- Home
- A-Z Publications
- Johnson Matthey Technology Review
- Previous Issues
- Volume 62, Issue 2, 2018
Johnson Matthey Technology Review - Volume 62, Issue 2, 2018
Volume 62, Issue 2, 2018
-
-
Rechargeable Multi-Valent Metal-Air Batteries
Authors: By Laurence J. Hardwick and Carlos Ponce de LeónRechargeable metal-oxygen cells could exceed the stored energy of today’s most advanced lithium-ion cells. However challenges exist that must be overcome to bring this technology into practical application. These challenges include, among others, the recharge and cyclability efficiency, materials development and improvements in fundamental understanding of the electrochemistry and chemistry inside the cell. The common challenges for the anode, including corrosion, passivation and dendrite formation and those for the air cathode and the electrolyte are summarised in this review for cells based on magnesium, calcium, aluminium, silicon, zinc and iron.
-
-
-
Challenges and Opportunities in Fast Pyrolysis of Biomass: Part II
By By Tony BridgwaterFast pyrolysis for liquids has been developed in recent decades as a fast and flexible method to provide high yields of liquid products. An overview of this promising field is given, with a comprehensive introduction as well as a practical guide to those thinking of applying bio-oils or fast pyrolysis liquids in various applications. It updates the literature with recent developments that have occurred since the reviews cited herein. Part I gave an introduction to the background, science, feedstocks, technology and products available for fast pyrolysis (1). Part II details some of the promising applications as well as pre-treatment and bio-oil upgrading options. The applications include use of bio-oil as an energy carrier, precursor to second generation biofuels, as a biorefinery concept and upgrading to fuels and chemicals.
-
-
-
Lithium Recovery from Aqueous Resources and Batteries: A Brief Review
Authors: Ling Li, Vishwanath G. Deshmane, M. Parans Paranthaman, Ramesh Bhave, Bruce A. Moyer and Stephen HarrisonThe demand for lithium is expected to increase drastically in the near future due to the increased usage of rechargeable lithium-ion batteries (LIB) in electric vehicles, smartphones and other portable electronics. To alleviate the potential risk of undersupply, lithium can be extracted from raw sources consisting of minerals and brines or from recycled batteries and glasses. Aqueous lithium mining from naturally occurring brines and salt deposits is advantageous compared to extraction from minerals, since it may be more environmentally friendly and cost-effective. In this article, we briefly discuss the adsorptive behaviour, synthetic methodology and prospects or challenges of major sorbents including spinel lithium manganese oxide (Li-Mn-O or LMO), spinel lithium titanium oxide (Li-Ti-O or LTO) and lithium aluminium layered double hydroxide chloride (LiCl·2Al(OH)3). Membrane approaches and lithium recovery from end-of-life LIB will also be briefly discussed.
-
-
-
All-Solid-State Batteries and their Remaining Challenges
Authors: Jitti Kasemchainan and Peter G. BruceAll-solid-state batteries, which utilise a solid electrolyte in place of liquid electrolytes, have the potential for higher energy densities and greater safety than current lithium-ion batteries. However they still face many challenges before the technology is ready to be commercialised. This short report summarises the current state of knowledge in all-solid-state batteries including the electrical, electrochemical and mechanical properties of the electrolytes, and the challenges that remain to be overcome in their development and processing.
-
-
-
“Electrochemistry: Volume 14”
Authors: Reviewed by John Blake, Angus Dickinson and Massimo Peruffo
-
-
-
The International Flow Battery Forum 2017
Authors: Reviewed by Marion van Dalen and Julia O’Farrelly
-
-
-
Effect of Temperature and Catholyte Concentration on the Performance of a Chemically Regenerative Fuel Cell
Authors: By David B. Ward and Trevor J. DaviesChemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells (PEFCs) are attracting more interest as a platinum-free PEFC technology. These fuel cells utilise a liquid catalyst or catholyte, to perform the indirect reduction of oxygen, eliminating the major degradation mechanisms that plague PEFC durability. A key component of a CRRC PEFC system is the catholyte. This article reports a thorough study of the effect of catholyte concentration and temperature on CRRC PEFC system performance for H7PV4Mo8O40 and Na4H3PV4Mo8O40, two promising polyoxometalate (POM)-based catholytes. The results suggest 80°C and a catholyte concentration of 0.3 M provide the optimum performance for both H7PV4Mo8O40 and Na4H3PV4Mo8O40 (for ambient pressure operation).
-
-
-
21st International Conference on Solid State Ionics
Authors: By Thomas Bartlett and James Cookson
-
-
-
Inter-Diffusion of Iridium, Platinum, Palladium and Rhodium with Germanium
Authors: Adrian Habanyama and Craig M. ComrieThe down-scaling of nanoelectronic devices to ever smaller dimensions and greater performance has pushed silicon-based devices to their physical limits. Much effort is currently being invested in research to examine the feasibility of replacing Si by a higher mobility semiconductor, such as germanium, in niche high-performance metal oxide semiconductor (MOS) devices. Before Ge can be adopted in industry, a suitable contact material for the active areas of a transistor must be identified. It is proposed that platinum group metal (pgm) germanides be used for this purpose, in a similar manner as metal silicides are used in Si technology. Implementation of Ge-based technology requires a thorough understanding of the solid-state interactions in metal/Ge systems in order to foresee and avoid problems that may be encountered during integration. We present a systematic study of the solid-state interactions in germanide systems of four of the pgms: iridium, platinum, palladium and rhodium. Our approach was essentially twofold. Firstly, conventional thin film couples were used to study the sequence of phase formation in the germanide systems. Conventional thin film couples were also used to identify and monitor the dominant diffusing species during the formation of some of the germanides as these can influence the thermal stability of a device. Secondly, we observed and analysed several aspects of the lateral diffusion reactions in these four systems, including activation energies and diffusion mechanisms. Lateral diffusion couples were prepared by the deposition of thick rectangular islands of one material on to thin films of another material. Rutherford backscattering spectrometry (RBS) and microprobe-Rutherford backscattering spectrometry (μRBS) were used to analyse several aspects of the thin film and lateral diffusion interactions respectively. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were also employed.
-
-
-
Toward Platinum Group Metal-Free Catalysts for Hydrogen/Air Proton-Exchange Membrane Fuel Cells
Authors: Frédéric Jaouen, Deborah Jones, Nathan Coutard, Vincent Artero, Peter Strasser and Anthony KucernakThe status, concepts and challenges toward catalysts free of platinum group metal (pgm) elements for proton-exchange membrane fuel cells (PEMFC) are reviewed. Due to the limited reserves of noble metals in the Earth’s crust, a major challenge for the worldwide development of PEMFC technology is to replace Pt with pgm-free catalysts with sufficient activity and stability. The priority target is the substitution of cathode catalysts (oxygen reduction) that account for more than 80% of pgms in current PEMFCs. Regarding hydrogen oxidation at the anode, ultralow Pt content electrodes have demonstrated good performance, but alternative non-pgm anode catalysts are desirable to increase fuel cell robustness, decrease the H2 purity requirements and ease the transition from H2 derived from natural gas to H2 produced from water and renewable energy sources.
-
Most Read This Month
Most Cited Most Cited RSS feed
-
-
Introduction to the Additive Manufacturing Powder Metallurgy Supply Chain
Authors: By Jason Dawes, Robert Bowerman and Ross Trepleton
-
-
-
Methanol Production – A Technical History
By By Daniel Sheldon
-
-
-
Lithium Recovery from Aqueous Resources and Batteries: A Brief Review
Authors: Ling Li, Vishwanath G. Deshmane, M. Parans Paranthaman, Ramesh Bhave, Bruce A. Moyer and Stephen Harrison
-
-
-
Toward Platinum Group Metal-Free Catalysts for Hydrogen/Air Proton-Exchange Membrane Fuel Cells
Authors: Frédéric Jaouen, Deborah Jones, Nathan Coutard, Vincent Artero, Peter Strasser and Anthony Kucernak
-
-
-
Methane Emission Control
By By Agnes Raj
-
-
-
Secondary Lithium-Ion Battery Anodes: From First Commercial Batteries to Recent Research Activities
Authors: By Nicholas Loeffler, Dominic Bresser, Stefano Passerini and Mark Copley
-
-
-
Challenges and Opportunities in Fast Pyrolysis of Biomass: Part I
By By Tony Bridgwater
-
-
-
Ammonia and the Fertiliser Industry: The Development of Ammonia at Billingham
By By John Brightling
-
- More Less