Skip to content
Volume 62, Issue 4
  • ISSN: 2056-5135


Oxidative destruction of organic compounds in water streams could significantly reduce environmental effects associated with discharging waste. We report the development of a process to oxidise phenol in aqueous solutions, a model for waste stream contaminants, using Fenton’s reactions combined with synthesised hydrogen peroxide (HO). Bifunctional palladium-iron supported catalysts, where Pd is responsible for HO synthesis while Fe ensures the production of reactive oxygen species required for the degradation of phenol to less toxic species is reported. A comparison is made between generated and commercial HO and the effect of phenol degradation products on catalyst stability is explored.


Article metrics loading...

Loading full text...

Full text loading...



  1. Kazemi P., Peydayesh M., Bandegi A., Mohammadi T., and Bakhtiari O. Chem. Eng. Res. Des., 2014, 92, (2), 375 LINK [Google Scholar]
  2. Mohammadi S., Kargari A., Sanaeepur H., Abbassian K., Najafi A., and Mofarrah E. Desalin. Water Treat., 2015, 53, (8), 2215 LINK [Google Scholar]
  3. Gupta G., and Rao V. J. Environ. Sci. Health, Part A: Environ. Sci. Eng., 1998, 33, (1), 83 LINK [Google Scholar]
  4. Dhakshinamoorthy A., Navalon S., Alvaro M., and Garcia H. ChemSusChem, 2012, 5, (1), 46 LINK [Google Scholar]
  5. Kavitha V., and Palanivelu K. Chemosphere, 2004, 55, (9), 1235 LINK [Google Scholar]
  6. Araña J., Tello Rendón E., Doña Rodrýìguez J. M., Herrera Melián J. A., González Dýìaz O., and Pérez Peña J. Chemosphere, 2001, 44, (5), 1017 LINK [Google Scholar]
  7. Iurascu B., Siminiceanu I., Vione D., Vicente M. A., and Gil A. Water Res., 2009, 43, (5), 1313 LINK [Google Scholar]
  8. Wang N., Zheng T., Zhang G., and Wang P. J. Environ. Chem. Eng., 2016, 4, (1), 762 LINK [Google Scholar]
  9. Bremner D. H., Burgess A. E., Houllemare D., and Namkung K.-C. Appl. Catal. B: Environ., 2006, 63, (1–2), 15 LINK [Google Scholar]
  10. Esplugas S., Giménez J., Contreras S., Pascual E., and Rodrýìguez M. Water Res., 2002, 36, (4), 1034 LINK [Google Scholar]
  11. Pignatello J. J., Oliveros E., and MacKay A. Crit. Rev. Environ. Sci. Technol., 2006, 36, (1), 1 LINK [Google Scholar]
  12. Fenton H. J. H. J. Chem. Soc., Trans., 1894, 65, 899 LINK [Google Scholar]
  13. Nidheesh P. V., Gandhimathi R., and Ramesh S. T. Environ. Sci. Pollut. Res., 2013, 20, (4), 2099 LINK [Google Scholar]
  14. Feng J., Hu X., Yue P. L., Zhu H. Y., and Lu G. Q. Ind. Eng. Chem. Res., 2003, 42, (10), 2058 LINK [Google Scholar]
  15. Chand R., Ince N. H., Gogate P. R., and Bremner D. H. Sep. Purif. Technol., 2009, 67, (1), 103 LINK [Google Scholar]
  16. Pang S.-Y., Jiang J., and Ma J. Environ. Sci. Technol., 2011, 45, (1), 307 LINK [Google Scholar]
  17. Bossmann S. H., Oliveros E., Göb S., Kantor M., Göppert A., Lei L., Yue P. L., and Braun A. M. Water Sci. Technol., 2001, 44, (5), 257 LINK [Google Scholar]
  18. Georgi A., Gonzalez-Olmos R., Köhler R., and Kopinke F.-D. Sep. Sci. Technol., 2010, 45, (11), 1579 LINK [Google Scholar]
  19. Feng J., Hu X., Yue P. L., Zhu H. Y., and Lu G. Q. Water Res., 2003, 37, (15), 3776 LINK [Google Scholar]
  20. Yue P. L., Feng J. Y., and Hu X. Water Sci. Technol., 2004, 49, (4), 85 LINK [Google Scholar]
  21. Feng J., Hu X., and Yue P. L. Environ. Sci. Technol., 2004, 38, (1), 269 LINK [Google Scholar]
  22. Martínez F., Calleja G., Melero J. A., and Molina R. Appl. Catal. B: Environ., 2005, 60, (3–4), 181 LINK [Google Scholar]
  23. Liou R.-M., Chen S.-H., Hung M.-Y., Hsu C.-S., and Lai J.-Y. Chemosphere, 2005, 59, (1), 117 LINK [Google Scholar]
  24. Queirós S., Morais V., Rodrigues C. S. D., Maldonado-Hódar F. J., and Madeira L. M. Sep. Purif. Technol., 2015, 141, 235 LINK [Google Scholar]
  25. Yan Y., Wu X., and Zhang H. Sep. Purif. Technol., 2016, 171, 52 LINK [Google Scholar]
  26. Devlin H. R., and Harris I. J. Ind. Eng. Chem. Fundamen., 1984, 23, (4), 387 LINK [Google Scholar]
  27. Santos A., Yustos P., Quintanilla A., García-Ochoa F., Casas J. A., and Rodríguez J. J. Environ. Sci. Technol., 2004, 38, (1), 133 LINK [Google Scholar]
  28. Leonard S., Gannett P. M., Rojanasakul Y., Schwegler-Berry D., Castranova V., Vallyathan V., and Shi X. J. Inorg. Biochem., 1998, 70, (3–4), 239 LINK [Google Scholar]
  29. Salem I. A., and El-Maazawi M. S. Chemosphere, 2000, 41, (8), 1173 LINK [Google Scholar]
  30. Jiang S., Zhang H., and Yan Y. Catal. Commun., 2015, 71, 28 LINK [Google Scholar]
  31. Jiang S., Zhang H., and Yan Y. Sep. Purif. Technol., 2018, 190, 243 LINK [Google Scholar]
  32. Inchaurrondo N. S., Massa P., Fenoglio R., Font J., and Haure P. Chem. Eng. J., 2012, 198–199, 426 LINK [Google Scholar]
  33. Watts R. J., Sarasa J., Loge F. J., and Teel A. L. J. Environ. Eng., 2005, 131, (1), 158 LINK [Google Scholar]
  34. Rokhina E. V., Lahtinen M., Nolte M. C. M., and Virkutyte J. Appl. Catal. B: Environ., 2009, 87, (3–4), 162 LINK [Google Scholar]
  35. Triki M., Contreras S., and Medina F. J. Sol-Gel Sci. Technol., 2014, 71, (1), 96 LINK [Google Scholar]
  36. Liu Y., Yu Z., Hou Y., Peng Z., Wang L., Gong Z., Zhu J., and Su D. Catal. Commun., 2016, 86, 63 LINK [Google Scholar]
  37. Qin Y., Sun M., Liu H., and Qu J. Electrochim. Acta, 2015, 186, 328 LINK [Google Scholar]
  38. Yalfani M. S., Contreras S., Medina F., and Sueiras J. Appl. Catal. B: Environ., 2009, 89, (3–4), 519 LINK [Google Scholar]
  39. Yalfani M. S., Contreras S., Medina F., and Sueiras J. E. J. Hazard. Mater., 2011, 192, (1), 340 LINK [Google Scholar]
  40. Yalfani M. S., Georgi A., Contreras S., Medina F., and Kopinke F.-D. Appl. Catal. B: Environ., 2011, 104, (1–2), 161 LINK [Google Scholar]
  41. Edwards J. K., Solsona B. E., Landon P., Carley A. F., Herzing A., Kiely C. J., and Hutchings G. J. J. Catal., 2005, 236, (1), 69 LINK [Google Scholar]
  42. Edwards J. K., and Hutchings G. J. Angew. Chem. Int. Ed., 2008, 47, (48), 9192 LINK [Google Scholar]
  43. Costa R. C. C., Lelis M. F. F., Oliveira L. C. A., Fabris J. D., Ardisson J. D., Rios R. R. V. A., Silva C. N., and Lago R. M. J. Hazard. Mater., 2006, 129, (1–3), 171 LINK [Google Scholar]
  44. Pham A. N., Xing G., Miller C. J., and Waite T. D. J. Catal., 2013, 301, 54 LINK [Google Scholar]
  45. Bokare A. D., and Choi W. J. Hazard. Mater., 2014, 275, 121 LINK [Google Scholar]
  46. Choudhary V. R., Samanta C., and Gaikwad A. G. Chem. Commun., 2004, (18), 2054 LINK [Google Scholar]
  47. Choudhary V. R., Samanta C., and Jana P. Ind. Eng. Chem. Res., 2007, 46, (10), 3237 LINK [Google Scholar]
  48. Georgi A., Velasco Polo M., Crincoli K., Mackenzie K., and Kopinke F.-D. Environ. Sci. Technol., 2016, 50, (11), 5882 LINK [Google Scholar]
  49. Babuponnusami A., and Muthukumar K. J. Environ. Chem. Eng., 2014, 2, (1), 557 LINK [Google Scholar]
  50. Szpyrkowicz L., Juzzolino C., and Kaul S. N. Water Res., 2001, 35, (9), 2129 LINK [Google Scholar]
  51. Rivas F. J., Beltrán F. J., Frades J., and Buxeda P. Water Res., 2001, 35, (2), 387 LINK [Google Scholar]
  52. Wegner P. C. ‘Hydrogen Peroxide Stabilizer and Resulting Product and Applications’, US Patent Appl., 2003/151,024 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error