
  46. Jones R., Pollock H. M., Geldart D., and Verlinden-Luts A. Ultramicroscopy, 2004, 100, (1–2), 59 LINK [Google Scholar]
  47. Jones R., Pollock H. M., Cleaver J. A. S., and Hodges C. S. Langmuir, 2002, 18, (21), 8045 LINK [Google Scholar]
  48. Goode K. R, Bowen J., Akhtar N., Robbins P. T., and Fryer P. J. J. Food Eng., 2013, 118, (4), 371 LINK [Google Scholar]
  49. Tejedor M. B., Nordgren N., Schuleit M., Millqvist-Fureby A., and Rutland M. W. Langmuir, 2017, 33, (46), 13180 LINK [Google Scholar]
  50. Álvarez-Asencio R., Wallqvist V., Kjellin M., Rutland M. W., Camacho A., Nordgren N., and Luengo G. S. J. Mech. Behav. Biomed. Mater., 2016, 54, 185 LINK [Google Scholar]
  51. Mettu S., Wu C., and Dagastine R. R. J. Colloid Interface Sci., 2018, 517, 166 LINK [Google Scholar]
  52. Shi C., Zhang L., Xie L., Lu X., Liu Q., He J., Mantilla C. A., Van den berg F. G. A., and Zeng H. Langmuir, 2017, 33, (5), 1265 LINK [Google Scholar]
  53. Wu J., Liu F., Chen G., Wu X., Ma D., Liu Q., Xu S., Huang S., Chen T., Zhang W., Yang H., and Wang J. Energy Fuels, 2016, 30, (1), 273 LINK [Google Scholar]
  54. Wu J., Liu F., Yang H., Xu S., Xie Q., Zhang M., Chen T., Hu G., and Wang J. J. Ind. Eng. Chem., 2017, 56, 342 LINK [Google Scholar]
  55. Lorenz B., Ceccato M., Andersson M. P., Dobberschütz S., Rodriguez-Blanco J. D., Dalby K. N., Hassenkam T., and Stipp S. L. S. Energy Fuels, 2017, 31, (5), 4670 LINK [Google Scholar]
  56. Sauerer B., Stukan M., Abdallah W., Derkani M. H., Fedorov M., Buiting J., and Zhang Z. J. J. Colloid Interface Sci., 2016, 472, 237 LINK [Google Scholar]
  57. Xie L., Wang J., Shi C., Cui X., Huang J., Zhang H., Liu Q., Liu Q., and Zeng H. J. Phys. Chem. C., 2017, 121, (10), 5620 LINK [Google Scholar]
  58. Österberg M., and Valle-Delgado J. J. Curr. Opin. Colloid Interface Sci., 2017, 27, 33 LINK [Google Scholar]
  59. Neuman R. D., Berg J. M., and Claesson P. M. Nordic Pulp Paper Res. J., 1993, 8, (1), 96 LINK [Google Scholar]
  60. Turesson M., Åkesson T., and Forsman J. J. Colloid Interface Sci., 2009, 329, (1), 67 LINK [Google Scholar]
  61. Wang D., and Russell T. P. Macromolecules, 2018, 51, (1), 3 LINK [Google Scholar]
  62. Sethuraman A., Han M., Kane R. S., and Belfort G. Langmuir, 2004, 20, (18), 7779 LINK [Google Scholar]
  63. Xu L.-C., and Siedlecki C. A. Biomaterials, 2007, 28, (22), 3273 LINK [Google Scholar]
  64. Kidoaki S., and Matsuda T. Langmuir, 1999, 15, (22), 7639 LINK [Google Scholar]
  65. Zhang W., Yang H., Liu F., Chen T., Hu G., Guo D., Hou O., Wu X., Su Y., and Wang J. RSC Adv., 2017, 7, (52), 32518 LINK [Google Scholar]
  66. Kumar N., and Hahm J. Langmuir, 2005, 21, (15), 6652 LINK [Google Scholar]
  67. Kumar N., Parajuli O., Gupta A., and Hahm J. Langmuir, 2008, 24, (6), 2688 LINK [Google Scholar]
  68. Song S., Ravensbergen K., Alabanza A., Soldin D., and Hahm J. ACS Nano, 2014, 8, (5), 5257 LINK [Google Scholar]
  69. Song S., Xie T., Ravensbergen K., and Hahm J. Nanoscale, 2016, 8, (6), 3496 LINK [Google Scholar]
  70. Sakai K., Yoshimura T., and Esumi K. Langmuir, 2003, 19, (4), 1203 LINK [Google Scholar]
  71. Sakai K., Yoshimura T., and Esumi K. Langmuir, 2002, 18, (10), 3993 LINK [Google Scholar]
  72. Liu J.-F., Min G., and Ducker W. A. Langmuir, 2001, 17, (16), 4895 LINK [Google Scholar]
  73. An J., Liu X., Dedinaite A., Korchagina E., Winnik F. M., and Claesson P. M. J. Colloid Interface Sci., 2017, 487, 88 LINK [Google Scholar]
  74. Raj A., Wang M., Liu C., Ali L., Karlsson N. G., Claesson P. M., and Dëdinaitë A. J. Colloid Interface Sci., 2017, 495, 200 LINK [Google Scholar]
  75. Naderi A., Iruthayaraj J., Pettersson T., Makuška R., and Claesson P. M. Langmuir, 2008, 24, (13), 6676 LINK [Google Scholar]
  76. Nordgren N., and Rutland M. W. Nano Lett., 2009, 9, (8), 2984 LINK [Google Scholar]
  77. Ishida N., and Biggs S. Langmuir, 2007, 23, (22), 11083 LINK [Google Scholar]
  78. Gabriel S., Jérôme C., Jérôme R., Fustin C.-A., Pallandre A., Plain J., Jonas A. M., and Duwez A.-S. J. Am. Chem. Soc., 2007, 129, (27), 8410 LINK [Google Scholar]
  79. Willet N., Gabriel S., Jérôme C., Du Prez F. E., and Duwez A.-S. Soft Matter., 2014, 10, (37), 7256 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error