Skip to content
1887
Volume 62, Issue 2
  • ISSN: 2056-5135

Abstract

The down-scaling of nanoelectronic devices to ever smaller dimensions and greater performance has pushed silicon-based devices to their physical limits. Much effort is currently being invested in research to examine the feasibility of replacing Si by a higher mobility semiconductor, such as germanium, in niche high-performance metal oxide semiconductor (MOS) devices. Before Ge can be adopted in industry, a suitable contact material for the active areas of a transistor must be identified. It is proposed that platinum group metal (pgm) germanides be used for this purpose, in a similar manner as metal silicides are used in Si technology. Implementation of Ge-based technology requires a thorough understanding of the solid-state interactions in metal/Ge systems in order to foresee and avoid problems that may be encountered during integration. We present a systematic study of the solid-state interactions in germanide systems of four of the pgms: iridium, platinum, palladium and rhodium. Our approach was essentially twofold. Firstly, conventional thin film couples were used to study the sequence of phase formation in the germanide systems. Conventional thin film couples were also used to identify and monitor the dominant diffusing species during the formation of some of the germanides as these can influence the thermal stability of a device. Secondly, we observed and analysed several aspects of the lateral diffusion reactions in these four systems, including activation energies and diffusion mechanisms. Lateral diffusion couples were prepared by the deposition of thick rectangular islands of one material on to thin films of another material. Rutherford backscattering spectrometry (RBS) and microprobe-Rutherford backscattering spectrometry (μRBS) were used to analyse several aspects of the thin film and lateral diffusion interactions respectively. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were also employed.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X696639
2018-01-01
2024-02-28
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/2/Habanyama_16a_Imp.html?itemId=/content/journals/10.1595/205651318X696639&mimeType=html&fmt=ahah

References

  1. Chui C. O., Kim H., Chi D., Triplett B. B., McIntyre P. C., and Saraswat K. C. ‘A Sub-400/spl deg/C Germanium MOSFET Technology with High-/spl Kappa/Dielectric and Metal Gate’, International Electron Devices Meeting, San Francisco, USA, 8th–11th December, 2002, Institute of Electrical and Electronics Engineers Inc, Piscataway, USA, pp. 437440 LINK https://doi.org/10.1109/IEDM.2002.1175872 [Google Scholar]
  2. Ritenour A., Yu S., Lee M. L., Lu N., Bai W., Pitera A., Fitzgerald E. A., Kwong D. L., and Antoniadis D. A. ‘Epitaxial Strained Germanium p-MOSFETs with HfO/sub 2/Gate Dielectric and TaN Gate Electrode’, International Electron Devices Meeting, Washington, DC, USA, 8th–10th December, 2003, Institute of Electrical and Electronics Engineers Inc, Piscataway, USA, pp. 18.2.118.2.4 LINK https://doi.org/10.1109/IEDM.2003.1269315 [Google Scholar]
  3. Shang H., Okorn-Schmidt H., Chan K. K., Copel M., Ott J. A., Kozlowski P. M., Steen S. E., Cordes S. A., Wong H.-S. P., Jones E. C., and Haensch W. E. ‘High Mobility p-Channel Germanium MOSFETs with a Thin Ge Oxynitride Gate Dielectric’, International Electron Devices Meeting, San Francisco, USA, 8th–11th December, 2002, Institute of Electrical and Electronics Engineers Inc, Piscataway, USA, pp. 441444 LINK https://doi.org/10.1109/IEDM.2002.1175873 [Google Scholar]
  4. Chui C. O., Ramanathan S., Triplett B. B., McIntyre P. C., and Saraswat K. C. IEEE Electron Dev. Lett., 2002, 23, (8), 473 LINK https://doi.org/10.1109/LED.2002.801319 [Google Scholar]
  5. Claeys C., and Simoen E. “Germanium-Based Technologies: From Materials to Devices”, Elsevier BV, Oxford, UK, 2007, 449 pp [Google Scholar]
  6. Brunco D. P., De Jaeger B., Eneman G., Mitard J., Hellings G., Satta A., Terzieva V., Souriau L., Leys F. E., Pourtois G., Houssa M., Winderickx G., Vrancken E., Sioncke S., Opsomer K., Nicholas G., Caymax M., Stesmans A., Van Steenbergen J., Mertens P. W., Meuris M., and Heyns M. M. J. Electrochem. Soc., 2008, 155, (7), H552 LINK https://doi.org/10.1149/1.2919115 [Google Scholar]
  7. Gaudet S., Detavernier C., Kellock A. J., Desjardins P., and Lavoie C. J. Vac. Sci. Technol. A, 2006, 24, (3), 474 LINK https://doi.org/10.1116/1.2191861 [Google Scholar]
  8. Kittl J. A., Opsomer K., Torregiani C., Demeurisse C., Mertens S., Brunco D. P., Van Dal M. J. H., and Lauwers A. Mater. Sci. Eng.: B, 2008, 154–155, 144 LINK https://doi.org/10.1016/j.mseb.2008.09.033 [Google Scholar]
  9. Nemutudi R. S., Comrie C. M., and Churms C. L. Thin Solid Films, 2000, 358, (1–2), 270 LINK https://doi.org/10.1016/S0040-6090(99)00679-3 [Google Scholar]
  10. Zhang S.-L., and Östling M. Crit. Rev. Solid State Mater. Sci., 2003, 28, (1), 1 LINK https://doi.org/10.1080/10408430390802431 [Google Scholar]
  11. Zheng L. R., Hung L. S., Mayer J. W., Majni G., and Ottaviani G. Appl. Phys. Lett., 1982, 41, (7), 646 LINK https://doi.org/10.1063/1.93635 [Google Scholar]
  12. Zheng L. R., Hung L. S., and Mayer J. W. J. Vac. Sci. Technol. A, 1983, 1, (2), 758 LINK https://doi.org/10.1116/1.571994 [Google Scholar]
  13. Zheng L. R., Hung L. S., and Mayer J. W. Thin Solid Films, 1983, 104,(1–2), 207 LINK https://doi.org/10.1016/0040-6090(83)90563-1 [Google Scholar]
  14. Chen S. H., Zheng L. R., Barbour J. C., Zingu E. C., Hung L. S., Carter C. B., and Mayer J. W. Mater. Lett., 1984, 2,(6), 469 LINK https://doi.org/10.1016/0167-577X(84)90075-2 [Google Scholar]
  15. Blanpain B., Mayer J. W., Liu J. C., and Tu K. N. J. Appl. Phys., 1990, 68,(7), 3259 LINK https://doi.org/10.1063/1.346377 [Google Scholar]
  16. Blanpain B., Mayer J. W., Liu J. C., and Tu K. N. Phys. Rev. Lett., 1990, 64, (22–28), 2671 LINK https://doi.org/10.1103/PhysRevLett.64.2671 [Google Scholar]
  17. Blanpain B., Priolo F., Rimini E., and Poate J. M. ‘Lateral Diffusion Couples and Their Contribution to Understanding Thin Film Reactions’, in “Crucial Issues in Semiconductor Materials and Processing Technologies”, eds. Coffa S., Springer Science+Business Media, Dordrecht, The Netherlands, 1992, pp 421425 LINK https://doi.org/10.1007/978-94-011-2714-1_42 [Google Scholar]
  18. Liu J. C., Mayer J. W., and Barbour J. C. J. Appl. Phys., 1988, 64,(2), 651 LINK https://doi.org/10.1063/1.341956 [Google Scholar]
  19. Liu J. C., Mayer J. W., and Barbour J. C. J. Appl. Phys., 1988, 64, (2), 656 LINK https://doi.org/10.1063/1.341957 [Google Scholar]
  20. Liu J. C., and Mayer J. W. J. Mater. Res., 1990, 5,(2), 334 LINK https://doi.org/10.1557/JMR.1990.0334 [Google Scholar]
  21. Ding P. J., Talevi R., Lanford W. A., Hymes S., and Murarka S. P. Nucl. Instr. Meth. Phys. Res. Sect. B: Beam Int. Mater. Atoms, 1994, (1–4), 85, 167 LINK https://doi.org/10.1016/0168-583X(94)95807-6 [Google Scholar]
  22. de Waal H. S. “The Effect of Diffusion Barriers, Stress and Lateral Diffusion on Thin-Film Phase Formation”, PhD thesis, University of Stellenbosch, South Africa, 1999 [Google Scholar]
  23. Saedi A., Poelsema B., and Zandvliet H. J. W. Surf. Sci., 2011, 605, (5–6), 507 LINK https://doi.org/10.1016/j.susc.2010.12.007 [Google Scholar]
  24. Hökelek E., and Robinson G. Y. Solid State Electron., 1981, 24, (2), 99 LINK https://doi.org/10.1016/0038-1101(81)90001-0 [Google Scholar]
  25. Rhoderick E. H., and Williams R. H. “Metal-Semiconductor Contacts”, 2nd Edn., Monographs in Electrical and Electronic Engineering, Vol. 19, Clarendon Press, Oxford, UK, 1988, 252 pp [Google Scholar]
  26. Baraff G. A., and Schlüter M. Phys. Rev. B, 1986, 33, (10–15), 7346 LINK https://doi.org/10.1103/PhysRevB.33.7346 [Google Scholar]
  27. Asubay S., Güllü Ö., and Türüt A. Appl. Surf. Sci., 2008, 254, (11), 3558 LINK https://doi.org/10.1016/j.apsusc.2007.11.050 [Google Scholar]
  28. Henkel C., Abermann S., Bethge O., Pozzovivo G., Puchner S., Hutter H., and Bertagnolli E. J. Electrochem. Soc., 2010, 157, (8), H815 LINK https://doi.org/10.1149/1.3425750 [Google Scholar]
  29. Chawanda A., Nyamhere C., Auret F. D., Mtangi W., Diale M., and Nel J. M. J. Alloys Compd., 2010, 492, (1–2), 649 LINK https://doi.org/10.1016/j.jallcom.2009.11.202 [Google Scholar]
  30. Yao H. B., Tan C. C., Liew S. L., Chua C. T., Chua C. K., Li R., Lee R. T. P., Lee S. J., and Chi D. Z. ‘Material and Electrical Characterization of Ni- and Pt-Germanides for p-channel Germanium Schottky Source/Drain Transistors’, Sixth International Workshop on Junction Technology, Shanghai, China, 15th–16th May, 2006, Institute of Electrical and Electronics Engineers Inc, Piscataway, USA, pp. 164169 LINK https://doi.org/10.1109/IWJT.2006.220884 [Google Scholar]
  31. Chawanda A., Nyamhere C., Auret F. D., Mtangi W., Hlatshwayo T. T., Diale M., and Nel J. M. Physica B, 2009, 404, (22), 4482 LINK https://doi.org/10.1016/j.physb.2009.09.043 [Google Scholar]
  32. Chawanda A., Coelho S. M. M., Auret F. D., Mtangi W., Nyamhere C., Nel J. M., and Diale M. J. Alloys Compd., 2012, 513, 44 LINK https://doi.org/10.1016/j.jallcom.2011.09.053 [Google Scholar]
  33. Peng C.-Y., Yang Y.-H., Lin C.-M., Yang Y.-J., Huang C.-F., and Liu C. W. ‘Process Strain Induced by Nickel Germanide on (100) Ge Substrate’, 9th International Conference on Solid-State and Integrated-Circuit Technology, Beijing, China, 20th–23rd October, 2008, Institute of Electrical and Electronics Engineers Inc, Piscataway, USA, pp. 681683 LINK https://doi.org/10.1109/ICSICT.2008.4734645 [Google Scholar]
  34. Hållstedt J., Blomqvist M., Persson P. O. Å., Hultman L., and Radamson H. H. J. Appl. Phys., 2004, 95, (5), 2397 LINK https://doi.org/10.1063/1.1645996 [Google Scholar]
  35. Thanailakis A., and Northrop D. C. Solid State Electron., 1973, 16, (12), 1383 LINK https://doi.org/10.1016/0038-1101(73)90052-X [Google Scholar]
  36. Doolittle L. R. Nucl. Instr. Meth. Phys. Res. Sect. B: Beam Int. Mater. Atoms, 1986, 15, (1–6), 227 LINK https://doi.org/10.1016/0168-583X(86)90291-0 [Google Scholar]
  37. Kidson G. V. J. Nucl. Mater., 1961, 3, (1), 21 LINK https://doi.org/10.1016/0022-3115(61)90175-1 [Google Scholar]
  38. Eckertová L. “Physics of Thin Films”, 2nd Edn., Plenum Press, New York, USA, 1986 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651318X696639
Loading
/content/journals/10.1595/205651318X696639
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error