Skip to content
1887
Volume 62, Issue 4
  • ISSN: 2056-5135

Abstract

Oxidative destruction of organic compounds in water streams could significantly reduce environmental effects associated with discharging waste. We report the development of a process to oxidise phenol in aqueous solutions, a model for waste stream contaminants, using Fenton’s reactions combined with synthesised hydrogen peroxide (HO). Bifunctional palladium-iron supported catalysts, where Pd is responsible for HO synthesis while Fe ensures the production of reactive oxygen species required for the degradation of phenol to less toxic species is reported. A comparison is made between generated and commercial HO and the effect of phenol degradation products on catalyst stability is explored.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X15302623075041
2018-01-01
2024-03-02
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/4/Lewis_16a_Imp.html?itemId=/content/journals/10.1595/205651318X15302623075041&mimeType=html&fmt=ahah

References

  1. Kazemi P., Peydayesh M., Bandegi A., Mohammadi T., and Bakhtiari O. Chem. Eng. Res. Des., 2014, 92, (2), 375 LINK https://doi.org/10.1016/j.cherd.2013.07.023 [Google Scholar]
  2. Mohammadi S., Kargari A., Sanaeepur H., Abbassian K., Najafi A., and Mofarrah E. Desalin. Water Treat., 2015, 53, (8), 2215 LINK https://doi.org/10.1080/19443994.2014.883327 [Google Scholar]
  3. Gupta G., and Rao V. J. Environ. Sci. Health, Part A: Environ. Sci. Eng., 1998, 33, (1), 83 LINK https://doi.org/10.1080/10934529809376719 [Google Scholar]
  4. Dhakshinamoorthy A., Navalon S., Alvaro M., and Garcia H. ChemSusChem, 2012, 5, (1), 46 LINK https://doi.org/10.1002/cssc.201100517 [Google Scholar]
  5. Kavitha V., and Palanivelu K. Chemosphere, 2004, 55, (9), 1235 LINK https://doi.org/10.1016/j.chemosphere.2003.12.022 [Google Scholar]
  6. Araña J., Tello Rendón E., Doña Rodrýìguez J. M., Herrera Melián J. A., González Dýìaz O., and Pérez Peña J. Chemosphere, 2001, 44, (5), 1017 LINK https://doi.org/10.1016/S0045-6535(00)00359-3 [Google Scholar]
  7. Iurascu B., Siminiceanu I., Vione D., Vicente M. A., and Gil A. Water Res., 2009, 43, (5), 1313 LINK https://doi.org/10.1016/j.watres.2008.12.032 [Google Scholar]
  8. Wang N., Zheng T., Zhang G., and Wang P. J. Environ. Chem. Eng., 2016, 4, (1), 762 LINK https://doi.org/10.1016/j.jece.2015.12.016 [Google Scholar]
  9. Bremner D. H., Burgess A. E., Houllemare D., and Namkung K.-C. Appl. Catal. B: Environ., 2006, 63, (1–2), 15 LINK https://doi.org/10.1016/j.apcatb.2005.09.005 [Google Scholar]
  10. Esplugas S., Giménez J., Contreras S., Pascual E., and Rodrýìguez M. Water Res., 2002, 36, (4), 1034 LINK https://doi.org/10.1016/S0043-1354(01)00301-3 [Google Scholar]
  11. Pignatello J. J., Oliveros E., and MacKay A. Crit. Rev. Environ. Sci. Technol., 2006, 36, (1), 1 LINK https://doi.org/10.1080/10643380500326564 [Google Scholar]
  12. Fenton H. J. H. J. Chem. Soc., Trans., 1894, 65, 899 LINK https://doi.org/10.1039/CT8946500899 [Google Scholar]
  13. Nidheesh P. V., Gandhimathi R., and Ramesh S. T. Environ. Sci. Pollut. Res., 2013, 20, (4), 2099 LINK https://doi.org/10.1007/s11356-012-1385-z [Google Scholar]
  14. Feng J., Hu X., Yue P. L., Zhu H. Y., and Lu G. Q. Ind. Eng. Chem. Res., 2003, 42, (10), 2058 LINK https://doi.org/10.1021/ie0207010 [Google Scholar]
  15. Chand R., Ince N. H., Gogate P. R., and Bremner D. H. Sep. Purif. Technol., 2009, 67, (1), 103 LINK https://doi.org/10.1016/j.seppur.2009.03.035 [Google Scholar]
  16. Pang S.-Y., Jiang J., and Ma J. Environ. Sci. Technol., 2011, 45, (1), 307 LINK https://doi.org/10.1021/es102401d [Google Scholar]
  17. Bossmann S. H., Oliveros E., Göb S., Kantor M., Göppert A., Lei L., Yue P. L., and Braun A. M. Water Sci. Technol., 2001, 44, (5), 257 LINK https://doi.org/10.2166/wst.2001.0300 [Google Scholar]
  18. Georgi A., Gonzalez-Olmos R., Köhler R., and Kopinke F.-D. Sep. Sci. Technol., 2010, 45, (11), 1579 LINK https://doi.org/10.1080/01496395.2010.487466 [Google Scholar]
  19. Feng J., Hu X., Yue P. L., Zhu H. Y., and Lu G. Q. Water Res., 2003, 37, (15), 3776 LINK https://doi.org/10.1016/S0043-1354(03)00268-9 [Google Scholar]
  20. Yue P. L., Feng J. Y., and Hu X. Water Sci. Technol., 2004, 49, (4), 85 LINK https://doi.org/10.2166/wst.2004.0228 [Google Scholar]
  21. Feng J., Hu X., and Yue P. L. Environ. Sci. Technol., 2004, 38, (1), 269 LINK https://doi.org/10.1021/es034515c [Google Scholar]
  22. Martínez F., Calleja G., Melero J. A., and Molina R. Appl. Catal. B: Environ., 2005, 60, (3–4), 181 LINK https://doi.org/10.1016/j.apcatb.2005.03.004 [Google Scholar]
  23. Liou R.-M., Chen S.-H., Hung M.-Y., Hsu C.-S., and Lai J.-Y. Chemosphere, 2005, 59, (1), 117 LINK https://doi.org/10.1016/j.chemosphere.2004.09.080 [Google Scholar]
  24. Queirós S., Morais V., Rodrigues C. S. D., Maldonado-Hódar F. J., and Madeira L. M. Sep. Purif. Technol., 2015, 141, 235 LINK https://doi.org/10.1016/j.seppur.2014.11.046 [Google Scholar]
  25. Yan Y., Wu X., and Zhang H. Sep. Purif. Technol., 2016, 171, 52 LINK https://doi.org/10.1016/j.seppur.2016.06.047 [Google Scholar]
  26. Devlin H. R., and Harris I. J. Ind. Eng. Chem. Fundamen., 1984, 23, (4), 387 LINK https://doi.org/10.1021/i100016a002 [Google Scholar]
  27. Santos A., Yustos P., Quintanilla A., García-Ochoa F., Casas J. A., and Rodríguez J. J. Environ. Sci. Technol., 2004, 38, (1), 133 LINK https://doi.org/10.1021/es030476t [Google Scholar]
  28. Leonard S., Gannett P. M., Rojanasakul Y., Schwegler-Berry D., Castranova V., Vallyathan V., and Shi X. J. Inorg. Biochem., 1998, 70, (3–4), 239 LINK https://doi.org/10.1016/S0162-0134(98)10022-3 [Google Scholar]
  29. Salem I. A., and El-Maazawi M. S. Chemosphere, 2000, 41, (8), 1173 LINK https://doi.org/10.1016/S0045-6535(00)00009-6 [Google Scholar]
  30. Jiang S., Zhang H., and Yan Y. Catal. Commun., 2015, 71, 28 LINK https://doi.org/10.1016/j.catcom.2015.08.006 [Google Scholar]
  31. Jiang S., Zhang H., and Yan Y. Sep. Purif. Technol., 2018, 190, 243 LINK https://doi.org/10.1016/j.seppur.2017.09.001 [Google Scholar]
  32. Inchaurrondo N. S., Massa P., Fenoglio R., Font J., and Haure P. Chem. Eng. J., 2012, 198–199, 426 LINK https://doi.org/10.1016/j.cej.2012.05.103 [Google Scholar]
  33. Watts R. J., Sarasa J., Loge F. J., and Teel A. L. J. Environ. Eng., 2005, 131, (1), 158 LINK https://doi.org/10.1061/(ASCE)0733-9372(2005)131:1(158) [Google Scholar]
  34. Rokhina E. V., Lahtinen M., Nolte M. C. M., and Virkutyte J. Appl. Catal. B: Environ., 2009, 87, (3–4), 162 LINK https://doi.org/10.1016/j.apcatb.2008.09.006 [Google Scholar]
  35. Triki M., Contreras S., and Medina F. J. Sol-Gel Sci. Technol., 2014, 71, (1), 96 LINK https://doi.org/10.1007/s10971-014-3333-5 [Google Scholar]
  36. Liu Y., Yu Z., Hou Y., Peng Z., Wang L., Gong Z., Zhu J., and Su D. Catal. Commun., 2016, 86, 63 LINK https://doi.org/10.1016/j.catcom.2016.08.012 [Google Scholar]
  37. Qin Y., Sun M., Liu H., and Qu J. Electrochim. Acta, 2015, 186, 328 LINK https://doi.org/10.1016/j.electacta.2015.10.122 [Google Scholar]
  38. Yalfani M. S., Contreras S., Medina F., and Sueiras J. Appl. Catal. B: Environ., 2009, 89, (3–4), 519 LINK https://doi.org/10.1016/j.apcatb.2009.01.007 [Google Scholar]
  39. Yalfani M. S., Contreras S., Medina F., and Sueiras J. E. J. Hazard. Mater., 2011, 192, (1), 340 LINK https://doi.org/10.1016/j.jhazmat.2011.05.029 [Google Scholar]
  40. Yalfani M. S., Georgi A., Contreras S., Medina F., and Kopinke F.-D. Appl. Catal. B: Environ., 2011, 104, (1–2), 161 LINK https://doi.org/10.1016/j.apcatb.2011.02.017 [Google Scholar]
  41. Edwards J. K., Solsona B. E., Landon P., Carley A. F., Herzing A., Kiely C. J., and Hutchings G. J. J. Catal., 2005, 236, (1), 69 LINK https://doi.org/10.1016/j.jcat.2005.09.015 [Google Scholar]
  42. Edwards J. K., and Hutchings G. J. Angew. Chem. Int. Ed., 2008, 47, (48), 9192 LINK https://doi.org/10.1002/anie.200802818 [Google Scholar]
  43. Costa R. C. C., Lelis M. F. F., Oliveira L. C. A., Fabris J. D., Ardisson J. D., Rios R. R. V. A., Silva C. N., and Lago R. M. J. Hazard. Mater., 2006, 129, (1–3), 171 LINK https://doi.org/10.1016/j.jhazmat.2005.08.028 [Google Scholar]
  44. Pham A. N., Xing G., Miller C. J., and Waite T. D. J. Catal., 2013, 301, 54 LINK https://doi.org/10.1016/j.jcat.2013.01.025 [Google Scholar]
  45. Bokare A. D., and Choi W. J. Hazard. Mater., 2014, 275, 121 LINK https://doi.org/10.1016/j.jhazmat.2014.04.054 [Google Scholar]
  46. Choudhary V. R., Samanta C., and Gaikwad A. G. Chem. Commun., 2004, (18), 2054 LINK https://doi.org/10.1039/B405415F [Google Scholar]
  47. Choudhary V. R., Samanta C., and Jana P. Ind. Eng. Chem. Res., 2007, 46, (10), 3237 LINK https://doi.org/10.1021/ie0608408 [Google Scholar]
  48. Georgi A., Velasco Polo M., Crincoli K., Mackenzie K., and Kopinke F.-D. Environ. Sci. Technol., 2016, 50, (11), 5882 LINK https://doi.org/10.1021/acs.est.6b01049 [Google Scholar]
  49. Babuponnusami A., and Muthukumar K. J. Environ. Chem. Eng., 2014, 2, (1), 557 LINK https://doi.org/10.1016/j.jece.2013.10.011 [Google Scholar]
  50. Szpyrkowicz L., Juzzolino C., and Kaul S. N. Water Res., 2001, 35, (9), 2129 LINK https://doi.org/10.1016/S0043-1354(00)00487-5 [Google Scholar]
  51. Rivas F. J., Beltrán F. J., Frades J., and Buxeda P. Water Res., 2001, 35, (2), 387 LINK https://doi.org/10.1016/S0043-1354(00)00285-2 [Google Scholar]
  52. Wegner P. C. ‘Hydrogen Peroxide Stabilizer and Resulting Product and Applications’, US Patent Appl., 2003/151,024 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651318X15302623075041
Loading
/content/journals/10.1595/205651318X15302623075041
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error